1
|
Li J, Zhang YJ, Zhao X, Yu Y, Xu JH, Hu R, Wu YH, Huang WQ, Wang ZX, Li TT. Impact of sodium butyrate on stroke-related intestinal injury in diabetic mice: Interference with Caspase-1/GSDMD pyroptosis pathway and preservation of intestinal barrier. Eur J Pharmacol 2025; 998:177455. [PMID: 40057153 DOI: 10.1016/j.ejphar.2025.177455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Diabetic stroke-associated acute intestinal injury is characterized by high mortality, disability, and poor prognosis due to the lack of effective therapies. Our prior research demonstrated that administration of 300 mg/kg sodium butyrate (NaB) can improve neurological outcomes post-diabetic stroke. Nonetheless, whether the effect of NaB is related to intestinal regulation, along with its underlying mechanisms, remains uncertain. This study aims to investigate the effects and mechanistic pathways of NaB on diabetic stroke-associated acute intestinal injury. A middle cerebral artery occlusion/reperfusion model was established in mice with streptozotocin-induced diabetes. The results demonstrated that NaB alleviated colonic injury 24 h after reperfusion in diabetic stroke. Pyroptosis-related protein levels in colonic tissues were significantly elevated following diabetic stroke but were markedly reduced with NaB treatment. NaB also improved gut barrier integrity and reduced inflammation, promoting epithelial barrier self-repair. In the NaB combined with lipopolysaccharide group, lipopolysaccharide administration induced a significant inflammatory response in the colonic tissue. Conversely, treatment with NaB and VX-765 (an inhibitor for Caspase-1) led to a notable alleviation in intestinal inflammation. These findings suggest that NaB mitigates colonic injury and enhances barrier function following diabetic stroke, potentially through the Caspase-1/Gasdermin D pyroptosis pathway. This study may provide a novel strategy and direction for intestinal rehabilitation in diabetic stroke patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Jia Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhao
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Yu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Hong Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye-Hui Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhong-Xing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ting-Ting Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Hetta HF, Ahmed R, Ramadan YN, Fathy H, Khorshid M, Mabrouk MM, Hashem M. Gut virome: New key players in the pathogenesis of inflammatory bowel disease. World J Methodol 2025; 15:92592. [DOI: 10.5662/wjm.v15.i2.92592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the intestine. While the mechanism underlying the pathogenesis of IBD is not fully understood, it is believed that a complex combination of host immunological response, environmental exposure, particularly the gut microbiota, and genetic susceptibility represents the major determinants. The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans. The gut virome varies greatly among individuals and is influenced by factors including lifestyle, diet, health and disease conditions, geography, and urbanization. The majority of research has focused on the significance of gut bacteria in the progression of IBD, although viral populations represent an important component of the microbiome. We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Division of Microbiology, Immunology and Biotechnology, Faculty of pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hayam Fathy
- Department of Internal Medicine, Division Hepatogastroenterology, Assiut University, Assiut 71515, Egypt
| | - Mohammed Khorshid
- Department of Clinical Research, Egyptian Developers of Gastroenterology and Endoscopy Foundation, Cairo 11936, Egypt
| | - Mohamed M Mabrouk
- Department of Internal Medicine, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| | - Mai Hashem
- Department of Tropical Medicine, Gastroenterology and Hepatology, Assiut University Hospital, Assiut 71515, Egypt
| |
Collapse
|
3
|
Pawlak M, Kałuzińska-Kołat Ż, Pasieka ZW, Kołat D, Płuciennik E. The critical role of COL1A1 revealed by integrated bioinformatics analysis of differentially-expressed genes in colorectal cancer and inflammatory bowel disease. Comput Biol Med 2025; 190:110116. [PMID: 40179807 DOI: 10.1016/j.compbiomed.2025.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE There is an urgent need to identify biomarkers of tumorigenesis for colitis-associated cancer (CAC) as early cancer detection remains crucial for patients with inflammatory bowel disease (IBD). This in silico study examines the relationship between IBD and CAC, with particular regard to differentially-expressed genes (DEGs). METHODS Integrated bioinformatics tools and public databases were employed. Data from GEO (GSE102133, GSE48958, GSE9348, GSE83687, GSE138202) were processed using GEOexplorer. DEGs were then functionally annotated with DAVID, SRplot, and integrated analysis via Metascape. Validation used Oncopression and Human Protein Atlas. Survival analysis employed GEPIA2. miRNA interactions were studied via miRTargetLink 2.0. Immune infiltration was analyzed with TIMER 2.0. COL1A1 expression and mutations were examined using cBioPortal, Kaplan-Meier plotter, and DNA methylation was analyzed using MethSurv. Correlation of COL1A1 gene promoter methylation with tissue type and clinical data was performed using the UALCAN database. The ROC analysis of COL1A1 was conducted in the R environment. RESULTS Our analysis identified three potential hub genes (ICAM1, LAMC1, and COL1A1), which are overexpressed in IBD and cancer tissues compared to normal tissue, and hence may play a role in CAC. Furthermore, patients with lower COL1A1 expression had longer disease-free survival (p = 0.01) than those with higher expression. Therefore, this gene was chosen for further analysis and identified as the most crucial. CONCLUSION COL1A1 reveals significant immunohistochemistry, mutations, and methylation data. Further studies involving machine learning and clinical data are required to validate the results.
Collapse
Affiliation(s)
- Martyna Pawlak
- Department of Biomedical Sciences, Faculty of Medicine, Medical University of Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Poland; Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Poland
| | - Zbigniew W Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Poland; Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Poland
| | | |
Collapse
|
4
|
Wang L, Wang S, Lin J, Li J, Wang M, Yu J, Sun J, Tang N, Jiao C, Ma J, Zhao X, Zhang H. Treg and intestinal myofibroblasts-derived Amphiregulin induced by TGF-β mediates intestinal fibrosis in Crohn's disease. J Transl Med 2025; 23:452. [PMID: 40247299 PMCID: PMC12004752 DOI: 10.1186/s12967-025-06413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Intestinal fibrosis is a serious complication of Crohn's disease (CD), often resulting from chronic inflammation. However, the precise mechanisms through which inflammation induces intestinal fibrosis remain inadequately elucidated. METHODS A comprehensive single-cell atlas of full-thickness CD, provided by Dr. Florian Rieder, was subjected to reanalysis. Our study used a DSS-induced chronic colitis model in both wild-type (WT) and Areg-/- mice. Additionally, a CD45RBhi CD4+ T cell adoptive transfer model involving WT and Areg-/- Treg cells (Tregs) was used. The expressions of AREG in CD with or without intestinal fibrosis, Tregs and human intestinal myofibroblasts (MFs) were determined. The effect of AREG on proliferation/migration/activation in human intestinal MFs was determined. RESULTS Several types of cells were differentially expressed between stricture and non-stricture CD. Among T cells, Tregs accounted for a larger proportion and were significantly increased in stenotic tissues of stricture CD. Although DSS-induced colitis was more severe in Areg-/- mice, which developed less severe intestinal fibrosis compared with WT mice. The transfer of Areg-/- Tregs resulted in less severe fibrosis in Rag-/- mice than WT Tregs. Moreover, TGF-β stimulated AREG expression in Tregs and human intestinal MFs via activation of Smad3. CONCLUSION These findings demonstrated that AREG derived from Tregs and human intestinal MFs, induced by TGF-β, amplifies intestinal fibrotic reactions in experimental colitis as well as in human CD patients. Thus, the TGF-β-Smad3-AREG pathway could be a potential therapeutic target for treating fibrosis in CD.
Collapse
Affiliation(s)
- Lu Wang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Shu Wang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Junjie Lin
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jiajia Li
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Mingyuan Wang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jiang Yu
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Junjian Sun
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Nana Tang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Chunhua Jiao
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jingjing Ma
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaojing Zhao
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Hongjie Zhang
- Department of Gastroenterology, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Nakase H, Danese S, Reinisch W, Ritter T, Liang Y, Wendt E, Levesque BG, Yoon OK, Tian Y, Zhuo L, Karouzakis E, Bauer Y, Oortwijn A, Kaise T, Malkov VA, Hibi T. Mediators of Filgotinib Treatment Effects in Ulcerative Colitis: Exploring Circulating Biomarkers in the Phase 2b/3 SELECTION Study. Inflamm Bowel Dis 2025; 31:1095-1108. [PMID: 39656830 PMCID: PMC11985404 DOI: 10.1093/ibd/izae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND We utilized patient samples from the large, phase 2b/3 SELECTION trial to identify circulating biomarkers of ulcerative colitis (UC) and potential early mediators of filgotinib treatment effects. METHODS Samples were collected at baseline and during the induction phase of the SELECTION trial. Evaluated biomarkers comprised serum and stool proteins (measured by enzyme-linked immunosorbent assay), whole-blood cell counts, and whole-blood RNA-seq-derived gene-expression factors identified via exploratory factor analysis. Biomarker levels were assessed by baseline disease severity (endoscopy/bleeding/stool and Mayo Clinic Score) and biologic status (naive vs experienced). Effects of filgotinib on biomarker levels, including week 4 biomarker changes that may mediate week 10 clinical improvements, were assessed. RESULTS The biomarker analysis set included 598 biologic-naive patients and 592 biologic-experienced patients. Systemic inflammatory biomarkers (C-reactive protein [CRP], interleukin-6 [IL-6], serum amyloid A [SAA], and platelet cell counts) had the strongest positive correlations with baseline UC disease severity. CRP, IL-6, SAA, and neutrophil activation biomarkers (including neutrophil gelatinase-associated lipocalin [NGAL], tumor necrosis factor ɑ, and oncostatin M [OSM]), as well as platelet, neutrophil, and monocyte cell counts were increased in biologic-experienced versus biologic-naive patients. Gene-expression-derived plasmablast and cell proliferation factors were positively correlated with disease severity; B cell, T-cell activation, and plasmacytoid dendritic cell factors were negatively correlated. Filgotinib reduced nearly all proinflammatory biomarkers correlated with baseline UC disease activity; reduced SAA, CRP, IL-6, NGAL, and OSM at week 4 were identified as mediators of improved week 10 clinical scores. CONCLUSIONS Filgotinib significantly impacted circulating biomarkers related to UC pathology. Several proinflammatory and neutrophil activation biomarkers may be early mediators of filgotinib treatment effects. CLINICALTRIALS.GOV IDENTIFIER NCT02914522.
Collapse
Affiliation(s)
- Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Silvio Danese
- Inflammatory Bowel Diseases Center, Humanitas Research Hospital, Milan, Italy
| | - Walter Reinisch
- Department of Internal Medicine and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | | | - Yan Liang
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | - Yuan Tian
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | | | | | | | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, Tokyo, Japan
| |
Collapse
|
6
|
Calvello R, Caponio GR, Cianciulli A, Porro C, Ruggiero M, Celano G, De Angelis M, Panaro MA. Antioxidant Activity and Anti-Inflammatory Effect of Blood Orange By-Products in Treated HT-29 and Caco-2 Colorectal Cancer Cell Lines. Antioxidants (Basel) 2025; 14:356. [PMID: 40227443 PMCID: PMC11939351 DOI: 10.3390/antiox14030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/15/2025] Open
Abstract
Blood orange peel flour (BO-pf)-a by-product of the citrus supply chain-still contains bioactive molecules with known health benefits, such as antiradical scavenging activity or an antiproliferative activity regarding tumors. In vitro studies have demonstrated that orange polyphenols showed potential involvement in necroptosis. In addition to previous research, we tested BO-pf on two colorectal cancer cell lines. Using HT29 and Caco2 cells, our experiments confirmed the regulation of inflammasome expression. They provided valuable insights into how BO-pf influences the cancer cell features (i.e., viability, proliferation, and pro- and anti-inflammatory activity). Notably, BO-pf extract is a rich source of polyphenolic compounds with antioxidant properties. Western blot and real-time PCR analyses showed that treatment with BO-pf extract demonstrated beneficial effects by influencing the expression of both pro-inflammatory cytokines (IL-1β, IL-6) through the modulation of the TLR4/NF-kB/NLRP3 inflammasome signaling. Moreover, the results of this study demonstrate that BO-pf extracts can enhance the expression of anti-inflammatory cytokines, such as IL-10 and TGFβ, suggesting that BO-pf extracts may represent a promising functional ingredient to counteract the intestinal inflammatory responses involved in IBD.
