1
|
Yazdi SNM, Moradi SA, Rasoulighasemlouei SS, Parouei F, Hashemi MG. Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Positron Emission Tomography (PET) for Distinguishing Metastatic Lymph Nodes from Nonmetastatic Among Patients with Rectal Cancer: A Systematic Review and Meta-Analysis. World J Nucl Med 2025; 24:3-12. [PMID: 39959143 PMCID: PMC11828646 DOI: 10.1055/s-0044-1788794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
Objective The objective of this research was to assess the proficiency of quantitative dynamic contrast-enhanced magnetic resonance imaging (QDCE-MRI) and positron emission tomography (PET) imaging in distinguishing between metastatic and nonmetastatic lymph nodes in cases of rectal carcinoma. Method This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses standards. Two independent reviewers systematically searched databases including PubMed, Embase, Web of Science, and the Cochrane Library. The research took place in July 2022, with no restriction on the initial date of publication. For the analysis, we utilized Stata software (version 16.0), Review Manager (version 5.3), and the Open Meta-Analyst computational tool. Results A total of 19 studies consisting of 1,451 patients were included in the current meta-analysis. The differences between metastatic and nonmetastatic lymph node parameters were significant by using short axis and Ktrans (6.9 ± 4 vs. 5.4 ± 0.5, 0.22 ± 0.1 vs. 0.14 ± 0.1, respectively). Contrast-enhanced MRI (CE-MRI) showed 73% sensitivity, 71% specificity, and 79% accuracy in detecting metastatic lymph nodes among rectal cancer patients based on six included studies ( n = 530). The overall sensitivity, specificity, and accuracy of QDCE-MRI using Ktrans was calculated to be 80, 79, and 80%, respectively. Furthermore, PET-computed tomography (CT) showed a sensitivity of 80%, specificity of 91%, and accuracy of 86% in distinguishing metastatic lymph nodes. Quality utility analysis showed that using CE-MRI, QDCE-MRI, and PET-CT would increase the posttest probability to 69, 73, and 85%, respectively. Conclusion QDCE-MRI demonstrates a commendable sensitivity and specificity, but slightly overshadowed by the higher specificity of PET-CT at 91%, despite comparable sensitivities. However, the heterogeneity in PET-CT sensitivity across studies and its high specificity indicate variability that can influence clinical decision-making. Thus, combining these imaging techniques and perhaps newer methods like PET/MRI could enhance diagnostic accuracy, reduce variability, and improve patient management strategies in rectal cancer.
Collapse
Affiliation(s)
| | - Sahand Adib Moradi
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Parouei
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
2
|
Ammirati CA, Arezzo A, Gaetani C, Strazzarino GA, Faletti R, Bergamasco L, Barisone F, Fonio P, Morino M. Can we apply the concept of sentinel lymph node in rectal cancer surgery? MINIM INVASIV THER 2024:1-7. [PMID: 39295076 DOI: 10.1080/13645706.2024.2404046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/08/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Colorectal cancer remains one of the most common causes of cancer-related mortality worldwide, and lymph node staging is crucial in the diagnostic and therapeutic process. Sentinel lymph nodes are the first involved in this process, but their validity in colorectal surgery has not yet been established. Following the emergence of new imaging instrumentation, some authors have attempted to propose different techniques for lymph node identification. However, a clear pattern of mesorectal lymph node distribution relative to the primary lesion site has yet to be defined. MATERIAL AND METHODS Our analysis retrospectively reviewed suspicious mesorectal pathological lymph nodes on pre-operative magnetic resonance imaging (MRI) of rectal cancer patients, in order to assess the distribution patterns of possible tumour-related rectal lymph nodes. Mesorectal space was subdivided into quadrants and levels, and morphological features and distances from the lymph node to the primary rectal tumour were recorded. RESULTS Two hundred and fifty-five mesorectal lymph nodes distributed among 60 patients were collected. Results show that in 92.1% of cases, nodes were distributed in the same mesorectal quadrant as the rectal primary tumour, and in 88.5% of cases, they were found at the same level as the rectal primary tumour. CONCLUSIONS Although a clear node distribution pattern was not established, these results may suggest at least a lymphatic drainage preference lane, worthy of further investigation.
