1
|
Rao M, Gulbransen BD. Enteric Glia. Cold Spring Harb Perspect Biol 2025; 17:a041368. [PMID: 38951022 PMCID: PMC11960695 DOI: 10.1101/cshperspect.a041368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Enteric glia are a unique type of peripheral neuroglia that accompany neurons in the enteric nervous system (ENS) of the digestive tract. The ENS displays integrative neural circuits that are capable of governing moment-to-moment gut functions independent of input from the central nervous system. Enteric glia are interspersed with neurons throughout these intrinsic gut neural circuits and are thought to fulfill complex roles directed at maintaining homeostasis in the neuronal microenvironment and at neuroeffector junctions in the gut. Changes to glial functions contribute to a wide range of gastrointestinal diseases, but the precise roles of enteric glia in gut physiology and pathophysiology are still under examination. This review summarizes current concepts regarding enteric glial development, diversity, and functions in health and disease.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
2
|
Lu T, Huang C, Weng R, Wang Z, Sun H, Ma X. Enteric glial cells contribute to chronic stress-induced alterations in the intestinal microbiota and barrier in rats. Heliyon 2024; 10:e24899. [PMID: 38317901 PMCID: PMC10838753 DOI: 10.1016/j.heliyon.2024.e24899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Background Emerging evidence has demonstrated the impact of psychological stress on intestinal microbiota, however, the precise mechanisms are not fully understood. Enteric glia, a unique type of peripheral glia found within the enteric nervous system (ENS), play an active role in enteric neural circuits and have profound effects on gut functions. In the present study, we tested the hypothesis that enteric glia are involved in the alterations in the intestinal microflora and barrier induced by chronic water-avoidance stress (WAS) in the gut. Methods and results Western blotting and immunohistochemical (IHC) staining were used to examine the expression of glial fibrillary acidic protein (GFAP), nitric oxide synthetase (NOS) and choline acety1transferase (ChAT) in colon tissues. 16S rDNA sequencing was performed to analyse the composition of the intestinal microbiota in rats. Changes in the tight junction proteins Occludin, Claudin1 and proliferating cell nuclear antigen (PCNA) in the colon tissues were detected after WAS. The abundance of Firmicutes, Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136 decreased significantly, whereas the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenellaceae-R-7 increased significantly in stressed rats. Meanwhile, the expression of Occludin, Claudin1 and PCNA significantly decreased after WAS. Treatment with L-A-aminohexanedioic acid (L-AA), a gliotoxin that blunts astrocytic function, obviously decreased the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenel-laceae_R-7 in stressed rats and significantly increased the abundance of Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136. In addition, the protein expression of colon Occludin, Claudin1, and PCNA increased after intraperitoneal injection of L-AA. Furthermore, the expression level of NOS in colon tissues was significantly decreased, whereas that of ChAT was significantly increased following L-AA treatment. Conclusions Our results showed that enteric glial cells may contribute to WAS-induced changes in the intestinal microbiota and barrier function by modulating the activity of NOS and cholinergic neurones in the ENS.
Collapse
Affiliation(s)
- Tong Lu
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Chenxu Huang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Rongxin Weng
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Zepeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Haiji Sun
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Xiaoli Ma
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| |
Collapse
|
3
|
Antuofermo E, Orioles M, Murgia C, Burrai GP, Penati M, Gottardi C, Polinas M, Volpatti D, Galeotti M, Addis MF. Exploring Immunohistochemistry in Fish: Assessment of Antibody Reactivity by Western Immunoblotting. Animals (Basel) 2023; 13:2934. [PMID: 37760333 PMCID: PMC10525475 DOI: 10.3390/ani13182934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, research on fish has seen remarkable advancements, especially in aquaculture, ornamental fish industry, and biomedical studies. Immunohistochemistry has become crucial in fish research, aiding in physiological and pathological investigations. However, the use of antibodies originally developed for mammals has raised concerns about their cross-reactivity and specificity in fish. This study systematically evaluated the reactivity of commonly used antibodies for diagnostic purposes, especially in fish pathology, including pan-cytokeratin, vimentin, S-100, glial fibrillary acidic protein, and desmin in the tissue of Sparus aurata, Dicentrarchus labrax, Oncorhynchus mykiss, and Carassius auratus. Western immunoblotting was employed to assess antibody specificity. The results revealed that the pan-cytokeratin and glial fibrillary acidic protein antibodies cross-react with all tested fish species, while S-100 demonstrated specific staining in sea bream, goldfish, and rainbow trout tissues. Conversely, vimentin and desmin antibodies displayed no reactivity. In conclusion, the anti-cytokeratin clone AE1/AE3 and the polyclonal rabbit anti-glial fibrillary acidic protein antibody, which are extensively used in mammals, were validated for fish immunohistochemical studies. Regrettably, D33 anti-desmin and V9 anti-vimentin clones are unsuitable for immunohistochemistry in the tested fish. These findings underscore the need for species-specific antibodies and proper validation for accurate immunohistochemistry analyses in fish research.
