1
|
Huang L, Ye B, Cao F, Ruan B, Li X. Single-Cell Atlas of the Peripheral Immune Response in Patients With Chronic Hepatitis B. J Med Virol 2025; 97:e70360. [PMID: 40255189 DOI: 10.1002/jmv.70360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/22/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025]
Abstract
Cellular immune responses are crucial in determining outcomes of the hepatitis B virus (HBV) infection. Ineffective immune responses enable persistent HBV infection and contribute to progressive liver disease. Understanding the mechanisms underlying immunological HBV tolerance and restoring functional adaptive immune responses is essential for successful chronic hepatitis B (CHB) treatment. This study examined the dysregulated immune responses and immunopathological cell states associated with CHB using single-cell RNA sequencing of peripheral blood mononuclear cells to investigate immune cell composition and transcriptional differences between patients with CHB and healthy donors. Phenotypic alterations in the lymphoid and myeloid compartments were observed following HBV infection. T cell immune profiling in patients with CHB showed enrichment of exhausted CD8+ T cells, impaired cytotoxicity of effector CD8+ T cells, and increased regulatory T cell (Treg) suppressive activity. Immature neutrophils and a unique CD14+ monocyte subset (myeloid-derived suppressor cells) exhibited potent immunosuppressive abilities. A novel population of CD14+CD163+VSIG4+ M2-like macrophages with immunosuppressive and anti-inflammatory phenotypes was enriched in a patient with severe CHB and liver failure, indicating a potential contribution to dysfunctional immune responses. Our study demonstrated immune exhaustion and evasion in chronic HBV infection, elucidating its immunopathological features and suggesting new therapeutic strategies for immune-mediated disorders and unresolved chronic HBV infection.
Collapse
Affiliation(s)
- Li Huang
- Zhejiang Key Laboratory of Clinical In Vitro Diagnostic Techniques, Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bo Ye
- Zhejiang Key Laboratory of Clinical In Vitro Diagnostic Techniques, Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feinan Cao
- Zhejiang Key Laboratory of Clinical In Vitro Diagnostic Techniques, Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuefen Li
- Zhejiang Key Laboratory of Clinical In Vitro Diagnostic Techniques, Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Chen N, Luo P, Tang Y, Liu P, Wang J, Fan Y, Han L, Wang K. Accelerators of chronic hepatitis B fibrosis cirrhosis CCND1 gene expression and promoter hypomethylation. Sci Rep 2025; 15:10630. [PMID: 40148411 PMCID: PMC11950333 DOI: 10.1038/s41598-025-93778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
This study investigates the relationship between Cyclin D1 (CCND1) gene and promoter methylation and liver fibrosis (LF)/liver cirrhosis (LC)induced by chronic hepatitis B (CHB). Peripheral blood mononuclear cells (PBMCs) are collected from patients diagnosed with chronic hepatitis B (CHB) and hepatitis B-related LF/LC, as well as from healthy individuals. The mRNA levels and promoter methylation of the CCND1 gene are measured. Single-cell analysis is performed to determine the cell types primarily expressing the CCND1 gene in LF/LC. The GSE84044 dataset is utilized to validate the experimental results. Single-gene GSEA and immune infiltration analyses are conducted to identify significant pathways and immune characteristics associated with the CCND1 gene. The mRNA level of CCND1 in PBMCs from patients with hepatitis B-related LF/LC is elevated compared to those with chronic hepatitis B (CHB) and healthy individuals, while the promoter methylation level of CCND1 is reduced. Single-cell analysis indicates high expression of CCND1 in M2 macrophages (M2) and T cells. The GSE84044 dataset confirms higher CCND1 mRNA levels in liver tissues from patients with CHB-related LF/LC compared to CHB patients. Single-gene GSEA analysis associates CCND1 expression with natural killer cell-mediated cytotoxicity, T cell receptor signaling, and B cell receptor signaling pathways. Increased expression of CCND1 enhances immune infiltration during the fibrosis/cirrhosis process of CHB. The CCND1 expression and promoter methylation may be involved in the process of LF/LC in CHB and may be related to the immune response in the course of the disease.