Collapse
Affiliation(s)
- Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Giusy Rita Caponio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Via A. Gramsci 89/91, 71121 Foggia, Italy;
| | - Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| | - Giuseppe Celano
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria De Angelis
- Department of the Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, Via Amendola, 165/a, 70126 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 125, 70125 Bari, Italy; (R.C.); (G.R.C.); (A.C.); (M.R.)
| |
Collapse
|
7
|
Gan Y, Yuan Z, Weng J, Huang M, Li T, Wu Y, Lin K, Han J, Li X, Liu H, Wan Z, Li Z, Chen Z, Cui J, Luo Y, Huang M, Yu H, Lin J. Transcriptomic profile of RNA pseudouridine modification as a biomarker for cellular senescence associated with survival outcomes in colorectal cancer. BMC Biol 2025; 23:61. [PMID: 40016751 PMCID: PMC11866714 DOI: 10.1186/s12915-025-02170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is considered as an age-related disease, and cellular senescence (CS) plays a crucial role in cancer development and progression. Previous studies have shown the role of epigenetic changes in aging and cancer development, but the role of RNA pseudouridine (Ψ) modification in aging and cancer remains to be explored. RESULTS Using bulk RNA sequencing, CRC cells with low Ψ writers expression levels have higher CS levels. We developed the Psi Score for assessing the transcriptomic profile of RNA Ψ modification regulation and found that the Psi Score correlates with CS. Furthermore, Psi-related senescence may be mediated by mTOR, TGF-β, TNF-α, and inflammatory response signaling pathways. Meanwhile, Psi Score could predict the anti-cancer treatment outcomes of anti-aging interventions and could be used to predict the response to immunotherapy. CONCLUSIONS Overall, these findings reveal that RNA Ψ modification connected aging and cancer and provided novel insights into biomarker-guided cancer regimens.
Collapse
Affiliation(s)
- Yingguo Gan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Ze Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Jingrong Weng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Mingzhe Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Tuoyang Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Yuanhui Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Kaixin Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Junyi Han
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Xuan Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Haotian Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Zixiao Wan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Ziming Li
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Zhenghua Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Ji Cui
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yanxin Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Meijin Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| | - Jinxin Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
8
|
Kastratovic N, Markovic V, Arsenijevic A, Volarevic A, Zdravkovic N, Zdravkovic M, Brankovic M, Gmizic T, Harrell CR, Jakovljevic V, Djonov V, Volarevic V. The Effects of Combustible Cigarettes and Electronic Nicotine Delivery Systems on Immune Cell-Driven Inflammation and Mucosal Healing in Ulcerative Colitis. Nicotine Tob Res 2025; 27:542-552. [PMID: 39101540 DOI: 10.1093/ntr/ntae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION The effects of combustible cigarettes (CCs) and electronic nicotine delivery systems (ENDS) on immune cell-driven colon inflammation and intestinal healing of patients with ulcerative colitis (UC) are still unknown and, therefore, were examined in this study. AIMS AND METHODS Intracellular staining and flow cytometry analysis of immune cells isolated from UC patients who used ENDS (UCENDS), CCs (UCCC) and who were nonsmokers (UCAIR) were performed to elucidate cellular mechanisms which were responsible for CCs and ENDS-dependent modulation of immune response during UC progression. Additionally, dextran sulfate sodium (DSS)-colitis was induced in ENDS/CC/air-exposed mice (DSSENDS/ DSSCC/DSSAIR groups) to support clinical findings. RESULTS Significantly increased number of immunosuppressive, IL-10, TGF-β, and IL-35-producing, FoxP3-expressing CD3 + CD4 + T regulatory cells (Tregs) was observed in the blood of UCENDS patients while the reduced presence of inflammatory, TNF-α and IFN-γ-producing, Tbx21-expressing CD3 + CD4 + Th1, IL-4-producing Gata3-expresing Th2 and IL-17, IL-22-producing, RORγT, IL-23R-expressing Th17 cells were noticed in the blood of UCCC patients. Exposure to either CCs or ENDS was associated with enhanced mucosal healing, ameliorated spontaneous recovery, and improved survival of DSS-treated mice. An expansion of immunosuppressive cells (IL-10-producing tolerogenic CD11c + dendritic cells, alternatively activated CD206, Arginase 1-expressing, IL-10-producing F4/80 + macrophages, IL-10-producing FoxP3-expressing Tregs) was noticed in the colons of DSSENDS-treated mice, while reduced number of inflammatory, IL-17- and IL-4-producing T lymphocytes was observed in the colons of DSSCC-compared to DSSAIR-treated mice. CONCLUSIONS Despite different mechanisms of action, both ENDS and CCs attenuated ongoing colon inflammation, enhanced healing, and ameliorated recovery of injured intestines of DSS-treated mice and UC patients. IMPLICATIONS This is the first study that compared the effects of CCs and ENDS on immune cells of patients suffering from UC, providing new information about molecular and cellular mechanisms which were responsible for ENDS and CCs-dependent modulation of immune cell-driven colon injury and inflammation. Obtained results showed that both ENDS and CCs had the capacity to attenuate detrimental immune response, enhance healing, and ameliorate recovery of injured intestines.
Collapse
Affiliation(s)
- Nikolina Kastratovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Markovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ana Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Psychology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Natasa Zdravkovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Gastroenterology, Unversity Clinical Center Kragujevac, Kragujevac, Serbia
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Cardiology, University Medical Center "Bežanijska Kosa," Dr Zoza Matea bb, Belgrade, Serbia
| | - Marija Brankovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Gastroenterology, University Medical Center "Bežanijska Kosa," Dr Zoza Matea bb, Belgrade, Serbia
| | - Tijana Gmizic
- Department of Gastroenterology, University Medical Center "Bežanijska Kosa," Dr Zoza Matea bb, Belgrade, Serbia
| | | | - Vladimir Jakovljevic
- Department of Physiology, Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Vladislav Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Biology and Human Genetics, Phaculty of Pharmacy Novi Sad, Novi Sad, Serbia
| |
Collapse
|
9
|
White SE, Schwartze TA, Mukundan A, Schoenherr C, Singh SP, van Dinther M, Cunningham KT, White MPJ, Campion T, Pritchard J, Hinck CS, Ten Dijke P, Inman GJ, Maizels RM, Hinck AP. TGM6 is a helminth secretory product that mimics TGF-β binding to TGFBR2 to antagonize signaling in fibroblasts. Nat Commun 2025; 16:1847. [PMID: 39984487 PMCID: PMC11845725 DOI: 10.1038/s41467-025-56954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
TGM6 is a natural antagonist of mammalian TGF-β signaling produced by the murine helminth parasite Heligmosomoides polygyrus. It differs from the previously described agonist, TGM1 (TGF-β Mimic-1), in that it lacks domains 1/2 that bind TGFBR1. It nonetheless retains TGFBR2 binding through domain 3 and potently inhibits TGF-β signaling in fibroblasts and epithelial cells, but does not inhibit TGF-β signaling in T cells, consistent with divergent domains 4/5 and an altered co-receptor binding preference. The crystal structure of TGM6 bound to TGFBR2 reveals an interface remarkably similar to that of TGF-β with TGFBR2. Thus, TGM6 has adapted its structure to mimic TGF-β, while engaging a distinct co-receptor to direct antagonism to fibroblasts and epithelial cells. The co-expression of TGM6, along with immunosuppressive TGMs that activate the TGF-β pathway, may minimize fibrotic damage to the host as the parasite progresses through its life cycle from the intestinal lumen to submucosa and back again. The co-receptor-dependent targeting of TGFBR2 by the parasite provides a template for the development of therapies for targeting the cancer- and fibrosis-promoting activities of the TGF-βs in humans.
Collapse
Affiliation(s)
- Stephen E White
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Ten63 Therapeutics, Durham, NC, USA
| | - Tristin A Schwartze
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ananya Mukundan
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Shashi P Singh
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Pilani, Rajasthan, India
| | - Maarten van Dinther
- Oncode Institute and Department of Cell and Chemical Biology, University of Leiden, Leiden, The Netherlands
| | - Kyle T Cunningham
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Madeleine P J White
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Tiffany Campion
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - John Pritchard
- Cancer Research UK Scotland Institute, University of Glasgow, Glasgow, UK
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, University of Leiden, Leiden, The Netherlands
| | - Gareth J Inman
- Cancer Research UK Scotland Institute, University of Glasgow, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- Centre for Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Shu A, Tian X, Yue J, Jiang Y, Liu Y. Unveiling the role of lncRNA ERDR1 in immune cell regulation. Heliyon 2025; 11:e42085. [PMID: 39991241 PMCID: PMC11847233 DOI: 10.1016/j.heliyon.2025.e42085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA molecules that exceed 200 nucleotides in length and lack the capacity to encode proteins. In recent years, there has been a surge of interest in lncRNA research, leading to the discovery of their diverse structures and functions. This review focused on elucidating the regulatory roles of lncRNA erythroid differentiation regulatory 1 (Erdr1) within immune cells and its involvement in related disorders. By synthesizing findings from recent studies sourced from PubMed, this paper examined the biological functions and underlying mechanisms by which lncRNA Erdr1 influences immune cells and contributes to various diseases. Emerging research highlights that lncRNA Erdr1 exerts significant effects on the functionality of immune cells, particularly T lymphocytes (T cells), natural killer (NK) cells, and macrophages. Furthermore, Erdr1 has been implicated in the mitigation of several diseases, including acne, wound healing, osteoarthritis, melanoma, gastric cancer, obesity, and autism. Given its complex biological functions and mechanisms, Erdr1 presents itself as a promising biomarker and a potential therapeutic target for a range of immune cell-related disorders.
Collapse
Affiliation(s)
- Aihua Shu
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
- The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Xu Tian
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
- The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Jie Yue
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
- The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Yuxia Jiang
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
- The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Yifei Liu
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China
- Yichang Central People's Hospital, Yichang, Hubei Province, 443000, China
- The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| |
Collapse
|
11
|
Cheng X, Shao P, Wang X, Jiang J, Chen J, Zhu J, Zhu W, Li Y, Zhang J, Chen J, Huang Z. Myeloid-Derived Suppressor Cell Accumulation Drives Intestinal Fibrosis through mCCL6/hCCL15 Chemokine-Mediated Fibroblast Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411711. [PMID: 39739231 PMCID: PMC11848553 DOI: 10.1002/advs.202411711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Indexed: 01/02/2025]
Abstract
Intestinal fibrosis, a severe complication of Crohn's disease (CD), is linked to chronic inflammation, but the precise mechanism by which immune-driven intestinal inflammation leads to fibrosis development is not fully understood. This study investigates the role of myeloid-derived suppressor cells (MDSCs) in intestinal fibrosis in CD patients and a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse model. Elevated MDSCs are observed in inflamed intestinal tissues prior to fibrosis and their sustained presence in fibrotic tissues of both CD patients and murine models. Depletion of MDSCs significantly reduces fibrosis, highlighting their key role in the fibrotic process. Mechanistically, MDSC-derived mCCL6 activates fibroblasts via the CCR1-MAPK signaling, and interventions targeting this axis, including neutralizing antibodies, a CCR1 antagonist, or fibroblast-specific Ccr1 knockout mice reduce fibrosis. In CD patients with stenosis, human CCL15, analogous to mCCL6, is found to be elevated in MDSCs and activated fibroblasts. Additionally, CXCR2 and CCR2 ligands are identified as key mediators of MDSC recruitment in intestinal fibrosis. Blocking MDSC recruitment with CXCR2 and CCR2 antagonists alleviates intestinal fibrosis. These findings suggest that strategies targeting MDSC recruitment and mCCL6/hCCL15 signaling could offer therapeutic benefits for intestinal fibrosis.