Collapse
Affiliation(s)
- Elisabetta Antuofermo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (E.A.); (C.M.); (M.P.)
| | - Massimo Orioles
- Veterinary Pathology Unit, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; (M.O.); (D.V.); (M.G.)
| | - Claudio Murgia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (E.A.); (C.M.); (M.P.)
| | - Giovanni P. Burrai
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (E.A.); (C.M.); (M.P.)
| | - Martina Penati
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.P.); (C.G.); (M.F.A.)
| | - Chiara Gottardi
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.P.); (C.G.); (M.F.A.)
| | - Marta Polinas
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (E.A.); (C.M.); (M.P.)
| | - Donatella Volpatti
- Veterinary Pathology Unit, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; (M.O.); (D.V.); (M.G.)
| | - Marco Galeotti
- Veterinary Pathology Unit, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; (M.O.); (D.V.); (M.G.)
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (M.P.); (C.G.); (M.F.A.)
| |
Collapse
|
4
|
Souza RF, Caetano MAF, Magalhães HIR, Castelucci P. Study of tumor necrosis factor receptor in the inflammatory bowel disease. World J Gastroenterol 2023; 29:2733-2746. [PMID: 37274062 PMCID: PMC10237104 DOI: 10.3748/wjg.v29.i18.2733] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023] Open
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are part of Inflammatory Bowel Diseases (IBD) and have pathophysiological processes such as bowel necrosis and enteric neurons and enteric glial cells. In addition, the main inflammatory mediator is related to the tumor necrosis factor-alpha (TNF-α). TNF-α is a me-diator of the intestinal inflammatory processes, thus being one of the main cytokines involved in the pathogenesis of IBD, however, its levels, when measured, are present in the serum of patients with IBD. In addition, TNF-α plays an important role in promoting inflammation, such as the production of interleukins (IL), for instance IL-1β and IL-6. There are two receptors for TNF as following: The tumor necrosis factor 1 receptor (TNFR1); and the tumor necrosis factor 2 receptor (TNFR2). They are involved in the pathogenesis of IBD and their receptors have been detected in IBD and their expression is correlated with disease activity. The soluble TNF form binds to the TNFR1 receptor with, and its activation results in a signaling cascade effects such as apoptosis, cell proliferation and cytokine secretion. In contrast, the transmembrane TNF form can bind both to TNFR1 and TNFR2. Recent studies have suggested that TNF-α is one of the main pro-inflammatory cytokines involved in the pathogenesis of IBD, since TNF levels are present in the serum of both patients with UC and CD. Intravenous and subcutaneous biologics targeting TNF-α have revolutionized the treatment of IBD, thus becoming the best available agents to induce and maintain IBD remission. The application of antibodies aimed at neutralizing TNF-α in patients with IBD that induce a satisfactory clinical response in up to 60% of patients, and also induced long-term maintenance of disease remission in most patients. It has been suggested that anti-TNF-α agents inactivate the pro-inflammatory cytokine TNF-α by direct neutralization, i.e., resulting in suppression of inflammation. However, anti-TNF-α antibodies perform more complex functions than a simple blockade.