Collapse
Affiliation(s)
- Nan Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Pengyu Luo
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yuna Tang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Pei Liu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Jing Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Institute of Hepatology, Shandong University, Jinan, 250012, People's Republic of China
| | - Liyan Han
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
- Institute of Hepatology, Shandong University, Jinan, 250012, People's Republic of China.
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
- Institute of Hepatology, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
3
|
Wu Y, Dai H, Li D, Li L, Ou L. Diagnostic Value of the Color Doppler Ultrasound Standardized Semiquantitative Score Combined With Sound Touch Elastography in Liver Fibrosis in Patients With Chronic Hepatitis B: A Retrospective Cohort Study. J Comput Assist Tomogr 2024:00004728-990000000-00404. [PMID: 39787480 DOI: 10.1097/rct.0000000000001712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
PURPOSE This study aims to evaluate the diagnostic value of standardized semiquantitative scoring of color Doppler ultrasound combined with liver stiffness measurement (LSM) of sound touch elastography (STE) in chronic hepatitis B (CHB) patients, providing a reference for the liver fibrosis diagnosis. METHODS We performed ultrasound and STE on CHB patients, with liver biopsies as the benchmark. We compared the differences in ultrasound standardized semiquantitative scoring and LSM among patients with different stages of liver fibrosis, and evaluated the diagnostic efficacy of significant liver fibrosis using receiver operating characteristic (ROC) curves and the area under the ROC curve alone or in combination. RESULTS The total scores of ultrasound semiquantitative scoring and LSM showed statistically significant differences among patients with different stages of liver fibrosis (P < 0.05). There was no statistically significant difference in the total scores of S0 and S1 stages or in the LSM values (P > 0.05). However, the total scores and LSM values for patients at stages S2 and S3 were both higher than those at stage S0, and increased with the severity of fibrosis staging, with statistically significant differences (P < 0.05). The results of the ROC curve analysis showed that the combined diagnosis of significant liver fibrosis with ultrasound standardized semiquantitative scoring and STE had an area under the curve of 0.807, which was significantly greater than using ultrasound standardized semiquantitative scoring (0.694, P < 0.05) or shear wave elastography alone (0.706, P < 0.05). CONCLUSIONS Color Doppler ultrasound with standardized semiquantitative scoring combined with STE examination can detect significant liver fibrosis (≥S2) in CHB patients.
Collapse
Affiliation(s)
- Yali Wu
- From the Functional Department, Leshan Traditional Chinese Medicine Hospital, Leshan, China
| | | | | | | | | |
Collapse
|
4
|
Rodrigo M, Hartley C, Wasuwanich P, Van T, Karnsakul W. From Tenofovir Disoproxil Fumarate (TDF) to Tenofovir Alafenamide (TAF): Perspectives in Pediatric Patients with Chronic Hepatitis B. Expert Rev Anti Infect Ther 2024; 22:1099-1106. [PMID: 39360716 DOI: 10.1080/14787210.2024.2412991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION Hepatitis B virus (HBV) affects hundreds of millions globally, with many cases stemming from perinatal transmission. Chronic hepatitis B (CHB) in children can progress to cirrhosis and hepatocellular carcinoma (HCC) in adulthood. Treatment options include interferons and nucleos(t)ide reverse transcriptase inhibitors (N[t]RTIs) such as tenofovir alafenamide (TAF). AREAS COVERED This review covers the epidemiology of pediatric CHB and current treatments, with a focus on tenofovir-based therapies, particularly tenofovir disoproxil fumarate (TDF) and TAF. TDF has been used for years, but its risks of bone mineral density loss and renal impairment have raised concerns. TAF, with lower systemic exposure, appears to mitigate these risks. Ongoing trials are evaluating TAF's safety in younger children. There are knowledge gaps in long-term safety and the potential for combination therapies. EXPERT OPINION TAF offers a safer alternative to TDF for children with CHB, showing high antiviral efficacy and fewer side effects. However, more data are needed on its use in younger children and long-term safety. The future of CHB treatment in pediatrics may include combination therapies and personalized approaches, potentially improving outcomes and minimizing risks over a lifetime of treatment. As research progresses, TAF is likely to become a cornerstone in pediatric CHB management.
