1
|
Zhu L, He L, Duan W, Yang B, Li N. Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy. World J Stem Cells 2024; 16:728-738. [PMID: 38948093 PMCID: PMC11212546 DOI: 10.4252/wjsc.v16.i6.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear.
AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice.
METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.
RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.
CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Lu He
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong Province, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Ning Li
- Department of Physical Education, Heze University, Heze 274015, Shandong Province, China
| |
Collapse
|
2
|
Zhu L, He L, Duan W, Yang B, Li N. Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy. World J Stem Cells 2024; 16:727-737. [DOI: 10.4252/wjsc.v16.i6.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear.
AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice.
METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.
RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.
CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Lu He
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong Province, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Ning Li
- Department of Physical Education, Heze University, Heze 274015, Shandong Province, China
| |
Collapse
|
3
|
Chang YF, Li JJ, Liu T, Wei CQ, Ma LW, Nikolenko VN, Chang WL. Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases. World J Gastroenterol 2024; 30:1524-1532. [PMID: 38617452 PMCID: PMC11008416 DOI: 10.3748/wjg.v30.i11.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes. Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation. A large number of studies have shown that autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal (GI) cells. However, the role of autophagy in GI diseases remains controversial. This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases, in order to provide new ideas for their diagnosis and treatment.
Collapse
Affiliation(s)
- Yi-Fan Chang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jia-Jing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Tao Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chong-Qing Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Li-Wei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Wei-Long Chang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
4
|
Ge L, Liu D, Mao X, Liu S, Guo J, Hou L, Chen X, Huang K. Low Dose of Deoxynivalenol Aggravates Intestinal Inflammation and Barrier Dysfunction Induced by Enterotoxigenic Escherichia coli Infection through Activating Macroautophagy/NLRP3 Inflammasomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3009-3022. [PMID: 35201764 DOI: 10.1021/acs.jafc.1c07834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The toxicity of deoxynivalenol (DON) in healthy humans and animals has been extensively studied. However, whether the natural-low-dose DON is scatheless under unhealthy conditions, especially intestinal injury, is unknown. Infection of enterotoxigenic Escherichia coli (ETEC) is a classical intestinal injury model. In this study, we explored the effects of low-dose DON on intestinal injury induced by the ETEC infection and the underlying mechanism in piglets, mice, and IPEC-J2 monolayer cells. Results showed that significant growth slowdown, severe diarrhea, and intestinal damage, bacterial multiplication, and translocation were observed in the experimental group (low-dose DON, 0.75 mg/kg in feed for piglets, and 1 mg/kg body weight for mice, combined with the ETEC infection). Meanwhile, more aggressive intestinal inflammation and barrier dysfunction were observed in animals and IPEC-J2 monolayer cells. Higher expression levels of NLRP3 inflammasome and LC3B were observed in jejunum and IPEC-J2 in the experimental group. After treatment with NLRP3 or caspase1 inhibitors, excessive intestinal inflammation rather than barrier dysfunction in the experimental group was limited. CRISPR-Cas9-mediated knockout of LC3B alleviated intestinal inflammation and barrier dysfunction and also inhibited NLRP3 inflammasome. In conclusion, a low dose of DON aggravates intestinal inflammation and barrier dysfunction induced by the ETEC infection by activating macroautophagy and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Junyan Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
5
|
Postconditioning of stellate ganglion block improves intestinal barrier function by inhibiting autophagy in conscious rats following hemorrhagic shock and resuscitation. Chin Med J (Engl) 2022; 135:1003-1005. [PMID: 35170508 PMCID: PMC9276186 DOI: 10.1097/cm9.0000000000001968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
6
|
Wang M, Guo S, Zhang Y, Zhang Y, Zhang H. Remifentanil attenuates sepsis-induced intestinal injury by inducing autophagy. Bioengineered 2021; 12:9575-9584. [PMID: 34709123 PMCID: PMC8809909 DOI: 10.1080/21655979.2021.1997562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Remifentanil (RFT), extensively used for general anesthesia, is a synthetic ultra-short-acting opioid used as an anti-inflammatory oxidant to alleviate a plethora of diseases. This study was designed to determine whether RFT would provide protective effects on sepsis-induced intestinal injury.The determination of cell viability and inflammation of LPS-treated IEC-6 cells influenced by RFT was conducted by Cell counting Kit-8 (CCK-8), RT-qPCR, and western blot, while the detection of LDH, diamine oxidase (DAO), and intestinal-type fatty acid binding proteins (I-FABP) was conducted for determining the intestinal cytotoxicity in these cells. The apoptosis of these cells was detected by TUNEL, with autophagy-related protein expression measured by western blot to confirm whether autophagy was activated. Finally, the aforementioned assays were conducted again after 3-Methyladenine (3-MA), an autophagy inhibitor, was used on these cells to investigate whether RFT exerted its effects on LPS-treated IEC-6 cells via modulation of autophagy.RFT alleviates LPS-induced IEC-6 cell inflammation, cytotoxicity and apoptosis, and autophagy-related proteins were expressed at higher levels when RFT was used on these cells. Nevertheless, further treatment of 3-MA weakened the restorative impacts of RFT on the inflammation, cytotoxicity and apoptosis of these cells.To conclude, this paper is the first to present evidence that RFT attenuates sepsis-induced intestinal injury by inducing autophagy, which will provide instructions for the future investigations into the use of RFT in treatment of intestinal injury.