Collapse
Affiliation(s)
| | - Alberto Arezzo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Clara Gaetani
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | | | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Laura Bergamasco
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | | | - Paolo Fonio
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Mario Morino
- Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Peng W, Qiao H, Mo L, Guo Y. Progress in the diagnosis of lymph node metastasis in rectal cancer: a review. Front Oncol 2023; 13:1167289. [PMID: 37519802 PMCID: PMC10374255 DOI: 10.3389/fonc.2023.1167289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Historically, the chief focus of lymph node metastasis research has been molecular and clinical studies of a few essential pathways and genes. Recent years have seen a rapid accumulation of massive omics and imaging data catalyzed by the rapid development of advanced technologies. This rapid increase in data has driven improvements in the accuracy of diagnosis of lymph node metastasis, and its analysis further demands new methods and the opportunity to provide novel insights for basic research. In fact, the combination of omics data, imaging data, clinical medicine, and diagnostic methods has led to notable advances in our basic understanding and transformation of lymph node metastases in rectal cancer. Higher levels of integration will require a concerted effort among data scientists and clinicians. Herein, we review the current state and future challenges to advance the diagnosis of lymph node metastases in rectal cancer.
Collapse
Affiliation(s)
- Wei Peng
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huimin Qiao
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Linfeng Mo
- School of Health and Medicine, Guangzhou Huashang Vocational College, Guangzhou, Guangdong, China
| | - You Guo
- Medical Big Data and Bioinformatics Research Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Erber BM, Reidler P, Goller SS, Ricke J, Dürr HR, Klein A, Lindner L, Di Gioia D, Geith T, Baur-Melnyk A, Armbruster M. Impact of Dynamic Contrast Enhanced and Diffusion-Weighted MR Imaging on Detection of Early Local Recurrence of Soft Tissue Sarcoma. J Magn Reson Imaging 2023; 57:622-630. [PMID: 35582900 DOI: 10.1002/jmri.28236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Diagnosis of residual or recurrent tumor in soft-tissue sarcomas (STS) is a differential diagnostic challenge since post-therapeutic changes impede diagnosis. PURPOSE To evaluate the diagnostic accuracy of quantitative dynamic contrast enhanced (DCE)-MRI and diffusion-weighted imaging (DWI) to detect local recurrence of STS of the limb. STUDY TYPE Prospective. POPULATION A totalof 64 consecutive patients with primary STS of the limbs were prospectively included 3-6 months after surgery between January 2016 and July 2021. FIELD STRENGTH/SEQUENCE A 1.5 T; axial DWI echo-planar imaging sequences and DCE-MRI using a 3D T1-weighted spoiled gradient-echo sequence. ASSESSMENT The quantitative DCE-MRI parameters relative plasma flow (rPF) and relative mean transit time (rMTT) were calculated and ADC mapping was used to quantify diffusion restriction. Regions of interest of tumor growth and postoperative changes were drawn in consensus by two experts for diffusion and perfusion analysis. An additional morphological assessment was done by three independent and blinded radiologists. STATISTICAL TEST Unpaired t-test, ROC-analysis, and a logistic regression model were applied. Interobserver reliability was calculated using Fleiss kappa statistics. A P value of 0.05 was considered statistically significant. RESULTS A total of 11 patients turned out to have local recurrence. rPF was significantly higher in cases of local recurrence when compared to cases without local recurrence (61.1-4.5) while rMTT was slightly and significantly lower in local recurrence. ROC-analysis showed an area under the curve (AUC) of 0.95 (SEM ± 0.05) for rPF while a three-factor multivariate logistic regression model showed a high diagnostic accuracy of rPF (R2 = 0.71). Compared with morphological assessment, rPF had a distinct higher specificity and true positive value in detection of LR. DATA CONCLUSION DCE-MRI is a promising additional method to differentiate local recurrence from benign postoperative changes in STS of the limb. Especially specificity in detection of LR is increased compared to morphological assessment. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Bernd M Erber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Paul Reidler
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Sophia S Goller
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Hans R Dürr
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Alexander Klein
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Lars Lindner