Collapse
Affiliation(s)
- Roberta Figueiroa Souza
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | | | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
5
|
Boesmans W, Nash A, Tasnády KR, Yang W, Stamp LA, Hao MM. Development, Diversity, and Neurogenic Capacity of Enteric Glia. Front Cell Dev Biol 2022; 9:775102. [PMID: 35111752 PMCID: PMC8801887 DOI: 10.3389/fcell.2021.775102] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Enteric glia are a fascinating population of cells. Initially identified in the gut wall as the "support" cells of the enteric nervous system, studies over the past 20 years have unveiled a vast array of functions carried out by enteric glia. They mediate enteric nervous system signalling and play a vital role in the local regulation of gut functions. Enteric glial cells interact with other gastrointestinal cell types such as those of the epithelium and immune system to preserve homeostasis, and are perceptive to luminal content. Their functional versatility and phenotypic heterogeneity are mirrored by an extensive level of plasticity, illustrated by their reactivity in conditions associated with enteric nervous system dysfunction and disease. As one of the hallmarks of their plasticity and extending their operative relationship with enteric neurons, enteric glia also display neurogenic potential. In this review, we focus on the development of enteric glial cells, and the mechanisms behind their heterogeneity in the adult gut. In addition, we discuss what is currently known about the role of enteric glia as neural precursors in the enteric nervous system.
Collapse
Affiliation(s)
- Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Amelia Nash
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kinga R. Tasnády
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Wendy Yang
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan, Taiwan
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Villamayor PR, Arana ÁJ, Coppel C, Ortiz-Leal I, Torres MV, Sanchez-Quinteiro P, Sánchez L. A comprehensive structural, lectin and immunohistochemical characterization of the zebrafish olfactory system. Sci Rep 2021; 11:8865. [PMID: 33893372 PMCID: PMC8065131 DOI: 10.1038/s41598-021-88317-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Fish chemosensory olfactory receptors allow them to detect a wide range of water-soluble chemicals, that mediate fundamental behaviours. Zebrafish possess a well-developed sense of smell which governs reproduction, appetite, and fear responses. The spatial organization of functional properties within the olfactory epithelium and bulb are comparable to those of mammals, making this species suitable for studies of olfactory differentiation and regeneration and neuronal representation of olfactory information. The advent of genomic techniques has been decisive for the discovery of specific olfactory cell types and the identification of cell populations expressing vomeronasal receptors. These advances have marched ahead of morphological and neurochemical studies. This study aims to fill the existing gap in specific histological, lectin-histochemical and immunohistochemical studies on the olfactory rosette and the olfactory bulb of the zebrafish. Tissue dissection and microdissection techniques were employed, followed by histological staining techniques, lectin-histochemical labelling (UEA, LEA, BSI-B4) and immunohistochemistry using antibodies against G proteins subunits αo and αi2, growth-associated protein-43, calbindin, calretinin, glial-fibrillary-acidic-protein and luteinizing-hormone-releasing-hormone. The results obtained enrich the available information on the neurochemical patterns of the zebrafish olfactory system, pointing to a greater complexity than the one currently considered, especially when taking into account the peculiarities of the nonsensory epithelium.
Collapse
Affiliation(s)
- Paula R Villamayor
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Álvaro J Arana
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Carlos Coppel
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av Carballo Calero s/n, 27002, Lugo, Spain.
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
7
|
El-Nachef WN, Bronner ME. De novo enteric neurogenesis in post-embryonic zebrafish from Schwann cell precursors rather than resident cell types. Development 2020; 147:dev186619. [PMID: 32541008 PMCID: PMC7375481 DOI: 10.1242/dev.186619] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) is essential for normal gastrointestinal function. Although the embryonic origin of enteric neurons from the neural crest is well established, conflicting evidence exists regarding postnatal enteric neurogenesis. Here, we address this by examining the origin of de novo neurogenesis in the post-embryonic zebrafish ENS. Although new neurons are added during growth and after injury, the larval intestine appears to lack resident neurogenic precursors or classical glia marked by sox10, plp1a, gfap or s100 Rather, lineage tracing with lipophilic dye or inducible Sox10-Cre suggests that post-embryonic enteric neurons arise from trunk neural crest-derived Schwann cell precursors that migrate from the spinal cord into the intestine. Furthermore, the 5-HT4 receptor agonist prucalopride increases enteric neurogenesis in normal development and after injury. Taken together, the results suggest that despite the lack of resident progenitors in the gut, post-embryonic enteric neurogenesis occurs via gut-extrinsic Schwann cell precursors during development and injury, and is promoted by serotonin receptor agonists. The absence of classical glia in the ENS further suggests that neural crest-derived enteric glia might have evolved after the teleost lineage.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Wael Noor El-Nachef