Collapse
Affiliation(s)
- Xiaohui Cheng
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Pingwen Shao
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - XinTong Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Juan Jiang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiahui Chen
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jie Zhu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Weiming Zhu
- Department of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjingJiangsu210002China
| | - Yi Li
- Department of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjingJiangsu210002China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- State Key Laboratory of Analytical Chemistry for Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- NJU Xishan Institute of Applied BiotechnologyXishan DistrictWuxiJiangsu214101China
| |
Collapse
|
12
|
Bertin L, Crepaldi M, Zanconato M, Lorenzon G, Maniero D, de Barba C, Bonazzi E, Facchin S, Scarpa M, Ruffolo C, Angriman I, Buda A, Zingone F, Barberio B, Savarino EV. Advancing therapeutic frontiers: a pipeline of novel drugs for luminal and perianal Crohn's disease management. Therap Adv Gastroenterol 2024; 17:17562848241303651. [PMID: 39711916 PMCID: PMC11660281 DOI: 10.1177/17562848241303651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024] Open
Abstract
Crohn's disease (CD) is a chronic, complex inflammatory disorder of the gastrointestinal tract that presents significant therapeutic challenges. Despite the availability of a wide range of treatments, many patients experience primary non-response, secondary loss of response, or adverse events, limiting the overall effectiveness of current therapies. Clinical trials often report response rates below 60%, partly due to stringent inclusion criteria. Emerging therapies that target novel pathways offer promise in overcoming these limitations. This review explores the latest investigational drugs in phases I, II, and III clinical trials for treating both luminal and perianal CD. We highlight promising therapies that target known mechanisms, including selective Janus kinase inhibitors, anti-adhesion molecules, tumor necrosis factor inhibitors, and IL-23 selective inhibitors. In addition, we delve into novel therapeutic strategies such as sphingosine-1-phosphate receptor modulators, miR-124 upregulators, anti-fractalkine (CX3CL1), anti-TL1A, peroxisome proliferator-activated receptor gamma agonists, TGFBRI/ALK5 inhibitors, anti-CCR9 agents, and other innovative small molecules, as well as combination therapies. These emerging approaches, by addressing new pathways and mechanisms of action, have the potential to surpass the limitations of existing treatments and significantly improve CD management. However, the path to developing new therapies for inflammatory bowel disease (IBD) is fraught with challenges, including complex trial designs, ethical concerns regarding placebo use, recruitment difficulties, and escalating costs. The landscape of IBD clinical trials is shifting toward greater inclusivity, improved patient diversity, and innovative trial designs, such as adaptive and Bayesian approaches, to address these challenges. By overcoming these obstacles, the drug development pipeline can advance more effective, accessible, and timely treatments for CD.
Collapse
Affiliation(s)
- Luisa Bertin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Martina Crepaldi
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Miriana Zanconato
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Greta Lorenzon
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Daria Maniero
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Caterina de Barba
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Erica Bonazzi
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Sonia Facchin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Marco Scarpa
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padua, Italy
| | - Cesare Ruffolo
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padua, Italy
| | - Imerio Angriman
- Chirurgia Generale 3 Unit, Azienda Ospedale Università di Padova, Padua, Italy
| | - Andrea Buda
- Gastroenterology Unit, Department of Oncological Gastrointestinal Surgery, Santa Maria del Prato Hospital, Feltre, Italy
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Brigida Barberio
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Edoardo Vincenzo Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani, 2, Padua 35128, Italy
| |
Collapse
|
13
|
Chantanaskul T, Patumcharoenpol P, Roytrakul S, Kingkaw A, Vongsangnak W. Exploring Protein Functions of Gut Bacteriome and Mycobiome in Thai Infants Associated with Atopic Dermatitis Through Metaproteomic and Host Interaction Analysis. Int J Mol Sci 2024; 25:13533. [PMID: 39769296 PMCID: PMC11676981 DOI: 10.3390/ijms252413533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as well as the human proteome in Thai infants with AD using integrative metaproteomic and host interaction analysis. As we observed, probiotic species, such as Lactobacillus acidophilus and Bacteroides salyersiae, were reduced in abundance in the AD group while key pathogenic bacteria and fungi, such as Streptococcus constellatus and Penicillium chrysogenum, increased in abundance. Additionally, the functional analysis of expressed proteins was enriched in response to stress and DNA repair in the bacteriome and ribosome biogenesis-related processes in the mycobiome of the AD group, potentially associated to increased reactive oxygen species (ROS), intestinal inflammation, fungal growth and microbial dysbiosis. Further, a protein-protein interactions (PPIs) network analysis incorporating the human proteome revealed 10 signature proteins related to stress and immune system processes associated with AD. Our findings propose the interactions of the key species and signature protein functions between the gut microbes and the human host in response to AD in Thai infants. To our knowledge, this study serves as the first framework for monitoring bacteriome-mycobiome-human gut studies associated with AD and other allergic diseases in infants.
Collapse
Affiliation(s)
- Thanawit Chantanaskul
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Sittirak Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 144 Thailand Science Park, Phaholyothin Road, Pathum Thani 12120, Thailand;
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
14
|
Yang J, Wang J, Ding B, Jiang Z, Yu F, Li D, Sun W, Wang L, Xu H, Hu S. Feedback delivery of BMP 7 on the pathological oxidative stress via smart hyaluronic acid hydrogel potentiated the repairing of the gut epithelial integrity. Int J Biol Macromol 2024; 282:136794. [PMID: 39447783 DOI: 10.1016/j.ijbiomac.2024.136794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The intestinal barrier integrity was substantially collapsed when colitis flaring up, accompanying by the hallmark of pathological oxidative stress. Bone morphogenetic protein 7 (BMP 7), an endogenous growth factor in gut had the potential to repair the damaged mucosa. Herein, a smart hydrogel (HDP) had been developed by the boronate-ester crosslinked hyaluronic acid to deliver BMP 7. Hydrogel loading BMP 7 (HDP-BMP 7) presented the comparable mechanical strength with that of the naïve gut mucus. HDP-BMP 7 as artificial mucus could specifically adhere to the inflamed colonic mucosa of colitis mice. Importantly, it could apperceive reactive oxygen species at diseased colon to adapt its intrinsic network, enabling the feedback release of BMP 7 on the pathological oxidative stress. Moreover, in vivo animal experiments showed that the disease symptoms of colitis mice were alleviated by HDP-BMP 7. Importantly, both the mucus barrier and the epithelial barriers were obviously recovered by HDP-BMP 7 treatment, which substantially attenuated the immune-inflammation response of colitis mice. Besides, HDP-BMP 7 enriched the diversity of gut flora, increasing the relative abundance of Lactobacillus and decreasing the ratio of Firmicutes/Bacteroidetes. Its therapeutic mechanism was associated with activating TGF-β/Smad signals. Conclusively, this smart hydrogel might potentiate the repairing effect of growth factors on the gut epithelial integrity.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jie Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Bingyu Ding
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Zhijiang Jiang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Fengnan Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Wenwen Sun
- Pathology Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Lifen Wang
- Research Center for Drug Safety Evaluation, Hainan Medical University, Haikou City, Hainan Province, China.
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China.
| |
Collapse
|
15
|
Weng S, Tian E, Gao M, Zhang S, Yang G, Zhou B. Eimeria: Navigating complex intestinal ecosystems. PLoS Pathog 2024; 20:e1012689. [PMID: 39576763 PMCID: PMC11584145 DOI: 10.1371/journal.ppat.1012689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Eimeria is an intracellular obligate apicomplexan parasite that parasitizes the intestinal epithelial cells of livestock and poultry, exhibiting strong host and tissue tropism. Parasite-host interactions involve complex networks and vary as the parasites develop in the host. However, understanding the underlying mechanisms remains a challenge. Acknowledging the lack of studies on Eimeria invasion mechanism, we described the possible invasion process through comparative analysis with other apicomplexan parasites and explored the fact that parasite-host interactions serve as a prerequisite for successful recognition, penetration of the intestinal mechanical barrier, and completion of the invasion. Although it is recognized that microbiota can enhance the host immune capacity to resist Eimeria invasion, changes in the microenvironment can, in turn, contribute to Eimeria invasion and may be associated with reduced immune capacity. We also discuss the immune evasion strategies of Eimeria, emphasizing that the host employs sophisticated immune regulatory mechanisms to suppress immune evasion by parasites, thereby sustaining a balanced immune response. This review aims to deepen our understanding of Eimeria-host interactions, providing a theoretical basis for the study of the pathogenicity of Eimeria and the development of novel anticoccidial drugs.
Collapse
Affiliation(s)
- Shengjie Weng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Meng Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Siyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Guodong Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Bianhua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| |
Collapse
|
16
|
Clua‐Ferré L, Suau R, Vañó‐Segarra I, Ginés I, Serena C, Manyé J. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med 2024; 14:e70075. [PMID: 39488745 PMCID: PMC11531661 DOI: 10.1002/ctm2.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as key regulators of intercellular communication, orchestrating essential biological processes by delivering bioactive cargoes to target cells. Available evidence suggests that MSC-EVs can mimic the functions of their parental cells, exhibiting immunomodulatory, pro-regenerative, anti-apoptotic, and antifibrotic properties. Consequently, MSC-EVs represent a cell-free therapeutic option for patients with inflammatory bowel disease (IBD), overcoming the limitations associated with cell replacement therapy, including their non-immunogenic nature, lower risk of tumourigenicity, cargo specificity and ease of manipulation and storage. MAIN TOPICS COVERED This review aims to provide a comprehensive examination of the therapeutic efficacy of MSC-EVs in IBD, with a focus on their mechanisms of action and potential impact on treatment outcomes. We examine the advantages of MSC-EVs over traditional therapies, discuss methods for their isolation and characterisation, and present mechanistic insights into their therapeutic effects through transcriptomic, proteomic and lipidomic analyses of MSC-EV cargoes. We also discuss available preclinical studies demonstrating that MSC-EVs reduce inflammation, promote tissue repair and restore intestinal homeostasis in IBD models, and compare these findings with those of clinical trials. CONCLUSIONS Finally, we highlight the potential of MSC-EVs as a novel therapy for IBD and identify challenges and opportunities associated with their translation into clinical practice. HIGHLIGHTS The source of mesenchymal stem cells (MSCs) strongly influences the composition and function of MSC-derived extracellular vesicles (EVs), affecting their therapeutic potential. Adipose-derived MSC-EVs, known for their immunoregulatory properties and ease of isolation, show promise as a treatment for inflammatory bowel disease (IBD). MicroRNAs are consistently present in MSC-EVs across cell types and are involved in pathways that are dysregulated in IBD, making them potential therapeutic agents. For example, miR-let-7a is associated with inhibition of apoptosis, miR-100 supports cell survival, miR-125b helps suppress pro-inflammatory cytokines and miR-20 promotes anti-inflammatory M2 macrophage polarisation. Preclinical studies in IBD models have shown that MSC-EVs reduce intestinal inflammation by suppressing pro-inflammatory mediators (e.g., TNF-α, IL-1β, IL-6) and increasing anti-inflammatory factors (e.g., IL-4, IL-10). They also promote mucosal healing and strengthen the integrity of the gut barrier, suggesting their potential to address IBD pathology.