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Dorit Di Gioia
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Geith
- Department of Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andrea Baur-Melnyk
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Marco Armbruster
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Giacobbe G, Granata V, Trovato P, Fusco R, Simonetti I, De Muzio F, Cutolo C, Palumbo P, Borgheresi A, Flammia F, Cozzi D, Gabelloni M, Grassi F, Miele V, Barile A, Giovagnoni A, Gandolfo N. Gender Medicine in Clinical Radiology Practice. J Pers Med 2023; 13:jpm13020223. [PMID: 36836457 PMCID: PMC9966684 DOI: 10.3390/jpm13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Gender Medicine is rapidly emerging as a branch of medicine that studies how many diseases common to men and women differ in terms of prevention, clinical manifestations, diagnostic-therapeutic approach, prognosis, and psychological and social impact. Nowadays, the presentation and identification of many pathological conditions pose unique diagnostic challenges. However, women have always been paradoxically underestimated in epidemiological studies, drug trials, as well as clinical trials, so many clinical conditions affecting the female population are often underestimated and/or delayed and may result in inadequate clinical management. Knowing and valuing these differences in healthcare, thus taking into account individual variability, will make it possible to ensure that each individual receives the best care through the personalization of therapies, the guarantee of diagnostic-therapeutic pathways declined according to gender, as well as through the promotion of gender-specific prevention initiatives. This article aims to assess potential gender differences in clinical-radiological practice extracted from the literature and their impact on health and healthcare. Indeed, in this context, radiomics and radiogenomics are rapidly emerging as new frontiers of imaging in precision medicine. The development of clinical practice support tools supported by artificial intelligence allows through quantitative analysis to characterize tissues noninvasively with the ultimate goal of extracting directly from images indications of disease aggressiveness, prognosis, and therapeutic response. The integration of quantitative data with gene expression and patient clinical data, with the help of structured reporting as well, will in the near future give rise to decision support models for clinical practice that will hopefully improve diagnostic accuracy and prognostic power as well as ensure a more advanced level of precision medicine.
Collapse
Affiliation(s)
- Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Piero Trovato
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Correspondence:
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Federica Flammia
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Diletta Cozzi
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Michela Gabelloni
- Department of Translational Research, Diagnostic and Interventional Radiology, University of Pisa, 56126 Pisa, Italy
| | - Francesca Grassi
- Division of Radiology, “Università degli Studi della Campania Luigi Vanvitelli”, 80138 Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
| |
Collapse
|
6
|
Borgheresi A, De Muzio F, Agostini A, Ottaviani L, Bruno A, Granata V, Fusco R, Danti G, Flammia F, Grassi R, Grassi F, Bruno F, Palumbo P, Barile A, Miele V, Giovagnoni A. Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. J Clin Med 2022; 11:2599. [PMID: 35566723 PMCID: PMC9104021 DOI: 10.3390/jcm11092599] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of nodal involvement in patients with rectal cancer (RC) is fundamental in disease management. Magnetic Resonance Imaging (MRI) is routinely used for local and nodal staging of RC by using morphological criteria. The actual dimensional and morphological criteria for nodal assessment present several limitations in terms of sensitivity and specificity. For these reasons, several different techniques, such as Diffusion Weighted Imaging (DWI), Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), and Dynamic Contrast Enhancement (DCE) in MRI have been introduced but still not fully validated. Positron Emission Tomography (PET)/CT plays a pivotal role in the assessment of LNs; more recently PET/MRI has been introduced. The advantages and limitations of these imaging modalities will be provided in this narrative review. The second part of the review includes experimental techniques, such as iron-oxide particles (SPIO), and dual-energy CT (DECT). Radiomics analysis is an active field of research, and the evidence about LNs in RC will be discussed. The review also discusses the different recommendations between the European and North American guidelines for the evaluation of LNs in RC, from anatomical considerations to structured reporting.