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
8
|
Chao G, Ye F, Yuan Y, Zhang S. Berberine ameliorates non-steroidal anti-inflammatory drugs-induced intestinal injury by the repair of enteric nervous system. Fundam Clin Pharmacol 2019; 34:238-248. [PMID: 31520444 DOI: 10.1111/fcp.12509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Abstract
The study was to detect the role of GDNF, PGP9.5 (a neuronal marker), and GFAP (EGCs' marker) in the mechanism of non-steroidal anti-inflammatory drugs (NSAIDs) related to intestinal injury and to clarify the protective effect of berberine in the treatment of NSAID-induced small intestinal disease. Forty male SD rats were divided randomly into five groups (A-E): Group A: control group; Group B: model group received diclofenac sodium 7.5 mg/(kg*day) for 5 days; Group C-E: berberine low, medium and high dose groups were treated by 7.5 mg/(kg*day) diclofenac sodium for 5 days then received berberine 25 mg/(kg*day), 50 mg/(kg*day), and 75 mg/(kg*day), respectively, between the sixth and eighth day. Intestinal mucosa was taken on the ninth day to observe the general, histological injuries, and to measure the intestinal epithelial thickness. Then, immunohistochemistry was performed to detect the expression of PGP9.5 and GFAP, and Western blot was performed to detect GDNF expression. The histological score and the general score in the model group were, respectively, 5.75 ± 1.04 and 4.83 ± 0.92. Scores in berberine medium and high berberine group were lower compared with the model group (P < 0.05). The intestinal epithelial thickness in the model group was lower than in the control group and the berberine groups (P < 0.05). PGP9.5, GFAP, and GDNF content in the model group and the three berberine groups were significantly lower than in the control groups (P < 0.05). PGP9.5, GFAP, and GDNF content in the control group and the three berberine groups were higher compared with the model groups (P < 0.05). Berberine can protect the intestinal mucosa of NSAID users, and the mechanism is associated with the reparation of the enteric nervous system via upregulating the expression of PGP9.5, GFAP, and GDNF.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Fangxu Ye
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Yuan Yuan
- Department of Gastroenterology, The First Affiliated Hospital, Henan Chinese Medical University, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
9
|
Mendes CE, Palombit K, Tavares-de-Lima W, Castelucci P. Enteric glial cells immunoreactive for P2X7 receptor are affected in the ileum following ischemia and reperfusion. Acta Histochem 2019; 121:665-679. [PMID: 31202513 DOI: 10.1016/j.acthis.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
The aim of this study was to analyze the effect of ischemia and reperfusion injury (IS) on enteric glial cells (EGCs) and neurons immunoreactive for the P2X7 receptor. Intestinal ischemia was induced by obstructing blood flow in the ileal vessels for 35 min. Afterwards, the vessels were reperfused for 14 days. Tissues were prepared for immunohistochemical labeling of P2X7 receptor, HuC/D (Hu) (pan-neuronal marker) and S100β (glial marker); HuC/D (Hu) and glial fibrillary acidic protein (GFAP, glial marker)/DAPI (nuclear marker); or S100β and GFAP/DAPI. Qualitative and quantitative analyses of colocalization, density, profile area and cell proliferation were performed via fluorescence and confocal laser scanning microscopy. The quantitative analyses revealed that a) neurons and EGCs were immunoreactive for P2X7 receptor; b) the P2X7 receptor immunoreactive cells and Hu immunoreactive neurons were reduced after 0 h and 14 days of reperfusion; c) the S100β and GFAP immunoreactive EGCs were increased; d) the profile area of S100β immunoreactive EGCs was increased by IS; e) few GFAP immunoreactive proliferated at 14 days of reperfusion; f) distinct populations of glial cells can be discerned: S100β+/GFAP+ cells, S100β+/GFAP- cells and S100β-/GFAP + cells; g) histological analysis revealed less alterations in the epithelium cells in the IS groups and h) myeloperoxidase reaction revealed increased of the neutrophils in the lamina propria in the IS groups. This study showed that IS is associated with significant neuronal loss, increase of glial cells and altered purinergic receptor expression and that these changes may contribute to intestinal disorders.