Collapse
Affiliation(s)
- Minna Rodrigo
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Paul Wasuwanich
- Department of Internal Medicine, Naples Comprehensive Health, Naples, FL, USA
- Department of Internal Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Trung Van
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wikrom Karnsakul
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Hasanpourghadi M, Novikov M, Ambrose R, Chekaoui A, Newman D, Xiang Z, Luber AD, Currie SL, Zhou X, Ertl HC. A therapeutic HBV vaccine containing a checkpoint modifier enhances CD8+ T cell and antiviral responses. JCI Insight 2024; 9:e181067. [PMID: 39226106 PMCID: PMC11601613 DOI: 10.1172/jci.insight.181067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
In patients who progress from acute hepatitis B virus (HBV) infection to a chronic HBV (CHB) infection, CD8+ T cells fail to eliminate the virus and become impaired. A functional cure of CHB likely requires CD8+ T cell responses different from those induced by the infection. Here we report preclinical immunogenicity and efficacy of an HBV therapeutic vaccine that includes herpes simplex virus (HSV) glycoprotein D (gD), a checkpoint modifier of early T cell activation, that augments CD8+ T cell responses. The vaccine is based on a chimpanzee adenovirus serotype 6 (AdC6) vector, called AdC6-gDHBV2, which targets conserved and highly immunogenic regions of the viral polymerase and core antigens fused to HSV gD. The vaccine was tested with and without gD in mice for immunogenicity, and in an AAV8-1.3HBV vector model of antiviral efficacy. The vaccine encoding the HBV antigens within gD stimulates potent and broad CD8+ T cell responses. In a surrogate model of HBV infection, a single intramuscular injection achieved pronounced and sustained declines of circulating HBV DNA copies and HBV surface antigen; both inversely correlated with HBV-specific CD8+ T cell frequencies in spleen and liver.
Collapse
Affiliation(s)
| | | | | | | | - Dakota Newman
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - ZhiQuan Xiang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
6
|
Kumar A, Combe E, Mougené L, Zoulim F, Testoni B. Applications of CRISPR/Cas as a Toolbox for Hepatitis B Virus Detection and Therapeutics. Viruses 2024; 16:1565. [PMID: 39459899 PMCID: PMC11512240 DOI: 10.3390/v16101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a significant global health challenge, leading to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Covalently closed circular DNA (cccDNA) and integrated HBV DNA are pivotal in maintaining viral persistence. Recent advances in CRISPR/Cas technology offer innovative strategies to inhibit HBV by directly targeting both cccDNA and integrated HBV DNA or indirectly by degrading HBV RNAs or targeting host proteins. This review provides a comprehensive overview of the latest advancements in using CRISPR/Cas to inhibit HBV, with a special highlight on newer non-double-strand (non-DSB) break approaches. Beyond the canonical use of CRISPR/Cas for target inhibition, we discuss additional applications, including HBV diagnosis and developing models to understand cccDNA biology, highlighting the diverse use of this technology in the HBV field.