Collapse
Affiliation(s)
- Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
| | - Letizia Ottaviani
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Federica Flammia
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Abruzzo Health Unit 1, Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, 67100 L’Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| |
Collapse
|
7
|
Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, Cellina M, Chianca V, Cozzi D, Danti G, De Muzio F, Di Meglio L, Gentili F, Giacobbe G, Grazzini G, Grazzini I, Guerriero P, Messina C, Micci G, Palumbo P, Rocco MP, Grassi R, Miele V, Barile A. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol 2022; 40:341-366. [PMID: 34951000 DOI: 10.1007/s11604-021-01223-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Dynamic contrast-enhanced (DCE) imaging is a non-invasive technique used for the evaluation of tissue vascularity features through imaging series acquisition after contrast medium administration. Over the years, the study technique and protocols have evolved, seeing a growing application of this method across different imaging modalities for the study of almost all body districts. The main and most consolidated current applications concern MRI imaging for the study of tumors, but an increasing number of studies are evaluating the use of this technique also for inflammatory pathologies and functional studies. Furthermore, the recent advent of artificial intelligence techniques is opening up a vast scenario for the analysis of quantitative information deriving from DCE. The purpose of this article is to provide a comprehensive update on the techniques, protocols, and clinical applications - both established and emerging - of DCE in whole-body imaging.
Collapse
Affiliation(s)
- Domenico Albano
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Andrea Agostini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Clinical, Special and Dental Sciences, Department of Radiology, University Politecnica delle Marche, University Hospital "Ospedali Riuniti Umberto I - G.M. Lancisi - G. Salesi", Ancona, Italy
| | - Salvatore Alessio Angileri
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Benenati
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Oncologia ed Ematologia, RadioterapiaRome, Italy
| | - Giulia Bicchierai
- Diagnostic Senology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Michaela Cellina
- Department of Radiology, ASST Fatebenefratelli Sacco, Ospedale Fatebenefratelli, Milan, Italy
| | - Vito Chianca
- Ospedale Evangelico Betania, Naples, Italy
- Clinica Di Radiologia, Istituto Imaging Della Svizzera Italiana - Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Letizia Di Meglio
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Francesco Gentili
- Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giuliana Giacobbe
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Pasquale Guerriero
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | - Giuseppe Micci
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Abruzzo Health Unit 1, Department of diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, L'Aquila, Italy
| | - Maria Paola Rocco
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
8
|
Chen Y, Li B, Jiang Z, Li H, Dang Y, Tang C, Xia Y, Zhang H, Song B, Long L. Multi-parameter diffusion and perfusion magnetic resonance imaging and radiomics nomogram for preoperative evaluation of aquaporin-1 expression in rectal cancer. Abdom Radiol (NY) 2022; 47:1276-1290. [PMID: 35166938 DOI: 10.1007/s00261-021-03397-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE The overexpression of aquaporin-1 (AQP1) is associated with poor prognosis in rectal cancer. This study aimed to explore the value of multi-parameter diffusion and perfusion MRI and radiomics models in predicting AQP1 high expression. METHODS This prospective study was performed from July 2019 to February 2021, which included rectal cancer participants after preoperative rectal MRI, with diffusion-weighted imaging, intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and dynamic contrast-enhanced (DCE) sequences. Radiomic features were extracted from MR images, and immunohistochemical tests assessed AQP1 expression. Selected quantitative MRI and radiomic features were analyzed. Receiver operating characteristic (ROC) curves evaluated the predictive performance. The nomogram performance was evaluated by its calibration, discrimen, and clinical utility. The intraclass correlation coefficient evaluated the interobserver agreement for the MRI