Collapse
Affiliation(s)
- Laura Clua‐Ferré
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Roger Suau
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Irene Vañó‐Segarra
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Iris Ginés
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Carolina Serena
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Josep Manyé
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
- Centro de Investigación Biomédica en RedMadridSpain
| |
Collapse
|
17
|
Ou H, Csuth TI, Czompoly T, Kvell K. Dairy: Friend or Foe? Bovine Milk-Derived Extracellular Vesicles and Autoimmune Diseases. Int J Mol Sci 2024; 25:11499. [PMID: 39519052 PMCID: PMC11546213 DOI: 10.3390/ijms252111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Due to the availability, scalability, and low immunogenicity, bovine milk-derived extracellular vesicles (MEVs) are increasingly considered to be a promising carrier of nanomedicines for future therapy. However, considering that extracellular vesicles (EVs) are of biological origin, different sources of EVs, including the host origin and the specific cells that produce the EVs, may have different effects on the structure and function of EVs. Additionally, MEVs play an important role in immune regulation, due to their evolutionary conserved cargo, such as cytokines and miRNAs. Their potential effects on different organs, as well as their accumulation in the human body, should not be overlooked. In this review, we have summarized current impacts and research progress brought about by utilizing MEVs as nano-drug carriers. Nevertheless, we also aim to explore the possible connections between the molecules involved in cellular immunity, cytokines and miRNAs of MEVs produced under different health conditions, and autoimmune diseases.
Collapse
Affiliation(s)
- Hairui Ou
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (H.O.); (T.I.C.); (K.K.)
| | - Tamas Imre Csuth
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (H.O.); (T.I.C.); (K.K.)
- Soft Flow Ltd., 7634 Pecs, Hungary
| | | | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (H.O.); (T.I.C.); (K.K.)
| |
Collapse
|
18
|
Monfort-Ferré D, Boronat-Toscano A, Sánchez-Herrero JF, Caro A, Menacho M, Vañó-Segarra I, Martí M, Espina B, Pluvinet R, Cabrinety L, Abadia C, Ejarque M, Nuñez-Roa C, Maymo-Masip E, Sumoy L, Vendrell J, Fernández-Veledo S, Serena C. Genome-wide DNA Methylome and Transcriptome Profiling Reveals Key Genes Involved in the Dysregulation of Adipose Stem Cells in Crohn's Disease. J Crohns Colitis 2024; 18:1644-1659. [PMID: 38747506 DOI: 10.1093/ecco-jcc/jjae072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is characterised by the expansion of mesenteric adipose tissue [MAT], named creeping fat [CF], which seems to be directly related to disease activity. Adipose-stem cells [ASCs] isolated from the CF of patients with CD are extremely pro-inflammatory, which persists during disease remission. We hypothesised that the dysfunctional ASCs in CD accumulate epigenetic modifications triggered by the inflammatory environment, that could serve as molecular markers. METHODS Genome-wide DNA methylome and transcriptome profiling were performed in ASCs isolated from MAT biopsies of patients with active and inactive disease and from non-Crohn's disease patients [non-CD]. A validation cohort was used to test the main candidate genes via quantitative polymerase chain reaction in other fat depots and immune cells. RESULTS We found differences in DNA methylation and gene expression between ASCs isolated from patients with CD and from non-CD subjects, but we found no differences related to disease activity. Pathway enrichment analysis revealed that oxidative stress and immune response were significantly enriched in active CD, and integration analysis identified MAB21L2, a cell fate-determining gene, as the most affected gene in CD. Validation analysis confirmed the elevated gene expression of MAB21L2 in MAT and in adipose tissue macrophages in active CD. We also found a strong association between expression of the calcium channel subunit gene CACNA1H and disease remission, as CACNA1H expression was higher in ASCs and MAT from patients with inactive CD, and correlates negatively with C-reactive protein in peripheral blood mononuclear cells. CONCLUSION We identified a potential gene signature of CD in ASCs obtained from MAT. Integration analysis highlighted two novel genes demonstrating a negative correlation between promoter DNA methylation and transcription: one linked to ASCs in CD [MAB21L2] and the other [CACNA1H] related to disease remission.
Collapse
Affiliation(s)
- Diandra Monfort-Ferré
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Albert Boronat-Toscano
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Aleidis Caro
- Unitat de Cirurgia Colorectal, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Margarita Menacho
- Servei de Digestiu, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Irene Vañó-Segarra
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marc Martí
- Unitat de Cirurgia Colorectal, Servei de Cirurgia General, Hospital Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Beatriz Espina
- Unitat de Cirurgia Colorectal, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Raquel Pluvinet
- Genòmica d'Alt Contingut i Bioinformàtica, Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
- Unitat de Genòmica, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Lidia Cabrinety
- Servei de Digestiu, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Carme Abadia
- Servei de Digestiu, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Miriam Ejarque
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Cati Nuñez-Roa
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Elsa Maymo-Masip
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud, Carlos III, Madrid, Spain
| | - Lauro Sumoy
- Genòmica d'Alt Contingut i Bioinformàtica, Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
| | - Joan Vendrell
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud, Carlos III, Madrid, Spain
| | - Sonia Fernández-Veledo
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud, Carlos III, Madrid, Spain
| | - Carolina Serena
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
19
|
Zhang J, Gan H, Duan X, Li G. Targeting the Intestinal Microbiota: A Novel Direction in the Treatment of Inflammatory Bowel Disease. Biomedicines 2024; 12:2340. [PMID: 39457652 PMCID: PMC11504502 DOI: 10.3390/biomedicines12102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past decade, there has been a rapid increase in the incidence of inflammatory bowel disease. It has been suggested that multifactorial interactions of environmental factors, genetic factors, immune response and intestinal microbiota are involved in the pathogenesis of inflammatory bowel disease. It is widely recognized that the intestinal microbiota are essential for human metabolism, the immune system and pathogen resistance, and are integral to human health. Therefore, the dysbiosis of the microbiota is a critical step leading to intestinal mucosal damage and a key factor in the pathogenesis of inflammatory bowel disease. Regulating the microbiota through interventions such as enteral nutrition, fecal microbiota transplantation, and probiotic supplementation has the potential to prevent or even reverse intestinal dysbiosis, opening up new perspectives for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | - Xiaoyan Duan
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Yangpu District, Shanghai 200092, China; (J.Z.); (H.G.)
| | - Guangming Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Yangpu District, Shanghai 200092, China; (J.Z.); (H.G.)
| |
Collapse
|
20
|
Wang Z, Li Z, Wang H, Wu Q, Geng Y. Effects of Pine Pollen Polysaccharides and Sulfated Polysaccharides on Ulcerative Colitis in Mice by Regulating Th17/Treg. Foods 2024; 13:3183. [PMID: 39410218 PMCID: PMC11475350 DOI: 10.3390/foods13193183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
This study was to investigate the effects of the polysaccharides (PPM60-III) and sulfated polysaccharides (SPPM60-III) of pine pollen on the Th17/Treg balance, inflammatory cytokines, intestinal microbiota, and metabolite distribution in 3% DSS drinking water-induced UC mice. First of all, the physiological results showed that PPM60-III and SPPM60-III could alleviate UC, which was shown by the reduction in liver Treg cells, the rebalance of Th17/Treg, and the modulation of inflammatory cytokines. In addition, the 16S rRNA results showed that PPM60-III and SPPM60-III could decrease Beijerinck and Bifidobacterium, and increase Akkermansia, Escherichia coli, and Fidobacteria. Finally, the metabonomics results showed that PPM60-III and SPPM60-III also restored purine and glycerolipid metabolism, up-regulated nicotinate and nicotinamide metabolism and caffeine metabolism to inhibit inflammation. In conclusion, PPM60-III and SPPM60-III could inhibit UC by regulating gut bacteria composition and metabolite distribution; SPPM60-III showed better anti-colitis activity.
Collapse
Affiliation(s)
| | | | | | | | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, College of Life Science, Shandong Normal University, Jinan 250358, China; (Z.W.); (Z.L.); (H.W.); (Q.W.)
| |
Collapse
|
21
|
Angelis N, Baulies A, Hubl F, Kucharska A, Kelly G, Llorian M, Boeing S, Li VSW. Loss of ARID3A perturbs intestinal epithelial proliferation-differentiation ratio and regeneration. J Exp Med 2024; 221:e20232279. [PMID: 39150450 PMCID: PMC11329776 DOI: 10.1084/jem.20232279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/08/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
Intestinal stem cells at the crypt divide and give rise to progenitor cells that proliferate and differentiate into various mature cell types in the transit-amplifying (TA) zone. Here, we showed that the transcription factor ARID3A regulates intestinal epithelial cell proliferation and differentiation at the TA progenitors. ARID3A forms an expression gradient from the villus tip to the upper crypt mediated by TGF-β and WNT. Intestinal-specific deletion of Arid3a reduces crypt proliferation, predominantly in TA cells. Bulk and single-cell transcriptomic analysis shows increased enterocyte and reduced secretory differentiation in the Arid3a cKO intestine, accompanied by enriched upper-villus gene signatures of both cell lineages. We find that the enhanced epithelial differentiation in the Arid3a-deficient intestine is caused by increased binding and transcription of HNF1 and HNF4. Finally, we show that loss of Arid3a impairs irradiation-induced regeneration with sustained cell death and reprogramming. Our findings imply that Arid3a functions to fine-tune the proliferation-differentiation dynamics at the TA progenitors, which are essential for injury-induced regeneration.
Collapse
Affiliation(s)
- Nikolaos Angelis
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute , London, UK
| | - Anna Baulies
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute , London, UK
| | - Florian Hubl
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute , London, UK
| | - Anna Kucharska
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute , London, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute , London, UK
| | - Miriam Llorian
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute , London, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute , London, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute , London, UK
| |
Collapse
|
22
|
Freitas ADS, Barroso FAL, Campos GM, Américo MF, Viegas RCDS, Gomes GC, Vital KD, Fernandes SOA, Carvalho RDDO, Jardin J, Miranda APGDS, Ferreira E, Martins FS, Laguna JG, Jan G, Azevedo V, de Jesus LCL. Exploring the anti-inflammatory effects of postbiotic proteins from Lactobacillus delbrueckii CIDCA 133 on inflammatory bowel disease model. Int J Biol Macromol 2024; 277:134216. [PMID: 39069058 DOI: 10.1016/j.ijbiomac.2024.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice. This postbiotic protein fraction reduced the disease activity index and prevented colon shortening in mice. Furthermore, histological analysis revealed colitis prevention with reduced inflammatory cell infiltration into the colon mucosa. Postbiotic consumption also induced an immunomodulatory profile in colitic mice, as evidenced by both mRNA transcript levels (Tlr2, Nfkb1, Nlpr3, Tnf, and Il6) and cytokines concentration (IL1β, TGFβ, and IL10). Additionally, it enhanced the levels of secretory IgA, upregulated the transcript levels of tight junction proteins (Hp and F11r), and improved paracellular intestinal permeability. More interestingly, the consumption of postbiotic proteins modulated the gut microbiota (Bacteroides, Arkkemansia, Dorea, and Oscillospira). Pearson correlation analysis indicated that IL10 and IL1β levels were positively associated with Bacteroides and Arkkemansia_Lactobacillus abundance. Our study reveals that CIDCA 133-derived proteins possess anti-inflammatory properties in colonic inflammation.