Collapse
Affiliation(s)
- Anuj Kumar
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, 69008 Lyon, France; (A.K.); (E.C.); (L.M.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Emmanuel Combe
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, 69008 Lyon, France; (A.K.); (E.C.); (L.M.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Léa Mougené
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, 69008 Lyon, France; (A.K.); (E.C.); (L.M.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Fabien Zoulim
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, 69008 Lyon, France; (A.K.); (E.C.); (L.M.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hepatology Department, Hospices Civils de Lyon (HCL), Croix-Rousse Hospital, 69004 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
| | - Barbara Testoni
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, 69008 Lyon, France; (A.K.); (E.C.); (L.M.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
7
|
Matsui T. A revolutionary oral HBV treatment candidate as innovative therapeutic approach warranting clinical trials. J Gastroenterol 2024; 59:434-435. [PMID: 38526624 DOI: 10.1007/s00535-024-02091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Affiliation(s)
- Takeshi Matsui
- Center for Gastroenterology, Teine-Keijinkai Hospital, 1-jo 12-chome, Maeda, Teine-ku, Sapporo, 006-8555, Japan.
| |
Collapse
|
8
|
Zou X, Huo F, Sun L, Huang J. Peripheral helper T cells in human diseases. J Autoimmun 2024; 145:103218. [PMID: 38574420 DOI: 10.1016/j.jaut.2024.103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Peripheral helper T cells (Tph) are a specialized subset of CD4+ T cells with the ability to help B cells and induce antibody production. Although usually located in ectopic lymphoid-like structures (ELS), inside the peripheral blood, Tph cells can also be identified. The aberrant proliferation and functions of Tph cells are commonly found in the patients with disease. In this review, first we will summarize the biological characteristics of Tph cells, such as the expression of surface molecules, transcription factors and cytokines, and discuss its B cell help functions. Tph cells also have roles in a wide range of human diseases, including autoimmune diseases, infectious diseases, malignancies etc. Therefore, there is a strong interest in targeting Tph cells to improve treat strategies of human diseases.
Collapse
Affiliation(s)
- Xueyang Zou
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130000, PR China
| | - Feifei Huo
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, 130000, PR China
| | - Lulu Sun
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130000, PR China
| | - Jing Huang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
9
|
Jiang P, Jia H, Qian X, Tang T, Han Y, Zhang Z, Jiang L, Yu Z, Zheng L, Yu G, Cai H, Zhang S, Zhang X, Gu J, Ye C, Yang L, Lu Y, Liu H, Lu X, Jin C, Ren Y, Lu M, Xu L, Yu J, Jin X, Yang Y, Qian P. Single-cell RNA sequencing reveals the immunoregulatory roles of PegIFN-α in patients with chronic hepatitis B. Hepatology 2024; 79:167-182. [PMID: 37368993 DOI: 10.1097/hep.0000000000000524] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND AND AIMS Chronic hepatitis B (CHB) is caused by HBV infection and affects the lives of millions of people worldwide by causing liver inflammation, cirrhosis, and liver cancer. Interferon-alpha (IFN-α) therapy is a conventional immunotherapy that has been widely used in CHB treatment and achieved promising therapeutic outcomes by activating viral sensors and interferon-stimulated genes (ISGs) suppressed by HBV. However, the longitudinal landscape of immune cells of CHB patients and the effect of IFN-α on the immune system are not fully understood. APPROACH AND RESULTS Here, we applied single-cell RNA sequencing (scRNA-seq) to delineate the transcriptomic landscape of peripheral immune cells in CHB patients before and after PegIFN-α therapy. Notably, we identified three CHB-specific cell subsets, pro-inflammatory (Pro-infla) CD14+ monocytes, Pro-infla CD16+ monocytes and IFNG+ CX3CR1- NK cells, which highly expressed proinflammatory genes and positively correlated with HBsAg. Furthermore, PegIFN-α treatment attenuated percentages of hyperactivated monocytes, increased ratios of long-lived naive/memory T cells and enhanced effector T cell cytotoxicity. Finally, PegIFN-α treatment switched the transcriptional profiles of entire immune cells from TNF-driven to IFN-α-driven pattern and enhanced innate antiviral response, including virus sensing and antigen presentation. CONCLUSIONS Collectively, our study expands the understanding of the pathological characteristics of CHB and the immunoregulatory roles of PegIFN-α, which provides a new powerful reference for the clinical diagnosis and treatment of CHB.