features. RESULTS 110 participants with the age of 60.7 ± 12.5 years been enrolled in this study. The apparent diffusion coefficient (ADC), IVIM_D, DKI_diffusivity, and DCE_Ktrans were significantly higher in participants with high AQP1 expression than in those with low expression (P < 0.05). ADC (b = 1000, 2000, and 3000 s/mm2), IVIM_D, DKI_diffusivity, and DCE_Ktrans were positively correlated (r = 0.205, 0.275, 0.37, 0.235, 0.229, and 0.227, respectively; P < 0.05), whereas DKI_Kurtosis was negatively correlated (r = - 0.22, P = 0.021) with AQP1 expression. ADC (b = 3000 s/mm2), IVIM_D, DKI_ diffusivity, DKI_Kurtosis, and DCE_Ktrans had moderate diagnostic efficiencies for high AQP1 expression (AUC = 0.715, 0.636, 0.627, 0.633, and 0.632, respectively; P < 0.05). The radiomic features had excellent predictive efficiency for high AQP1 expression (AUC = 0.967 and 0.917 for training and validation). The model-based nomogram had C-indexes of 0.932 and 0.851 for the training and validation cohorts, which indicated good fitting to the calibration curves (p > 0.05). CONCLUSION Diffusion and perfusion MRI can indicate the aquaporin-1 expression in rectal cancer, and radiomic features can enhance the predictive efficiency for high AQP1 expression. A nomogram for high aquaporin-1 expression will improve clinical decision-making.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Basen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zijian Jiang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hui Li
- Department of Anus and Intestine Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Cheng Tang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuwei Xia
- Huiying Medical Technology, Beijing, 100192, China
| | | | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liling Long
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Gaungxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
9
|
Chen Y, Jiang Z, Guan X, Li H, Li C, Tang C, Lei Y, Dang Y, Song B, Long L. The value of multi-parameter diffusion and perfusion magnetic resonance imaging for evaluating epithelial-mesenchymal transition in rectal cancer. Eur J Radiol 2022; 150:110245. [DOI: 10.1016/j.ejrad.2022.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
|
10
|
Zhuang Z, Zhang Y, Wei M, Yang X, Wang Z. Magnetic Resonance Imaging Evaluation of the Accuracy of Various Lymph Node Staging Criteria in Rectal Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:709070. [PMID: 34327144 PMCID: PMC8315047 DOI: 10.3389/fonc.2021.709070] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Background Magnetic resonance imaging (MRI)-based lymph node staging remains a significant challenge in the treatment of rectal cancer. Pretreatment evaluation of lymph node metastasis guides the formulation of treatment plans. This systematic review aimed to evaluate the diagnostic performance of MRI in lymph node staging using various morphological criteria. Methods A systematic search of the EMBASE, Medline, and Cochrane databases was performed. Original articles published between 2000 and January 2021 that used MRI for lymph node staging in rectal cancer were eligible. The included studies were assessed using the QUADAS-2 tool. A bivariate random-effects model was used to conduct a meta-analysis of diagnostic test accuracy. Results Thirty-seven studies were eligible for this meta-analysis. The pooled sensitivity, specificity, and diagnostic odds ratio of preoperative MRI for the lymph node stage were 0.73 (95% confidence interval [CI], 0.68–0.77), 0.74 (95% CI, 0.68–0.80), and 7.85 (95% CI, 5.78–10.66), respectively. Criteria for positive mesorectal lymph node metastasis included (A) a short-axis diameter of 5 mm, (B) morphological standard, including an irregular border and mixed-signal intensity within the lymph node, (C) a short-axis diameter of 5 mm with the morphological standard, (D) a short-axis diameter of 8 mm with the morphological standard, and (E) a short-axis diameter of 10 mm with the morphological standard. The pooled sensitivity/specificity for these criteria were 75%/64%, 81%/67%, 74%/79%, 72%/66%, and 62%/91%, respectively. There was no significant difference among the criteria in sensitivity/specificity. The area under the receiver operating characteristic (ROC) curve values of the fitted summary ROC indicated a diagnostic accuracy rate of 0.75–0.81. Conclusion MRI scans have minimal accuracy as a reference index for pretreatment staging of various lymph node staging criteria in rectal cancer. Multiple types of evidence should be used in clinical decision-making.