Collapse
|
10
|
Baker PA, Meyer MD, Tsang A, Uribe RA. Immunohistochemical and ultrastructural analysis of the maturing larval zebrafish enteric nervous system reveals the formation of a neuropil pattern. Sci Rep 2019; 9:6941. [PMID: 31061452 PMCID: PMC6502827 DOI: 10.1038/s41598-019-43497-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
The gastrointestinal tract is constructed with an intrinsic series of interconnected ganglia that span its entire length, called the enteric nervous system (ENS). The ENS exerts critical local reflex control over many essential gut functions; including peristalsis, water balance, hormone secretions and intestinal barrier homeostasis. ENS ganglia exist as a collection of neurons and glia that are arranged in a series of plexuses throughout the gut: the myenteric plexus and submucosal plexus. While it is known that enteric ganglia are derived from a stem cell population called the neural crest, mechanisms that dictate final neuropil plexus organization remain obscure. Recently, the vertebrate animal, zebrafish, has emerged as a useful model to understand ENS development, however knowledge of its developing myenteric plexus architecture was unknown. Here, we examine myenteric plexus of the maturing zebrafish larval fish histologically over time and find that it consists of a series of tight axon layers and long glial cell processes that wrap the circumference of the gut tube to completely encapsulate it, along all levels of the gut. By late larval stages, complexity of the myenteric plexus increases such that a layer of axons is juxtaposed to concentric layers of glial cells. Ultrastructurally, glial cells contain glial filaments and make intimate contacts with one another in long, thread-like projections. Conserved indicators of vesicular axon profiles are readily abundant throughout the larval plexus neuropil. Together, these data extend our understanding of myenteric plexus architecture in maturing zebrafish, thereby enabling functional studies of its formation in the future.
Collapse
Affiliation(s)
- Phillip A Baker
- Biosciences Department, MS 140, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Matthew D Meyer
- Shared Equipment Authority, MS 100, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Ashley Tsang
- Biosciences Department, MS 140, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Rosa A Uribe
- Biosciences Department, MS 140, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| |
Collapse
|
11
|
Leme E, Silva EP, Rodrigues PS, Silva IR, Martins MFM, Bondan EF, Bernardi MM, Kirsten TB. Billings reservoir water used for human consumption presents microbiological contaminants and induces both behavior impairments and astrogliosis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:364-373. [PMID: 29902616 DOI: 10.1016/j.ecoenv.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
The Billings reservoir is the largest water-storage facility in the São Paulo Metropolitan Region, with only a small part of the reservoir used for water supply. Recently, the São Paulo Metropolitan Region has experienced the greatest water collapse ever recorded. Thus, the intensification of use of the Billings reservoir should be considered. The objective of this study was to evaluate the quality of the water from different areas of the Billings reservoir related to human consumption (water supply and fishing): Rio Pequeno, Rio Grande, and Bororé rivers. We performed microbiological and physical studies on one water sample collected at each of these sites. Adult zebrafish were exposed to such water samples and their behaviors were evaluated. Finally, we studied central glial fibrillary acidic protein (GFAP) expression, which is related to neuroinflammatory processes. Water samples from Rio Pequeno, Rio Grande, and Bororé presented microbiological contamination for Escherichia coli and heterotrophic bacteria. Water from the Rio Pequeno river induced both motor/exploratory impairments and anxiogenic-like behavior in zebrafish. Water from the Bororé river induced behaviors in zebrafish related to respiratory impairments (hypoxia) as well as higher alarm reaction. Zebrafish exposed to water from the Bororé also presented astrogliosis, which seems to have happened in detrimental of the high heterotrophic bacterial contamination. Rio Grande and Bororé water increased the lethality rates. Considering the present results of microbiological contaminants and behavior impairments, lethality, as well as astrogliosis in zebrafish, the water from Rio Pequeno, Rio Grande, and Bororé rivers should be considered unacceptable for human use in their untreated state. The Basic Sanitation Company of the State of Sao Paulo should consider adopting rigorous processes of microbiological water treatment. Authorization for fishing at Bororé river should be reconsidered.