Collapse
Affiliation(s)
- Andria Dos Santos Freitas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gabriela Munis Campos
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferrary Américo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gabriel Camargos Gomes
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Kátia Duarte Vital
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Enio Ferreira
- Federal University of Minas Gerais, Department of General Pathology, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Guimarães Laguna
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Vasco Azevedo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| | - Luís Cláudio Lima de Jesus
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Tang B, Liu B, Zeng Z. A new TGF-β risk score predicts clinical and immune landscape in colorectal cancer patients. Ann Gastroenterol Surg 2024; 8:927-941. [PMID: 39229560 PMCID: PMC11368510 DOI: 10.1002/ags3.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 09/05/2024] Open
Abstract
Background Aberrant TGF-β signaling pathway can lead to invasive phenotype of colorectal cancer (CRC), resulting in poor prognosis. It is pivotal to develop an effective prognostic factor on the basis of TGF-β-related genes to accurately identify risk of CRC patients. Methods We performed differential analysis of TGF-β-related genes in CRC patients from databases and previous literature to obtain TGF-β-related differentially expressed genes (TRDEGs). LASSO-Cox regression was utilized to build a CRC prognostic feature model based on TRDEGs. The model was validated using two GEO validation sets. Wilcoxon rank-sum test was utilized to test correlation of model with clinical factors. ESTIMATE algorithm and ssGSEA and tumor mutation burden (TMB) analysis were used to analyze immune landscape and mutation burden of high-risk (HR) and low-risk (LR) groups. CellMiner database was utilized to identify therapeutic drugs with high sensitivity to the feature genes. Results We established a six-gene risk prognostic model with good predictive accuracy, which independently predicted CRC patients' prognoses. The HR group was more likely to experience immunotherapy benefits due to higher immune infiltration and TMB. The feature gene TGFB2 could inhibit the efficacy of drugs such as XAV-939, Staurosporine, and Dasatinib, but promote the efficacy of drugs such as CUDC-305 and by-product of CUDC-305. Similarly, RBL1 could inhibit the drug action of Fluphenazine and Imiquimod but promote that of Irofulven. Conclusion A CRC risk prognostic signature was developed on basis of TGF-β-related genes, which provides a reference for risk and further therapeutic selection of CRC patients.
Collapse
Affiliation(s)
- Bing Tang
- Department of Gastrointestinal SurgeryCentral Hospital of YongzhouYongzhouHunanChina
| | - Binggang Liu
- Department of Gastrointestinal SurgeryCentral Hospital of YongzhouYongzhouHunanChina
| | - Zhiyao Zeng
- Department of Gastrointestinal SurgeryCentral Hospital of YongzhouYongzhouHunanChina
| |
Collapse
|
24
|
Bao W, Lyu J, Feng G, Guo L, Zhao D, You K, Liu Y, Li H, Du P, Chen D, Shen X. Aloe emodin promotes mucosal healing by modifying the differentiation fate of enteroendocrine cells via regulating cellular free fatty acid sensitivity. Acta Pharm Sin B 2024; 14:3964-3982. [PMID: 39309505 PMCID: PMC11413701 DOI: 10.1016/j.apsb.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury. Label retaining cells (LRCs) expressing SRY-box transcription factor 9 (SOX9) promote epithelial repair by replenishing LGR5+ intestinal stem cells (ISCs). While, LRCs are also considered precursor cells for enteroendocrine cells (EECs) which exacerbate mucosal damage in inflammatory bowel disease (IBD). The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear. In this study, we investigated the effects of a natural anthraquinone called aloe emodin (derived from the Chinese herb rhubarb) on mucosal healing in IBD models. Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9+ LRCs, thereby promoting mucosal healing. Furthermore, we discovered that aloe emodin acted as an antagonist of free fatty acid receptors (FFAR1), suppressing the FFAR1-mediated Gβγ/serine/threonine-protein kinase (AKT) pathway and promoting the translocation of forkhead box protein O1 (FOXO1) into the nucleus, ultimately resulting in the intervention of differentiation fate. These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Jiaren Lyu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Dian Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| |
Collapse
|
25
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2024; 162:185-186. [PMID: 39093410 DOI: 10.1007/s00418-024-02315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
26
|
Liao HX, Mao X, Wang L, Wang N, Ocansey DKW, Wang B, Mao F. The role of mesenchymal stem cells in attenuating inflammatory bowel disease through ubiquitination. Front Immunol 2024; 15:1423069. [PMID: 39185411 PMCID: PMC11341407 DOI: 10.3389/fimmu.2024.1423069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammatory bowel disease (IBD), a condition of the digestive tract and one of the autoimmune diseases, is becoming a disease of significant global public health concern and substantial clinical burden. Various signaling pathways have been documented to modulate IBD, but the exact activation and regulatory mechanisms have not been fully clarified; thus, a need for constant exploration of the molecules and pathways that play key roles in the development of IBD. In recent years, several protein post-translational modification pathways, such as ubiquitination, phosphorylation, methylation, acetylation, and glycolysis, have been implicated in IBD. An aberrant ubiquitination in IBD is often associated with dysregulated immune responses and inflammation. Mesenchymal stem cells (MSCs) play a crucial role in regulating ubiquitination modifications through the ubiquitin-proteasome system, a cellular machinery responsible for protein degradation. Specifically, MSCs have been shown to influence the ubiquitination of key signaling molecules involved in inflammatory pathways. This paper reviews the recent research progress in MSC-regulated ubiquitination in IBD, highlighting their therapeutic potential in treating IBD and offering a promising avenue for developing targeted interventions to modulate the immune system and alleviate inflammatory conditions.
Collapse
Affiliation(s)
- Hong Xi Liao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Xiaojun Mao
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Lan Wang
- Department of Laboratory Medicine, Danyang Blood Station, Zhenjiang, Jiangsu, China
| | - Naijian Wang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
27
|
Öhnstedt E, Doñas C, Parv K, Pang Y, Lofton Tomenius H, Carrasco López M, Gannavarapu VR, Choi J, Ovezik M, Frank P, Jorvid M, Roos S, Vågesjö E, Phillipson M. Oral administration of CXCL12-expressing Limosilactobacillus reuteri improves colitis by local immunomodulatory actions in preclinical models. Am J Physiol Gastrointest Liver Physiol 2024; 327:G140-G153. [PMID: 38780469 DOI: 10.1152/ajpgi.00022.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Treatments of colitis, inflammation of the intestine, rely on induction of immune suppression associated with systemic adverse events, including recurrent infections. This treatment strategy is specifically problematic in the increasing population of patients with cancer with immune checkpoint inhibitor (ICI)-induced colitis, as immune suppression also interferes with the ICI-treatment response. Thus, there is a need for local-acting treatments that reduce inflammation and enhance intestinal healing. Here, we investigated the effect and safety of bacterial delivery of short-lived immunomodulating chemokines to the inflamed intestine in mice with colitis. Colitis was induced by dextran sulfate sodium (DSS) alone or in combination with ICI (anti-PD1 and anti-CTLA-4), and Limosilactobacillus reuteri R2LC (L. reuteri R2LC) genetically modified to express the chemokine CXCL12-1α (R2LC_CXCL12, emilimogene sigulactibac) was given perorally. In addition, the pharmacology and safety of the formulated drug candidate, ILP100-Oral, were evaluated in rabbits. Peroral CXCL12-producing L. reuteri R2LC significantly improved colitis symptoms already after 2 days in mice with overt DSS and ICI-induced colitis, which in benchmarking experiments was demonstrated to be superior to treatments with anti-TNF-α, anti-α4β7, and corticosteroids. The mechanism of action involved chemokine delivery to Peyer's patches (PPs), confirmed by local CXCR4 signaling, and increased numbers of colonic, regulatory immune cells expressing IL-10 and TGF-β1. No systemic exposure or engraftment could be detected in mice, and product feasibility, pharmacology, and safety were confirmed in rabbits. In conclusion, peroral CXCL12-producing L. reuteri R2LC efficiently ameliorates colitis, enhances mucosal healing, and has a favorable safety profile.NEW & NOTEWORTHY Colitis symptoms are efficiently reduced by peroral administration of probiotic bacteria genetically modified to deliver CXCL12 locally to the inflamed intestine in several mouse models.
Collapse
Affiliation(s)
- Emelie Öhnstedt
- Ilya Pharma AB, Uppsala, Sweden
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | - Hava Lofton Tomenius
- Ilya Pharma AB, Uppsala, Sweden
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Venkata Ram Gannavarapu
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jacqueline Choi
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria Ovezik
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | - Stefan Roos
- Department of Molecular Sciences, Swedish University of Agriculture, Uppsala, Sweden
| | - Evelina Vågesjö
- Ilya Pharma AB, Uppsala, Sweden
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mia Phillipson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- The Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Dimopoulou C, Guerra PR, Mortensen MS, Kristensen KA, Pedersen M, Bahl MI, Sommer MAO, Licht TR, Laursen MF. Potential of using an engineered indole lactic acid producing Escherichia coli Nissle 1917 in a murine model of colitis. Sci Rep 2024; 14:17542. [PMID: 39080343 PMCID: PMC11289411 DOI: 10.1038/s41598-024-68412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
The gut microbiome is a significant factor in the pathophysiology of ulcerative colitis (UC), prompting investigations into the use of probiotic therapies to counter gastrointestinal inflammation. However, while much attention has been given to the therapeutic potential of microbes at the species and strain level, the discovery and application of their metabolic products may offer more precise and controlled solutions in battling disease. In this work, we examined the therapeutic potential of indole lactic acid (ILA) to alleviate inflammation in a murine model of colitis. A previously constructed ILA-producing Escherichia coli Nissle 1917 strain (EcN aldh) and its isogenic non-ILA producing counterpart (EcN) were studied in a murine model of Dextran Sodium Sulfate (DSS) induced colitis. The colitic animals suffered from severe colitic symptoms, with no differentiation between the groups in body weight loss and disease activity index. However, three days after cessation of DSS treatment the EcN aldh-treated mice showed signs of reduced intestinal inflammation, as manifested by lower concentrations of fecal lipocalin-2. Additionally, expression analysis of the inflamed tissue revealed distinct effects of the EcN aldh strain on proteins associated with intestinal health, such as TFF3, occludin and IL-1β expression. These results show no impact of EcN or EcN aldh on acute DSS-induced colitis, but suggest that in particular EcN aldh may assist recovery from intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
29
|
Repici A, Hasan A, Capra AP, Scuderi SA, Paterniti I, Campolo M, Ardizzone A, Esposito E. Marine Algae and Deriving Biomolecules for the Management of Inflammatory Bowel Diseases: Potential Clinical Therapeutics to Decrease Gut Inflammatory and Oxidative Stress Markers? Mar Drugs 2024; 22:336. [PMID: 39195452 DOI: 10.3390/md22080336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
The term "inflammatory bowel disease" (IBD) describes a class of relapse-remitting conditions that affect the gastrointestinal (GI) tract. Among these, Crohn's disease (CD) and ulcerative colitis (UC) are two of the most globally prevalent and debilitating conditions. Several articles have brought attention to the significant role that inflammation and oxidative stress cooperatively play in the development of IBD, offering a different viewpoint both on its etiopathogenesis and on strategies for the effective treatment of these conditions. Marine ecosystems may be a significant source of physiologically active substances, supporting the search for new potential clinical therapeutics. Based on this evidence, this review aims to comprehensively evaluate the activity of marine algae and deriving biomolecules in decreasing pathological features of CD and UC. To match this purpose, a deep search of the literature on PubMed (MEDLINE) and Google Scholar was performed to highlight primary biological mechanisms, the modulation of inflammatory and oxidative stress biochemical parameters, and potential clinical benefits deriving from marine species. From our findings, both macroalgae and microalgae have shown potential as therapeutic solutions for IBD due to their bioactive compounds and their anti-inflammatory and antioxidant activities which are capable of modulating markers such as cytokines, the NF-κB pathway, reactive oxidative and nitrosative species (ROS and RNS), trefoil factor 3 (TFF3), lactoferrin, SIRT1, etc. However, while we found promising preclinical evidence, more extensive and long-term clinical studies are necessary to establish the efficacy and safety of marine algae for IBD treatment.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Ahmed Hasan
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
- School of Advanced Studies, Center of Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
30
|
Young KA, Wojdyla K, Lai T, Mulholland KE, Aldaz Casanova S, Antrobus R, Andrews SR, Biggins L, Mahler-Araujo B, Barton PR, Anderson KR, Fearnley GW, Sharpe HJ. The receptor protein tyrosine phosphatase PTPRK promotes intestinal repair and catalysis-independent tumour suppression. J Cell Sci 2024; 137:jcs261914. [PMID: 38904097 PMCID: PMC11298714 DOI: 10.1242/jcs.261914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
Collapse
Affiliation(s)
| | | | - Tiffany Lai
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | | | - Laura Biggins
- Bioinformatics, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Philippa R. Barton
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Keith R. Anderson
- Molecular biology department, Genentech, South San Francisco, CA 94080, USA
| | | | - Hayley J. Sharpe
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
31
|
Xin R. Inflammatory Gene Panel Guiding the Study of Genetics in Inflammatory Bowel Disease. Mol Diagn Ther 2024; 28:389-401. [PMID: 38635139 DOI: 10.1007/s40291-024-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Inflammatory bowel disease (IBD) is a complex disease that develops through a sequence of molecular events that are still poorly defined. This process is driven by a multitude of context-dependent genes that play different roles based on their environment. The complexity and multi-faceted nature of these genes make it difficult to study the genetic basis of IBD. The goal of this article is to review the key genes in the pathophysiology of IBD and highlight new technology that can be used in further research. This paper examines Nanostring RNA probe technology, which uses tissue analyzed without the use of enzymes, transcription, or amplification. Nanostring offers several panels of genes to test, including an inflammation panel of 234 genes. This article analyzes this panel and reviews the literature for each gene's effect in IBD for use as a framework to review the pathophysiology of the disease. The panel was narrowed to 26 genes with significant evidence of mechanistic potential in IBD, which were then categorized into specific areas of pathogenesis. These include gut barrier breakdown, inappropriate recognition of commensal bacteria, immune cell activation, proinflammatory cytokine release, and subsequent impairment of the anti-inflammatory response. The eventual goal of this paper is the creation of a customized panel of IBD genes that can be used to better understand the genetic mechanism of IBD and aid in the development of future therapies in IBD.