Collapse
Affiliation(s)
- Zixuan Zhuang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuyang Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Liu Y, Zhang FJ, Zhao XX, Yang Y, Liang CY, Feng LL, Wan XB, Ding Y, Zhang YW. Development of a Joint Prediction Model Based on Both the Radiomics and Clinical Factors for Predicting the Tumor Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. Cancer Manag Res 2021; 13:3235-3246. [PMID: 33880066 PMCID: PMC8053518 DOI: 10.2147/cmar.s295317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/18/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Neoadjuvant chemoradiotherapy (nCRT) has become the standard treatment for locally advanced rectal cancer (LARC). However, the accuracy of traditional clinical indicators in predicting tumor response is poor. Recently, radiomics based on magnetic resonance imaging (MRI) has been regarded as a promising noninvasive assessment method. The present study was conducted to develop a model to predict the pathological response by analyzing the quantitative features of MRI and clinical risk factors, which might predict the therapeutic effects in patients with LARC as accurately as possible before treatment. Patients and Methods A total of 82 patients with LARC were enrolled as the training cohort and internal validation cohort. The pre-CRT MRI after pretreatment was acquired to extract texture features, which was finally selected through the minimum redundancy maximum relevance (mRMR) algorithm. A support vector machine (SVM) was used as a classifier to classify different tumor responses. A joint radiomics model combined with clinical risk factors was then developed and evaluated by receiver operating characteristic (ROC) curves. External validation was performed with 107 patients from another center to evaluate the applicability of the model. Results Twenty top image texture features were extracted from 6192 extracted-radiomic features. The radiomics model based on high-spatial-resolution T2-weighted imaging (HR-T2WI) and contrast-enhanced T1-weighted imaging (T1+C) demonstrated an area under the curve (AUC) of 0.8910 (0.8114–0.9706) and 0.8938 (0.8084–0.9792), respectively. The AUC value rose to 0.9371 (0.8751–0.9997) and 0.9113 (0.8449–0.9776), respectively, when the circumferential resection margin (CRM) and carbohydrate antigen 19-9 (CA19-9) levels were incorporated. Clinical usefulness was confirmed in an external validation cohort as well (AUC, 0.6413 and 0.6818). Conclusion Our study indicated that the joint radiomics prediction model combined with clinical risk factors showed good predictive ability regarding the treatment response of tumors as accurately as possible before treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng-Jiao Zhang
- Shanghai Concord Medical Cancer Center, Shanghai, 200001, People's Republic of China
| | - Xi-Xi Zhao
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yuan Yang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Chun-Yi Liang
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Li-Li Feng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Xiang-Bo Wan
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yao-Wei Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| |
Collapse
|
12
|
Vieujean S, Coibion C, Seidel L, Louis E, Meunier P. Magnetic resonance enterography perfusion parameters reveal complex changes in affected and unaffected segments in Crohn's disease. Scand J Gastroenterol 2020; 55:1041-1048. [PMID: 32757858 DOI: 10.1080/00365521.2020.1802773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To compare dynamic contrast-enhanced (DCE)-MRI parameters in affected and unaffected segments of CD patients with those of a control group, and to assess the correlation between DCE-MRI parameters and clinical index of activity (HBI) as well as biomarkers (CRP and faecal calprotectin). METHODS We performed a single-center prospective study of CD patients and control subjects who underwent DCE-MRI. Regions of interest were drawn in segments and the program (Olea Medical - Canon) provided values for transfer constant (Ktrans), fractional volume of extravascular-extracellular space (Ve), slope of enhancement (SoE), time to maximum enhancement (TME), maximum enhancement (ME) and enhancement ratio (ER) which were determined and compared. RESULTS Fifteen CD patients (mean age 42 years; 10 women) and 7 healthy subjects (mean age 40.4 years; 6 women) were included. Paired comparisons of affected and unaffected segments in CD showed a significant increase of all parameters in affected segments, except for ER and TME. When comparing to controls, the affected segments did not show any significant difference, while a significant decrease in most of the parameters (except for ER and TME) was observed when comparing unaffected segments of CD patients to controls. In CD, significant correlations between DCE-MRI parameters and biomarkers (CRP, faecal calprotectin) were more frequent in unaffected segments than in affected segments. CONCLUSIONS Significant differences in perfusion parameters were observed between affected and unaffected segments of CD patients and between unaffected segments and those of control subjects. This suggests complex perfusion changes in both unaffected and affected intestinal segments in CD.