Collapse
Affiliation(s)
- Penglei Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Hongyu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Tian Tang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhaoru Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lingli Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zebin Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jueqing Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chanyuan Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisha Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ciliang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaomiao Lu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Second People's Hospital of Yuhang District, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
10
|
Al Mahtab M, Akbar SMF, Aguilar JC, Yoshida O, Khan S, Gerardo GN, Hiasa Y. Safety profile, antiviral capacity, and liver protection of a nasal therapeutic vaccine in patients with chronic hepatitis B: Five-year-follow-up outcomes after the end of treatment. Front Med (Lausanne) 2023; 10:1032531. [PMID: 36844221 PMCID: PMC9945514 DOI: 10.3389/fmed.2023.1032531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction There is a pressing need to develop novel drugs for treating patients with chronic hepatitis B (CHB), as commercially available antiviral drugs are endowed with safety and efficacy concerns. Methods A phase III clinical trial was conducted with a therapeutic vaccine containing two antigens of the hepatitis B virus (HBV; named NASVAC) in 78 patients with CHB expressing both HBV DNA and elevated levels of alanine aminotransferase (ALT) in the blood. Five years after the end of treatment (EOT), 60 NASVAC-recipient patients were enrolled in this long-term follow-up study to evaluate the safety, antiviral potential, and liver-protective capacity of NASVAC. Results NASVAC exhibited an excellent safety profile 5 years after EOT. The levels of HBV DNA in the sera were reduced in 55 of the 60 patients, and 45 of them were negative for HBV DNA in the sera. ALT levels were also normalized in 40 of the 60 patients 5 years after EOT. None of the patients receiving NASVAC developed liver cirrhosis or cancer. Discussion The present study is the first to exhibit long-term follow-up data of a finite immune therapy for CHB that is safe and endowed with potent antiviral and liver-protecting capacities.
Collapse
Affiliation(s)
- Mamun Al Mahtab
- Department of Hepatology, Interventional Hepatology Division, Bangabandhu Sheikh Mujib Medical University, BSMMU, Dhaka, Bangladesh
| | - Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan,*Correspondence: Sheikh Mohammad Fazle Akbar, ✉
| | | | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Oita, Japan
| | | | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
11
|
Hudu SA, Jimoh AO, Ibrahim KG, Alshrari AS. Hepatitis B Therapeutic Vaccine: A Patent Review. Pharmaceuticals (Basel) 2022; 15:1542. [PMID: 36558991 PMCID: PMC9783911 DOI: 10.3390/ph15121542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Viral hepatitis has long been underrated as a danger to global health. The UN only recently called for worldwide action to tackle viral hepatitis and lessen the disease burden in its "2030 Agenda for Sustainable Development". Hepatitis B virus (HBV), which causes liver cirrhosis and malignancy, is a main cause of death globally. This review analyses innovative HBV therapeutic vaccine candidates for which a patent was filed between January 2010 and March 2022 and presents future improvement techniques for vaccine efficacy. Although there is a preventative vaccine for HBV infection, over 3% of people worldwide have the disease on a long-term basis and can no longer benefit from it. Most people will have chronic HBV infection for the rest of their lives once it has been diagnosed. Moreover, only a small percentage of treated patients experience a functional cure with persistent hepatitis B surface antigen reduction. A significant proportion of deaths are caused by liver cirrhosis and hepatocellular cancer, which are both caused by chronic hepatitis B infection. Hence, there is an urgent need for novel medications due to the inadequacies of the current therapies.
Collapse
Affiliation(s)
- Shuaibu Abdullahi Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Abdulgafar Olayiwola Jimoh
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840001, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ahmed Subeh Alshrari
- Department of Basic Health Sciences, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|