Collapse
Affiliation(s)
- Ryan Xin
- Columbia University Irving Medical Center, 177 Fort Washington Avenue, New York, NY, 10032, USA.
| |
Collapse
|
32
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
33
|
Bui G, Torres-Fuentes C, Pusceddu MM, Gareau MG, Marco ML. Milk and Lacticaseibacillus paracasei BL23 effects on intestinal responses in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G659-G675. [PMID: 38591132 PMCID: PMC11376982 DOI: 10.1152/ajpgi.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus paracasei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a dextran sodium sulfate (DSS, 3% wt/vol) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, whereas milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Proinflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared with controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.NEW & NOTEWORTHY Sex-dependent responses to probiotic Lacticaseibacillus paracasei and milk and the potential of the dairy matrix to enhance probiotic protection against colitis in this context have not been previously explored. Female mice were more sensitive than males to colonic injury, and neither treatment effectively alleviated inflammation in both sexes. These sex-dependent responses may result from differences in the higher baseline proportions of Akkermansia in the gut microbiome of female mice.
Collapse
Affiliation(s)
- Glory Bui
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| | - Cristina Torres-Fuentes
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| |
Collapse
|
34
|
Zhou W, Su P, Wang Y, Li Z, Liu L. Exploration of the molecular linkage between endometriosis and Crohn disease by bioinformatics methods. Medicine (Baltimore) 2024; 103:e38097. [PMID: 38758892 PMCID: PMC11098239 DOI: 10.1097/md.0000000000038097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Endometriosis (EMT) is a common disease in reproductive-age woman and Crohn disease (CD) is a chronic inflammatory disorder in gastrointestinal tract. Previous studies reported that patients with EMT had an increased risk of CD. However, the linkage between EMT and CD remains unclear. In this study, we aimed to investigate the potential molecular mechanism of EMT and CD. METHODS The microarray data of EMT and CD were downloaded from Gene Expression Omnibus. Common genes of EMT and CD were obtained to perform the Gene Ontology and Kyoto Encyclopedia of Gene Genomes enrichments. The protein-protein interaction network was constructed by Cytoscape software and the hub genes were identified by CytoHubba plug-in. Finally we predicted the transcription factors (TFs) of hub genes and constructed a TFs-hub genes regulation network. RESULTS A total of 50 common genes were identified. Kyoto Encyclopedia of Gene Genomes enrichment showed that the common genes mainly enriched in MAPK pathway, VEGF pathway, Wnt pathway, TGF-beta pathway, and Ras pathway. Fifteen hub genes were collected from the protein-protein interaction network, including FMOD, FRZB, CPE, SST, ISG15, EFEMP1, KDR, ADRA2A, FZD7, AQP1, IGFBP5, NAMPT, PLUA, FGF9, and FHL2. Among them, FGF9, FZD7, IGFBP5, KDR, and NAMPT were both validated in the other 2 datasets. Finally TFs-hub genes regulation network were constructed. CONCLUSION Our findings firstly revealed the linkage between EMT and CD, including inflammation, angiogenesis, immune regulation, and cell behaviors, which may lead to the risk of CD in EMT. FGF9, FZD7, IGFBP5, KDR, and NAMPT may closely relate to the linkage.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Gastroenterology, The Six Affiliated Hospital of South China University of Technology, Foshan City, Guangdong Province, China
| | - Peizhu Su
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Yilin Wang
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Zhaotao Li
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Liu Liu
- Department of Gastroenterology, The Six Affiliated Hospital of South China University of Technology, Foshan City, Guangdong Province, China
| |
Collapse
|
35
|
Liu Y, Lin Y, Zhu W. Systemic Effects of a Phage Cocktail on Healthy Weaned Piglets. BIOLOGY 2024; 13:271. [PMID: 38666883 PMCID: PMC11048100 DOI: 10.3390/biology13040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Numerous studies have demonstrated that bacteriophages (phages) can effectively treat intestinal bacterial infections. However, research on the impact of phages on overall body health once they enter the intestine is limited. This study utilized weaned piglets as subjects to evaluate the systemic effects of an orally administered phage cocktail on their health. Twelve 21-day-old weaned piglets were divided into control (CON) and phage gavage (Phages) groups. The phage cocktail consisted of five lytic phages, targeting Salmonella enterica serovar Choleraesuis (S. choleraesuis), Enteropathogenic Escherichia coli (EPEC), and Shiga tox-in-producing Escherichia coli (STEC). The phages group received 10 mL of phage cocktail orally for 20 consecutive days. The results show that the phage gavage did not affect the piglets' growth performance, serum biochemical indices, or most organ indices, except for the pancreas. However, the impact on the intestine was complex. Firstly, although the pancreatic index decreased, it did not affect the secretion of digestive enzymes in the intestine. Secondly, phages increased the pH of jejunum chyme and relative weight of the ileum, and enhanced intestinal barrier function without affecting the morphology of the intestine. Thirdly, phages did not proliferate in the intestine, but altered the intestinal microbiota structure and increased concentrations of microbial metabolites isobutyric acid and isovaleric acid in the colonic chyme. In addition, phages impacted the immune status, significantly increasing serum IgA, IgG, and IgM, as well as serum and intestinal mucosal IFN-γ, IL-1β, IL-17, and TGF-β, and decreasing IL-4 and IL-10. They also activated toll-like receptors TLR-4 and TLR-9. Apart from an increase in basophil numbers, the counts of other immune cells in the blood did not change. This study indicates that the impact of phages on body health is complex, especially regarding immune status, warranting further attention. Short-term phage gavage did not have significant negative effects on health but could enhance intestinal barrier function.
Collapse
Affiliation(s)
- Yankun Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (W.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (W.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (W.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Correia I, Oliveira PA, Antunes ML, Raimundo MDG, Moreira AC. Is There Evidence of Crohn's Disease Exclusion Diet (CDED) in Remission of Active Disease in Children and Adults? A Systematic Review. Nutrients 2024; 16:987. [PMID: 38613020 PMCID: PMC11013840 DOI: 10.3390/nu16070987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease. Previous research has explored the impact of diet on CD, as specific dietary components can influence gut microbiota and immune responses, contributing to damage in the gastrointestinal tract. The Crohn's Disease Exclusion Diet (CDED) is based on an exclusion diet; it is a recent dietary approach that is often used alongside partial enteral nutrition (PEN) and aims to induce disease remission by excluding certain dietary components. This study assesses the current evidence for the effectiveness of the CDED + PEN in achieving remission in both children and adults with active CD. Our systematic review followed PRISMA recommendations and was registered in PROSPERO with CRD number 42022335076. The searched databases were PubMed/MEDLINE, Cochrane Library, Scopus, and Web of Science. The included studies were analyzed using Rayyan software, and the risk of bias was assessed with Cochrane RevMan 5.0 software. The primary assessed outcome was clinical remission, evaluated with validated questionnaire scores such as PCDAI, CDAI, or HBI. All analyzed papers yielded promising results. Notably, the CDED + PEN demonstrated better tolerance than exclusive enteral nutrition (EEN), resulting in higher adherence rates. Therefore, the CDED + PEN appears to be a viable alternative for induction remission in active disease for both children and adults with CD.
Collapse
Affiliation(s)
- Inês Correia
- ESTeSL—Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; (P.A.O.); (M.L.A.); (M.d.G.R.); (A.C.M.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Hospital do Espírito Santo de Évora, EPE, 7000-811 Évora, Portugal
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| | - Patrícia Almeida Oliveira
- ESTeSL—Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; (P.A.O.); (M.L.A.); (M.d.G.R.); (A.C.M.)
| | - Maria Luz Antunes
- ESTeSL—Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; (P.A.O.); (M.L.A.); (M.d.G.R.); (A.C.M.)
- APPsyCI—Applied Psychology Research Center Capabilities & Inclusion, ISPA—Instituto Universitário, 1149-041 Lisboa, Portugal
| | - Maria da Graça Raimundo
- ESTeSL—Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; (P.A.O.); (M.L.A.); (M.d.G.R.); (A.C.M.)
- Hospital do Espírito Santo de Évora, EPE, 7000-811 Évora, Portugal
| | - Ana Catarina Moreira
- ESTeSL—Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; (P.A.O.); (M.L.A.); (M.d.G.R.); (A.C.M.)
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| |
Collapse
|
37
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
38
|
Sun Z, Huang S, Yan X, Zhang X, Hao Y, Jiang L, Dai Z. Living, Heat-Killed Limosilactobacillus mucosae and Its Cell-Free Supernatant Differentially Regulate Colonic Serotonin Receptors and Immune Response in Experimental Colitis. Nutrients 2024; 16:468. [PMID: 38398793 PMCID: PMC10893098 DOI: 10.3390/nu16040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Lactobacillus species have been shown to alleviate gut inflammation and oxidative stress. However, the effect of different lactobacilli components on gut inflammation has not been well studied. This study aims to identify the differences in the effect and mechanisms of different forms and components of Limosilactobacillus mucosae (LM) treatment in the alleviation of gut inflammation using a colitis mouse model that is induced by dextran sodium sulfate (DSS). Seventy-two C57BL/6 mice were divided into six groups: control, DSS, live LM+DSS (LM+DSS), heat-killed LM+DSS (HKLM+DSS), LM cell-free supernatant + DSS (LMCS+DSS), and MRS medium + DSS (MRS+DSS). The mice were treated with different forms and components of LM for two weeks before DSS treatment. After that, the mice were sacrificed for an assessment of their levels of inflammatory cytokines, serotonin (5-HT) receptors (HTRs), and tryptophan metabolites. The results showed that, compared to other treatments, LMCS was more effective (p < 0.05) in the alleviation of DSS-induced body weight loss and led to an increase in the disease activity index score. All three forms and components of LM increased (p < 0.05) the levels of indole-3-acetic acid but reduced (p < 0.05) the levels of 5-HT in the colon. HKLM or LMCS reduced (p < 0.05) the percentages of CD3+CD8+ cytotoxic T cells but increased (p < 0.05) the percentages of CD3+CD4+ T helper cells in the spleen. LM or HKLM increased (p < 0.05) abundances of CD4+Foxp3+ regulatory T cells in the spleen. The LM and LMCS treatments reduced (p < 0.05) the expression of the pro-inflammatory cytokines Il6 and Il17a. The mice in the HKLM+DSS group had higher (p < 0.05) mRNA levels of the anti-inflammatory cytokine Il10, the cell differentiation and proliferation markers Lgr5 and Ki67, the 5-HT degradation enzyme Maoa, and HTRs (Htr1a, Htr2a, and Htr2b) in the colon. All three forms and components of LM reduced the phosphorylation of STAT3. The above findings can help to optimize the functionality of probiotics and develop new dietary strategies that aid in the maintenance of a healthy gut.