Collapse
Affiliation(s)
- Sophie Vieujean
- Department of Gastroenterology, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - Caroline Coibion
- Department of Radiology, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - Laurence Seidel
- Biostatistics and medico-economic information department, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - Edouard Louis
- Department of Gastroenterology, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - Paul Meunier
- Department of Radiology, CHU Sart-Tilman, University of Liège, Liege, Belgium
| |
Collapse
|
13
|
Clinical Relevance and Practical Approach for Challenging Rectal Cancer MRI Findings. CURRENT RADIOLOGY REPORTS 2020. [DOI: 10.1007/s40134-020-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Abstract
In recent years, rectal MRI has become a central diagnostic tool in rectal cancer staging. Indeed, rectal MR has the ability to accurately evaluate a number of important findings that may impact patient management, including distance of the tumor to the mesorectal fascia, presence of extramural vascular invasion (EMVI), presence of lymph nodes, and involvement of the peritoneum/anterior peritoneal reflection. Many of these findings are difficult to assess in nonexpert hands. In this review, we present a practical approach for radiologists to provide high-quality interpretations at initial baseline exams, based on recent guidelines from the Society of Abdominal Radiology, Rectal and Anal Cancer Disease Focused Panel. Practical pearls and pitfalls are discussed, focusing on optimization of technique including, patient preparation and protocol recommendations, interpretation, and essentials of reporting.
Collapse
|
15
|
Mainenti PP, Stanzione A, Guarino S, Romeo V, Ugga L, Romano F, Storto G, Maurea S, Brunetti A. Colorectal cancer: Parametric evaluation of morphological, functional and molecular tomographic imaging. World J Gastroenterol 2019; 25:5233-5256. [PMID: 31558870 PMCID: PMC6761241 DOI: 10.3748/wjg.v25.i35.5233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the leading causes of tumor-related deaths worldwide. Among the various tools at physicians' disposal for the diagnostic management of the disease, tomographic imaging (e.g., CT, MRI, and hybrid PET imaging) is considered essential. The qualitative and subjective evaluation of tomographic images is the main approach used to obtain valuable clinical information, although this strategy suffers from both intrinsic and operator-dependent limitations. More recently, advanced imaging techniques have been developed with the aim of overcoming these issues. Such techniques, such as diffusion-weighted MRI and perfusion imaging, were designed for the "in vivo" evaluation of specific biological tissue features in order to describe them in terms of quantitative parameters, which could answer questions difficult to address with conventional imaging alone (e.g., questions related to tissue characterization and prognosis). Furthermore, it has been observed that a large amount of numerical and statistical information is buried inside tomographic images, resulting in their invisibility during conventional assessment. This information can be extracted and represented in terms of quantitative parameters through different processes (e.g., texture analysis). Numerous researchers have focused their work on the significance of these quantitative imaging parameters for the management of CRC patients. In this review, we aimed to focus on evidence reported in the academic literature regarding the application of parametric imaging to the diagnosis, staging and prognosis of CRC while discussing future perspectives and present limitations. While the transition from purely anatomical to quantitative tomographic imaging appears achievable for CRC diagnostics, some essential milestones, such as scanning and analysis standardization and the definition of robust cut-off values, must be achieved before quantitative tomographic imaging can be incorporated into daily clinical practice.