Collapse
Affiliation(s)
- Ednilse Leme
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Ericka P Silva
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Paula S Rodrigues
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Igor R Silva
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Maria F M Martins
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Eduardo F Bondan
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Maria M Bernardi
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Thiago B Kirsten
- Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil.
| |
Collapse
|
12
|
Ganz J. Gut feelings: Studying enteric nervous system development, function, and disease in the zebrafish model system. Dev Dyn 2018; 247:268-278. [PMID: 28975691 DOI: 10.1002/dvdy.24597] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
The enteric nervous system (ENS) is the largest part of the peripheral nervous system and is entirely neural crest-derived. It provides the intrinsic innervation of the gut, controlling different aspects of gut function, such as motility. In this review, we will discuss key points of Zebrafish ENS development, genes, and signaling pathways regulating ENS development, as well as contributions of the Zebrafish model system to better understand ENS disorders. During their migration, enteric progenitor cells (EPCs) display a gradient of developmental states based on their proliferative and migratory characteristics, and show spatiotemporal heterogeneity based on gene expression patterns. Many genes and signaling pathways that regulate the migration and proliferation of EPCs have been identified, but later stages of ENS development, especially steps of neuronal and glial differentiation, remain poorly understood. In recent years, Zebrafish have become increasingly important to test candidate genes for ENS disorders (e.g., from genome-wide association studies), to identify environmental influences on ENS development (e.g., through large-scale drug screens), and to investigate the role the gut microbiota play in ENS development and disease. With its unique advantages as a model organism, Zebrafish will continue to contribute to a better understanding of ENS development, function, and disease. Developmental Dynamics 247:268-278, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
13
|
Taylor CR, Montagne WA, Eisen JS, Ganz J. Molecular fingerprinting delineates progenitor populations in the developing zebrafish enteric nervous system. Dev Dyn 2016; 245:1081-1096. [PMID: 27565577 DOI: 10.1002/dvdy.24438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/01/2016] [Accepted: 07/29/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND To understand the basis of nervous system development, we must learn how multipotent progenitors generate diverse neuronal and glial lineages. We addressed this issue in the zebrafish enteric nervous system (ENS), a complex neuronal and glial network that regulates essential intestinal functions. Little is currently known about how ENS progenitor subpopulations generate enteric neuronal and glial diversity. RESULTS We identified temporally and spatially dependent progenitor subpopulations based on coexpression of three genes essential for normal ENS development: phox2bb, sox10, and ret. Our data suggest that combinatorial expression of these genes delineates three major ENS progenitor subpopulations, (1) phox2bb + /ret- /sox10-, (2) phox2bb + /ret + /sox10-, and (3) phox2bb + /ret + /sox10+, that reflect temporal progression of progenitor maturation during migration. We also found that differentiating zebrafish neurons maintain phox2bb and ret expression, and lose sox10 expression. CONCLUSIONS Our data show that zebrafish enteric progenitors constitute a heterogeneous population at both early and late stages of ENS development and suggest that marker gene expression is indicative of a progenitor's fate. We propose that a progenitor's expression profile reveals its developmental state: "younger" wave front progenitors express all three genes, whereas more mature progenitors behind the wave front selectively lose sox10 and/or ret expression, which may indicate developmental restriction. Developmental Dynamics 245:1081-1096, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charlotte R Taylor
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - William A Montagne
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA. .,Current address: Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Heanue TA, Shepherd IT, Burns AJ. Enteric nervous system development in avian and zebrafish models. Dev Biol 2016; 417:129-38. [PMID: 27235814 DOI: 10.1016/j.ydbio.2016.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Our current understanding of the developmental biology of the enteric nervous system (ENS) and the genesis of ENS diseases is founded almost entirely on studies using model systems. Although genetic studies in the mouse have been at the forefront of this field over the last 20 years or so, historically it was the easy accessibility of the chick embryo for experimental manipulations that allowed the first descriptions of the neural crest origins of the ENS in the 1950s. More recently, studies in the chick and other non-mammalian model systems, notably zebrafish, have continued to advance our understanding of the basic biology of ENS development, with each animal model providing unique experimental advantages. Here we review the basic biology of ENS development in chick and zebrafish, highlighting conserved and unique features, and emphasising novel contributions to our general understanding of ENS development due to technical or biological features.