Collapse
Affiliation(s)
- Zhiyuan Sun
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| | - Siqi Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xing Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| | - Xiuwen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| | - Youling Hao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| | - Lili Jiang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| |
Collapse
|
39
|
Gusmão-Nascimento JW, Nunes Cruz DM, Almeida Gama L, Luz Alves WD, Machado MPR, Corá LA, Américo MF. Liraglutide modulates morpho-functional and inflammatory gastrointestinal responses in rats. Eur J Clin Invest 2024; 54:e14112. [PMID: 37846206 DOI: 10.1111/eci.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Obesity impairs homeostatic control of energy and is associated with chronic low-grade inflammation. Effects of glucagon-like peptide-1, the target in the gastrointestinal tract for anti-obesity drugs such as Liraglutide, were not properly associated with inflammation markers. This study investigated the effects of Liraglutide on metabolic and gastrointestinal parameters in a rat model of obesity. METHODS Twenty-six Wistar rats with obesity were randomly distributed to receive saline (n = 10), 400 μg (n = 8), or 1200 μg of Liraglutide/kg/day (n = 8), subcutaneously for 30 consecutive days, once a day. Weight gain, feeding efficiency, caloric consumption, gastric motility, adiposity, histomorphometric, murinometric, biochemical parameters and cytokines TNF-α and TGF-β1 in duodenal tissue were measured. Data were analysed by ANOVA, followed by Bonferroni post hoc or Kruskal-Wallis test, followed by Dunn's multiple comparison test. RESULTS Liraglutide-treated animals had better feeding efficiency and higher caloric intake in a dose-dependent manner. Higher doses slowed gastric emptying and diminished the amplitude of gastric contractions. These effects were accompanied by decreases in intestinal muscle layer thickness and crypt depth. Liraglutide significantly reduced retroperitoneal and visceral white adipose tissue depots. High-dose treatment decreased levels of TNF-α and enhanced levels of TGF-β1 in duodenal tissue. Liraglutide treatment provided significant reductions in total cholesterol, triglyceride and hepatic transaminases. CONCLUSIONS Liraglutide reduced fat accumulation, improved metabolic parameters and downregulated levels of inflammatory signalling in duodenal tissue. Liraglutide at high doses controlled obesity-related outcomes, and such effects seemed to be driven by its action on glucagon-like peptide-1 receptors in the gastrointestinal tract slowing gastric motility.
Collapse
Affiliation(s)
- Jhony Willams Gusmão-Nascimento
- Postgraduate Program in Biotechnology, Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Alagoas, Maceió, Brazil
| | | | | | | | | | - Luciana Aparecida Corá
- Postgraduate Program in Biotechnology, Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Alagoas, Maceió, Brazil
- Alagoas State University of Health Sciences, Maceio, Brazil
| | | |
Collapse
|
40
|
McKnight CA, Diehl LJ, Bergin IL. Digestive Tract and Salivary Glands. HASCHEK AND ROUSSEAUX' S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2024:1-148. [DOI: 10.1016/b978-0-12-821046-8.00001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
41
|
Marzoog BA. Cytokines and Regulating Epithelial Cell Division. Curr Drug Targets 2024; 25:190-200. [PMID: 38213162 DOI: 10.2174/0113894501279979240101051345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Physiologically, cytokines play an extremely important role in maintaining cellular and subcellular homeostasis, as they interact almost with every cell in the organism. Therefore, cytokines play a significantly critical role in the field of pathogenic pharmacological therapy of different types of pathologies. Cytokine is a large family containing many subfamilies and can be evaluated into groups according to their action on epithelial cell proliferation; stimulatory include transforming growth factor-α (TGF-α), Interlukine-22 (IL-22), IL-13, IL-6, IL-1RA and IL-17 and inhibitory include IL-1α, interferon type I (IFN type I), and TGF-β. The balance between stimulatory and inhibitory cytokines is essential for maintaining normal epithelial cell turnover and tissue homeostasis. Dysregulation of cytokine production can contribute to various pathological conditions, including inflammatory disorders, tissue damage, and cancer. Several cytokines have shown the ability to affect programmed cell death (apoptosis) and the capability to suppress non-purpose cell proliferation. Clinically, understanding the role of cytokines' role in epithelial tissue is crucial for evaluating a novel therapeutic target that can be of use as a new tactic in the management of carcinomas and tissue healing capacity. The review provides a comprehensive and up-to-date synthesis of current knowledge regarding the multifaceted effects of cytokines on epithelial cell proliferation, with a particular emphasis on the intestinal epithelium. Also, the paper will highlight the diverse signaling pathways activated by cytokines and their downstream consequences on epithelial cell division. It will also explore the potential therapeutic implications of targeting cytokine- epithelial cell interactions in the context of various diseases.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
42
|
White SE, Schwartze TA, Mukundan A, Schoenherr C, Singh SP, van Dinther M, Cunningham KT, White MPJ, Campion T, Pritchard J, Hinck CS, Ten Dijke P, Inman G, Maizels RM, Hinck AP. TGM6, a helminth secretory product, mimics TGF-β binding to TβRII to antagonize TGF-β signaling in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573140. [PMID: 38187573 PMCID: PMC10769414 DOI: 10.1101/2023.12.22.573140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The murine helminth parasite Heligmosomoides polygyrus expresses a family of proteins structurally related to TGF-β Mimic 1 (TGM1), a secreted five domain protein that activates the TGF-β pathway and converts naïve T lymphocytes to immunosuppressive Tregs. TGM1 signals through the TGF-β type I and type II receptors, TβRI and TβRII, with domains 1-2 and 3 binding TβRI and TβRII, respectively, and domains 4-5 binding CD44, a co-receptor abundant on T cells. TGM6 is a homologue of TGM1 that is co-expressed with TGM1, but lacks domains 1 and 2. Herein, we show that TGM6 binds TβRII through domain 3, but does not bind TβRI, or other type I or type II receptors of the TGF-β family. In TGF-β reporter assays in fibroblasts, TGM6, but not truncated TGM6 lacking domains 4 and 5, potently inhibits TGF-β- and TGM1-induced signaling, consistent with its ability to bind TβRII but not TβRI or other receptors of the TGF-β family. However, TGM6 does not bind CD44 and is unable to inhibit TGF-β and TGM1 signaling in T cells. To understand how TGM6 binds TβRII, the X-ray crystal structure of the TGM6 domain 3 bound to TβRII was determined at 1.4 Å. This showed that TGM6 domain 3 binds TβRII through an interface remarkably similar to the TGF-β:TβRII interface. These results suggest that TGM6 has adapted its domain structure and sequence to mimic TGF-β binding to TβRII and function as a potent TGF-β and TGM1 antagonist in fibroblasts. The coexpression of TGM6, along with the immunosuppressive TGMs that activate the TGF-β pathway, may prevent tissue damage caused by the parasite as it progresses through its life cycle from the intestinal lumen to submucosal tissues and back again.
Collapse
|
43
|
Kaur H, Ali SA, Short SP, Williams CS, Goettel JA, Washington MK, Peek RM, Acra SA, Yan F. Identification of a functional peptide of a probiotic bacterium-derived protein for the sustained effect on preventing colitis. Gut Microbes 2023; 15:2264456. [PMID: 37815528 PMCID: PMC10566403 DOI: 10.1080/19490976.2023.2264456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Several probiotic-derived factors have been identified as effectors of probiotics for exerting beneficial effects on the host. However, there is a paucity of studies to elucidate mechanisms of their functions. p40, a secretory protein, is originally isolated from a probiotic bacterium, Lactobacillus rhamnosus GG. Thus, this study aimed to apply structure-functional analysis to define the functional peptide of p40 that modulates the epigenetic program in intestinal epithelial cells for sustained prevention of colitis. In silico analysis revealed that p40 is composed of a signal peptide (1-28 residues) followed by a coiled-coil domain with uncharacterized function on the N-terminus, a linker region, and a β-sheet domain with high homology to CHAP on the C-terminus. Based on the p40 three-dimensional structure model, two recombinant p40 peptides were generated, p40N120 (28-120 residues) and p40N180 (28-180 residues) that contain first two and first three coiled coils, respectively. Compared to full-length p40 (p40F) and p40N180, p40N120 showed similar or higher effects on up-regulating expression of Setd1b (encoding a methyltransferase), promoting mono- and trimethylation of histone 3 on lysine 4 (H3K4me1/3), and enhancing Tgfb gene expression and protein production that leads to SMAD2 phosphorylation in human colonoids and a mouse colonic epithelial cell line. Furthermore, supplementation with p40F and p40N120 in early life increased H3K4me1, Tgfb expression and differentiation of regulatory T cells (Tregs) in the colon, and mitigated disruption of epithelial barrier and inflammation induced by DSS in adult mice. This study reveals the structural feature of p40 and identifies a functional peptide of p40 that could maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Syed Azmal Ali
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Sarah P. Short
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Jeremy A. Goettel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M. Peek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sari A. Acra
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fang Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
44
|
Wang X, Eichhorn PJA, Thiery JP. TGF-β, EMT, and resistance to anti-cancer treatment. Semin Cancer Biol 2023; 97:1-11. [PMID: 37944215 DOI: 10.1016/j.semcancer.2023.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates cell-specific programs involved in embryonic development, wound-healing, and immune homeostasis. Yet, during tumor progression, these TGF-β-mediated programs are altered, leading to epithelial cell plasticity and a reprogramming of epithelial cells into mesenchymal lineages through epithelial-to-mesenchymal transition (EMT), a critical developmental program in morphogenesis and organogenesis. These changes, in turn, lead to enhanced carcinoma cell invasion, metastasis, immune cell differentiation, immune evasion, and chemotherapy resistance. Here, we discuss EMT as one of the critical programs associated with carcinoma cell plasticity and the influence exerted by TGF-β on carcinoma status and function. We further explore the composition of carcinoma and other cell populations within the tumor microenvironment, and consider the relevant outcomes related to the programs associated with cancer treatment resistance.