Collapse
Affiliation(s)
- Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging of the National Council of Research (CNR), Naples 80145, Italy
| | - Arnaldo Stanzione
- University of Naples "Federico II", Department of Advanced Biomedical Sciences, Naples 80131, Italy
| | - Salvatore Guarino
- University of Naples "Federico II", Department of Advanced Biomedical Sciences, Naples 80131, Italy
| | - Valeria Romeo
- University of Naples "Federico II", Department of Advanced Biomedical Sciences, Naples 80131, Italy
| | - Lorenzo Ugga
- University of Naples "Federico II", Department of Advanced Biomedical Sciences, Naples 80131, Italy
| | - Federica Romano
- University of Naples "Federico II", Department of Advanced Biomedical Sciences, Naples 80131, Italy
| | - Giovanni Storto
- IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture 85028, Italy
| | - Simone Maurea
- University of Naples "Federico II", Department of Advanced Biomedical Sciences, Naples 80131, Italy
| | - Arturo Brunetti
- University of Naples "Federico II", Department of Advanced Biomedical Sciences, Naples 80131, Italy
| |
Collapse
|
16
|
Rectal cancer: can T2WI histogram of the primary tumor help predict the existence of lymph node metastasis? Eur Radiol 2019; 29:6469-6476. [PMID: 31278581 DOI: 10.1007/s00330-019-06328-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To explore if there is a correlation between T2WI histogram features of the primary tumor and the existence of regional lymph node (LN) metastasis in rectal cancer. METHODS Eighty-eight patients with pathologically proven rectal adenocarcinoma, who received direct surgical resection and underwent preoperative rectal MRIs, were enrolled retrospectively. Based on pathological analysis of surgical specimen, patients were classified into negative LN (LN-) and positive LN (LN+) groups. The degree of differentiation and pathological T stage were recorded. Clinical T stage, tumor location, and maximum diameter of tumor were evaluated of each patient. Whole-tumor texture analysis was independently performed by two radiologists on axial T2WI, including skewness, kurtosis, energy, and entropy. RESULTS The interobserver agreement was overall good for texture analysis between two radiologists, with intraclass correlation coefficients (ICCs) ranging from 0.626 to 0.826. The LN- group had a significantly higher skewness (p < 0.001), kurtosis (p < 0.001), and energy (p = 0.004) than the LN+ group, and a lower entropy (p = 0.028). These four parameters showed moderate to good diagnostic power in predicting LN metastasis with respective AUC of 0.750, 0.733, 0.669, and 0.648. In addition, they were both correlated with LN metastasis (rs = - 0.413, - 0.385, - 0.28, and 0.245, respectively). The multivariate analysis showed that lower skewness was an independent risk factor of LN metastasis (odds ratio, OR = 9.832; 95%CI, 1.171-56.295; p = 0.01). CONCLUSIONS Signal intensity histogram parameters of primary tumor on T2WI were associated with regional LN status in rectal cancer, which may help improve the prediction of nodal stage. KEY POINTS • Histogram parameters of tumor on T2WI may help to reduce uncertainty when assessing LN status in rectal cancer. • Histogram parameters of tumor on T2WI showed a significant difference between different regional LN status groups in rectal cancer. • Skewness was an independent risk factor of regional LN metastasis in rectal cancer.
Collapse
|
17
|
[Assessment of individualized treatment of rectal carcinoma]. Chirurg 2019; 90:279-286. [PMID: 30767062 DOI: 10.1007/s00104-019-0807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Individualized and tailored treatment plays a crucial role in the rating of special operation techniques or certain treatment strategies following defined quality criteria and indicators. Deviations from clearly defined recommendations in guidelines must therefore be justified, documented and evaluated as precisely as possible. The aim of this leading article is to examine the individualized treatment of rectal cancer based on existing evidence and to discuss its role in the light of routinely used treatment algorithms. In addition to a web-based literature search the current German national S3 guidelines on colorectal cancer were also included. In the treatment of cancer in the middle and lower third of the rectum, individual, patient and tumor-related parameters are of decisive importance from the pretreatment stage to the actual surgery up to aftercare and adjuvant therapy to enable interdisciplinary decision making for optimal treatment.
Collapse
|