Collapse
Affiliation(s)
| | | | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
The Autotaxin-Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression during Oligodendrocyte Differentiation. J Neurosci 2015; 35:11399-414. [PMID: 26269646 DOI: 10.1523/jneurosci.0345-15.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED During development, oligodendrocytes (OLGs), the myelinating cells of the CNS, undergo a stepwise progression during which OLG progenitors, specified from neural stem/progenitor cells, differentiate into fully mature myelinating OLGs. This progression along the OLG lineage is characterized by well synchronized changes in morphology and gene expression patterns. The latter have been found to be particularly critical during the early stages of the lineage, and they have been well described to be regulated by epigenetic mechanisms, especially by the activity of the histone deacetylases HDAC1 and HDAC2. The data presented here identify the extracellular factor autotaxin (ATX) as a novel upstream signal modulating HDAC1/2 activity and gene expression in cells of the OLG lineage. Using the zebrafish as an in vivo model system as well as rodent primary OLG cultures, this functional property of ATX was found to be mediated by its lysophospholipase D (lysoPLD) activity, which has been well characterized to generate the lipid signaling molecule lysophosphatidic acid (LPA). More specifically, the lysoPLD activity of ATX was found to modulate HDAC1/2 regulated gene expression during a time window coinciding with the transition from OLG progenitor to early differentiating OLG. In contrast, HDAC1/2 regulated gene expression during the transition from neural stem/progenitor to OLG progenitor appeared unaffected by ATX and its lysoPLD activity. Thus, together, our data suggest that an ATX-LPA-HDAC1/2 axis regulates OLG differentiation specifically during the transition from OLG progenitor to early differentiating OLG and via a molecular mechanism that is evolutionarily conserved from at least zebrafish to rodent. SIGNIFICANCE STATEMENT The formation of the axon insulating and supporting myelin sheath by differentiating oligodendrocytes (OLGs) in the CNS is considered an essential step during vertebrate development. In addition, loss and/or dysfunction of the myelin sheath has been associated with a variety of neurologic diseases in which repair is limited, despite the presence of progenitor cells with the potential to differentiate into myelinating OLGs. This study characterizes the autotaxin-lysophosphatidic acid signaling axis as a modulator of OLG differentiation in vivo in the developing zebrafish and in vitro in rodent OLGs in culture. These findings provide novel insight into the regulation of developmental myelination, and they are likely to lead to advancing studies related to the stimulation of myelin repair under pathologic conditions.
Collapse
|
16
|
Lazzari M, Bettini S, Franceschini V. Immunocytochemical characterisation of olfactory ensheathing cells of zebrafish. J Anat 2014; 224:192-206. [PMID: 24164558 PMCID: PMC3969062 DOI: 10.1111/joa.12129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 01/01/2023] Open
Abstract
Continuous lifelong neurogenesis is typical of the vertebrate olfactory system. The regenerative ability of olfactory receptor neurons is dependent on the glial cell type specific to the olfactory pathway, designated 'olfactory ensheathing cells'. Several studies to date have focused on mammalian olfactory ensheathing cells, owing to their potential roles in cell-based therapy for spinal cord injury repair. However, limited information is available regarding this glial cell type in non-mammalian vertebrates, particularly anamniotes. In the current immunocytochemical study, we analysed the features of olfactory ensheathing cells in the zebrafish, Danio rerio. Fish provide a good model for studying glial cells associated with the olfactory pathway of non-mammalian vertebrates. In particular, zebrafish has numerous valuable features that enable its use as a prime model organism for genetic, neurobiological and developmental studies, as well as toxicology and genomics research. Paraffin sections from decalcified heads of zebrafish were processed immunocytochemically to detect proteins used in the research on mammalian olfactory ensheathing cells, including glial fibrillary acid protein (GFAP), S100, neural cell adhesion molecule (NCAM), polysialylated NCAM (PSA-NCAM), vimentin (VIM), p75NTR and galactin (Gal)-1. Notably, GFAP, S100, NCAM and Gal-1 were clearly observed, whereas no vimentin staining was detected. Weak immunostaining for PSA-NCAM and p75NTR was evident. Moreover the degree of marker expression was not uniform in various tracts of the zebrafish olfactory pathway. The immunostaining patterns of the zebrafish olfactory system are distinct from those of other fish to some extent, suggesting interspecific differences. We also showed that the olfactory pathway of zebrafish expresses markers of mammalian olfactory ensheathing cells. The olfactory systems of vertebrates have similarities but there are also marked variations between them. The issue of whether regional and interspecific differences in immunostaining patterns of olfactory pathway markers have functional significance requires further investigation.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
17
|
Kleinschmidt S, Nolte I, Hewicker-Trautwein M. Structural and Functional Components of the Feline Enteric Nervous System. Anat Histol Embryol 2011; 40:450-6. [DOI: 10.1111/j.1439-0264.2011.01091.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
The enteric nervous system. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1546-5098(10)03008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|