Collapse
Affiliation(s)
- Xuecong Wang
- Guangzhou National Laboratory, Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore
| | | |
Collapse
|
45
|
Liu L, Feng J, Jiang S, Zhou S, Yan M, Zhang Z, Wang W, Liu Y, Zhang J. Anti-inflammatory and intestinal microbiota modulation properties of Ganoderma lucidum β-d-glucans with different molecular weight in an ulcerative colitis model. Int J Biol Macromol 2023; 251:126351. [PMID: 37597635 DOI: 10.1016/j.ijbiomac.2023.126351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
This study systematically investigated the therapeutic effects and the corresponding mechanisms of β-D-glucans from Ganoderma lucidum (G. lucidum) with different molecular weights (Mws) on ulcerative colitis (UC). Results showed that three β-d-glucans (GLPS, GLPN and GLPW) from G. lucidum with different Mws exhibited the significant activities on the reduction of typical symptoms of UC by regulating inflammatory cytokine levels, modulating intestinal immunity, improving intestinal microbiota and metabolism of short-chain fatty acids (SCFAs) in the dextran sulfate sodium (DSS)-induced mice model. Among them, the effects of the microwave assisted degraded fraction (GLPW) mainly containing two fractions with smaller Mw (1.33 × 104 and 3.51 × 103 g/mol) on the regulation of inflammatory factors and SCFAs metabolism were found to be comparable to those of GLPN with medium Mw (3.49 × 104 g/mol), and superior to those of GLPS with large Mw (2.42 × 106 g/mol). The effect of GLPW on regulation of intestinal microbiota was even better than that of GLPN. These findings suggested that lowering Mw by means of physical degradation could improve the anti-inflammatory activities of G. lucidum β-d-glucans. The analysis of anti-inflammatory mechanism also provided a feasible and theoretical basis for potential use of degraded β-d-glucans in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Liping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Siqi Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
46
|
Duman H, Karav S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front Immunol 2023; 14:1214514. [PMID: 37908368 PMCID: PMC10613682 DOI: 10.3389/fimmu.2023.1214514] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine colostrum (BC) is the initial milk an animal produces after giving birth, particularly in the first few days. Numerous bioactive substances found in BC, including proteins, enzymes, growth factors, immunoglobulins, etc., are beneficial to human health. BC has a significant role to play as part of a healthy diet, with well-documented health and nutritional advantages for people. Therefore, the use of BC and its crucial derivatives in the development of functional food and pharmaceuticals for the prevention of several diseases such as gastrointestinal and respiratory system disorders is becoming increasingly popular around the world. A novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of a cluster of pneumonia cases that is called Coronavirus Disease 2019 (COVID-19) in China. After the first SARS-CoV-2 virus-related fatality was announced, the illness quickly spread throughout China and to other continents, causing a pandemic. Since then, numerous studies have been initiated to develop safe and efficient treatments. To prevent viral infection and potential lingering effects, it is important to investigate alternative treatments for COVID-19. Due to its effective bioactive profile and its immunomodulatory roles in biological processes, BC might be considered a promising approach to assist in combating people affected by the SARS-CoV-2 or prevention from the virus. BC has immunomodulatory effects because to its high concentration of bioactive components such as immunoglobulins, lactoferrin, cytokines, and growth factors, etc., which might help control immunological responses, potentially fostering a balanced immune response. Furthermore, its bioactive components have a potential cross-reactivity against SARS-CoV-2, aiding in virus neutralization and its comprehensive food profile also supplies important vitamins, minerals, and amino acids, fostering a healthy immune system. Hence, the possible contributions of BC to the management of COVID-19 were reviewed in this article based on the most recent research on the subject. Additionally, the key BC components that influence immune system modulation were evaluated. These components may serve as potential mediators or therapeutic advantages in COVID-19.
Collapse
Affiliation(s)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| |
Collapse
|
47
|
Chauvin C, Radulovic K, Boulard O, Delacre M, Waldschmitt N, Régnier P, Legris G, Bouchez C, Sleimi MY, Rosenstiel P, Darrasse-Jèze G, Chamaillard M, Poulin LF. Loss of NOD2 in macrophages improves colitis and tumorigenesis in a lysozyme-dependent manner. Front Immunol 2023; 14:1252979. [PMID: 37876927 PMCID: PMC10590911 DOI: 10.3389/fimmu.2023.1252979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
Background Crohn's disease (CD) is a complex and poorly understood myeloid-mediated disorder. Genetic variants with loss of function in the NOD2 gene confer an increased susceptibility to ileal CD. While Nod2 in myeloid cells may confer protection against T-cell mediated ileopathy, it remains unclear whether it may promote resolution of the inflamed colon. In this study, we evaluated the function of Nod2 in myeloid cells in a model of acute colitis and colitis-associated colon cancer (CAC). Methods To ablate Nod2 specifically within the myeloid compartment, we generated LysMCre/+;Nod2fl/fl mice. The role of NOD2 was studied in a setting of Dextran Sodium Sulfate (DSS)-induced colitis and in azoxymethane (AOM)/DSS model. Clinical parameters were quantified by colonoscopy, histological, flow cytometry, and qRT-PCR analysis. Results Upon DSS colitis model, LysMCre/+;Nod2fl/fl mice lost less weight than control littermates and had less severe damage to the colonic epithelium. In the AOM/DSS model, endoscopic monitoring of tumor progression revealed a lowered number of adenomas within the colon of LysMCre/+;Nod2fl/fl mice, associated with less expression of Tgfb. Mechanistically, lysozyme M was required for the improved disease severity in mice with a defect of NOD2 in myeloid cells. Conclusion Our results indicate that loss of Nod2 signaling in myeloid cells aids in the tissue repair of the inflamed large intestine through lysozyme secretion by myeloid cells. These results may pave the way to design new therapeutics to limit the inflammatory and tumorigenic functions of NOD2.
Collapse
Affiliation(s)
- Camille Chauvin
- Univ. Lille, Institut National de la Santé Et de la Recherche Médicale (Inserm), Centre de Recherche Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019, Lille, France
- Institut national de la santé et de la recherche médicale (INSERM) U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Katarina Radulovic
- Unité de Recherche Clinique, Centre Hospitalier de Valenciennes, Valenciennes, France
| | | | - Myriam Delacre
- Univ. Lille, Institut National de la Santé Et de la Recherche Médicale (Inserm), Centre de Recherche Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019, Lille, France
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Paul Régnier
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, Institut national de la santé et de la recherche médicale (INSERM) UMR-S 959, Sorbonne Université, Paris, France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | | | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Guillaume Darrasse-Jèze
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, Institut national de la santé et de la recherche médicale (INSERM) UMR-S 959, Sorbonne Université, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | | | | |
Collapse
|
48
|
Hu Y, He Z, Zhang J, Zhang C, Wang Y, Zhang W, Zhang F, Zhang W, Gu F, Hu W. Effect of Piper nigrum essential oil in dextran sulfate sodium (DSS)-induced colitis and its potential mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155024. [PMID: 37597364 DOI: 10.1016/j.phymed.2023.155024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Piper nigrum essential oil (PnEO) possesses pleasant aroma, unique flavor, and various bioactivities; however, its role against colitis remains unclear. PURPOSE In this study, we investigated the role of PnEO in relieving colitis and explored its potential mechanisms in a mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS Initially, we identified and quantified the components of PnEO by gas chromatography-mass spectrometry (GC-MS). Subsequently, we investigated the protective role of PnEO (50 and 200 mg/kg) in DSS-induced colitis in mice by evaluating disease activity index (DAI) scores and colon length, and performing histological analyses. Eyeball blood was collected and cytokines were determined using ELISA kits. The anti-inflammatory mechanisms of PnEO were analyzed by western blot (WB) and immunohistochemistry (IHC). The intestinal barrier function was evaluated according to tight junction (TJ) protein mRNA levels. We used 16S rRNA gene sequencing to analyze the intestinal microflora of mouse cecal contents. RESULTS Supplementation with PnEO (50 and 200 mg/kg) increased colon length and improved colon histopathology. PnEO regulated inflammatory responses by downregulating TLR4/MAPKs activation, thereby reducing the release of cytokines and mediators. Moreover, it also protected the intestinal barrier through enhancing the expression of claudin-1, claudin-3, occludin, ZO-1, and mucin 2. 16S rRNA gene sequencing revealed that PnEO (200 mg/kg) decreased the abundance of Akkermansia in the gut microbiome. CONCLUSION PnEO treatment (50 and 200 mg/kg) relieved DSS-induced colitis by inhibiting TLR4/MAPK pathway and protecting intestinal barrier, and high-dose PnEO exhibited better effects. Moreover, PnEO (200 mg/kg) regulated key compositions of the gut microbiome, which indicated that it had therapeutic potential for sustaining gut health to lower the risk of colitis.
Collapse
Affiliation(s)
- Yeye Hu
- Spice and Beverage Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan 572025, China; Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ziliang He
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Chaohua Zhang
- Spice and Beverage Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan 572025, China
| | - Yanting Wang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wei Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Weiming Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Fenglin Gu
- Spice and Beverage Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan 572025, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
49
|
Massagué J, Sheppard D. TGF-β signaling in health and disease. Cell 2023; 186:4007-4037. [PMID: 37714133 PMCID: PMC10772989 DOI: 10.1016/j.cell.2023.07.036] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
The TGF-β regulatory system plays crucial roles in the preservation of organismal integrity. TGF-β signaling controls metazoan embryo development, tissue homeostasis, and injury repair through coordinated effects on cell proliferation, phenotypic plasticity, migration, metabolic adaptation, and immune surveillance of multiple cell types in shared ecosystems. Defects of TGF-β signaling, particularly in epithelial cells, tissue fibroblasts, and immune cells, disrupt immune tolerance, promote inflammation, underlie the pathogenesis of fibrosis and cancer, and contribute to the resistance of these diseases to treatment. Here, we review how TGF-β coordinates multicellular response programs in health and disease and how this knowledge can be leveraged to develop treatments for diseases of the TGF-β system.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Dean Sheppard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
50
|
Imaizumi T, Hayashi R, Kudo Y, Li X, Yamaguchi K, Shibata S, Okubo T, Ishii T, Honma Y, Nishida K. Ocular instillation of conditioned medium from mesenchymal stem cells is effective for dry eye syndrome by improving corneal barrier function. Sci Rep 2023; 13:13100. [PMID: 37567940 PMCID: PMC10421917 DOI: 10.1038/s41598-023-40136-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Dry eye syndrome (DES) is a chronic ocular disease that induces epithelial damage to the cornea by decreasing tear production and quality. Adequate treatment options have not been established for severe DES such as Sjogren's syndrome due to complicated pathological conditions. To solve this problem, we focused on the conditioned medium of human adipose-derived mesenchymal stem cells (hAdMSC-CM), which have multiple therapeutic properties. Here, we showed that hAdMSC-CM suppressed Benzalkonium Chloride (BAC)-induced cytotoxicity and inflammation in human corneal epithelial cells (hCECs). In addition, hAdMSC-CM increased the expression level and regulated the localisation of barrier function-related components, and improved the BAC-induced barrier dysfunction in hCECs. RNA-seq analysis and pharmacological inhibition experiments revealed that the effects of hAdMSC-CM were associated with the TGFβ and JAK-STAT signalling pathways. Moreover, in DES model rats with exorbital and intraorbital lacrimal gland excision, ocular instillation of hAdMSC-CM suppressed corneal epithelial damage by improving barrier dysfunction of the cornea. Thus, we demonstrated that hAdMSC-CM has multiple therapeutic properties associated with TGFβ and JAK-STAT signalling pathways, and ocular instillation of hAdMSC-CM may serve as an innovative therapeutic agent for DES by improving corneal barrier function.
Collapse
Affiliation(s)
- Tsutomu Imaizumi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, 544-8666, Japan
| | - Ryuhei Hayashi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Osaka, 565-0871, Japan.
| | - Yuji Kudo
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, 544-8666, Japan
| | - Xiaoqin Li
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Kaito Yamaguchi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, 544-8666, Japan
| | - Shun Shibata
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, 544-8666, Japan
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Toru Okubo
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, 544-8666, Japan
| | - Tsuyoshi Ishii
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, 544-8666, Japan
| | - Yoichi Honma
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, 544-8666, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Osaka, 565-0871, Japan.
| |
Collapse
|