Collapse
Affiliation(s)
- Mingli Wang
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Shiqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Yu Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Yao Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| |
Collapse
|
7
|
Ge L, Lin Z, Le G, Hou L, Mao X, Liu S, Liu D, Gan F, Huang K. Nontoxic-dose deoxynivalenol aggravates lipopolysaccharides-induced inflammation and tight junction disorder in IPEC-J2 cells through activation of NF-κB and LC3B. Food Chem Toxicol 2020; 145:111712. [PMID: 32877744 PMCID: PMC7456579 DOI: 10.1016/j.fct.2020.111712] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharide (LPS) is the key factor in various intestinal inflammation which could disrupt the epithelial barrier function. Deoxynivalenol (DON), a well-known mycotoxin, can induce intestinal injury. However, the combined enterotoxicity of LPS and DON has rarely been studied. In this study, IPEC-J2 cell monolayers were exposed to LPS and nontoxic-dose DON for 12 and 24 h to investigate the effects of DON on LPS-induced inflammatory response and tight junction variation, and specific inhibitor and CRISPR-Cas9 were used to explore the underlying mechanisms. Our results showed that nontoxic-dose DON aggravated LPS-induced cellular inflammatory response, reflecting on more significant changes of inflammatory cytokines mRNA expression, higher protein expression of NOD-like receptor protein 3 (NLRP3) and procaspase-1. Moreover, nontoxic-dose DON aggravated LPS-induced mRNA and protein expression decreased, and distribution confused of tight junction proteins. We found that DON further enhanced LPS-induced phosphorylation and nucleus translocation of p65, and expression of LC3B-Ⅱ. NF-κB inhibitor and CRISPR-Cas9-mediated knockout of LC3B attenuated the effects of combination which indicated nontoxic-dose DON aggravated LPS-induced intestinal inflammation and tight junction disorder through activating NF-κB signaling pathway and autophagy-related protein LC3B. It further warns that ingesting low doses of mycotoxins may exacerbate the effects of intestinal pathogens on the body.
Nontoxic-dose DON aggravates LPS-induced cellular inflammatory response in IPEC-J2 cell monolayers. Nontoxic-dose DON aggravates LPS-induced decrease and distribution disorder of tight junction in IPEC-J2 cell monolayers. Nontoxic-dose DON aggravates LPS-induced inflammatory response and tight junction disorder by activating NF-κB and LC3B.
Collapse
Affiliation(s)
- Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
8
|
Li Y, Luo Y, Li B, Niu L, Liu J, Duan X. miRNA-182/Deptor/mTOR axis regulates autophagy to reduce intestinal ischaemia/reperfusion injury. J Cell Mol Med 2020; 24:7873-7883. [PMID: 32510855 PMCID: PMC7348187 DOI: 10.1111/jcmm.15420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
It had been reported miR‐182 was down‐regulated after intestinal ischaemia/reperfusion (I/R) damage. However, its role and potential mechanisms are still unknown. This study was aimed to elucidate the function of miR‐182 in intestinal I/R injury and the underlying mechanisms. The model of intestinal injury was constructed in wild‐type and Deptor knockout (KO) mice. Haematoxylin‐eosin staining, Chiu's score and diamine oxidase were utilized to detect intestinal damage. RT‐qPCR assay was used to detected miR‐182 expression. Electronic microscopy was used to detect autophagosome. Western blot was applied to detect the expression of Deptor, S6/pS6, LC3‐II/LC3‐I and p62. Dual‐luciferase reporter assay was used to verify the relationship between miR‐182 and Deptor. The results showed miR‐182 was down‐regulated following intestinal I/R. Up‐regulation of miR‐182 reduced intestinal damage, autophagy, Deptor expression and enhanced mTOR activity following intestinal I/R. Moreover, suppression of autophagy reduced intestinal damage and inhibition of mTOR by rapamycin aggravated intestinal damage following intestinal I/R. Besides, damage of intestine was reduced and mTOR activity was enhanced in Deptor KO mice. In addition, Deptor was the target gene of miR‐182 and was indispensable for the protection of miR‐182 on intestine under I/R condition. Together, our research implicated up‐regulation of miR‐182 inhibited autophagy to alleviate intestinal I/R injury via mTOR by targeting Deptor.
Collapse
Affiliation(s)
- Yunsheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Luo
- Department of Anesthesiology, Zhongshan Ophthalmic Center of Sun Yat-sen University, Guangzhou, China
| | - Baochuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijun Niu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Duan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Beyond Heat Stress: Intestinal Integrity Disruption and Mechanism-Based Intervention Strategies. Nutrients 2020; 12:nu12030734. [PMID: 32168808 PMCID: PMC7146479 DOI: 10.3390/nu12030734] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
The current climate changes have increased the prevalence and intensity of heat stress (HS) conditions. One of the initial consequences of HS is the impairment of the intestinal epithelial barrier integrity due to hyperthermia and hypoxia following blood repartition, which often results in a leaky gut followed by penetration and transfer of luminal antigens, endotoxins, and pathogenic bacteria. Under extreme conditions, HS may culminate in the onset of “heat stroke”, a potential lethal condition if remaining untreated. HS-induced alterations of the gastrointestinal epithelium, which is associated with a leaky gut, are due to cellular oxidative stress, disruption of intestinal integrity, and increased production of pro-inflammatory cytokines. This review summarizes the possible resilience mechanisms based on in vitro and in vivo data and the potential interventions with a group of nutritional supplements, which may increase the resilience to HS-induced intestinal integrity disruption and maintain intestinal homeostasis.
Collapse
|