1
|
Agarwal N, Fan A, Huang X, Dehkharghani S, van der Kolk A. ISMRM Clinical Focus Meeting 2023: "Imaging the Fire in the Brain". J Magn Reson Imaging 2025; 61:1580-1596. [PMID: 39193867 PMCID: PMC11896938 DOI: 10.1002/jmri.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
Set during the Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), the "Clinical Focus Meeting" (CFM) aims to bridge the gap between innovative magnetic resonance imaging (MRI) scientific research and daily patient care. This initiative is dedicated to maximizing the impact of MRI technology on healthcare outcomes for patients. At the 2023 Annual Meeting, clinicians and scientists from across the globe were invited to discuss neuroinflammation from various angles (entitled "Imaging the Fire in the Brain"). Topics ranged from fundamental mechanisms and biomarkers of neuroinflammation to the role of different contrast mechanisms, including both proton and non-proton techniques, in brain tumors, autoimmune disorders, and pediatric neuroinflammatory diseases. Discussions also delved into how systemic inflammation can trigger neuroinflammation and the role of the gut-brain axis in causing brain inflammation. Neuroinflammation arises from various external and internal factors and serves as a vital mechanism to mitigate tissue damage and provide neuroprotection. Nonetheless, excessive neuroinflammatory responses can lead to significant tissue injury and subsequent neurological impairments. Prolonged neuroinflammation can result in cellular apoptosis and neurodegeneration, posing severe consequences. MRI can be used to visualize these consequences, by detecting blood-brain barrier damage, characterizing brain lesions, quantifying edema, and identifying specific metabolites. It also facilitates monitoring of chronic changes in both the brain and spinal cord over time, potentially leading to better patient outcomes. This paper represents a summary of the 2023 CFM, and is intended to guide the enthusiastic MR user to several key and novel sequences that MRI offers to image pathophysiologic processes underlying acute and chronic neuroinflammation. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology UnitIRCCS Scientific Institute E. MedeaBosisio PariniLeccoItaly
| | - Audrey Fan
- Department of NeurologyUniversity of California Davis HealthSacramentoCaliforniaUSA
- Department of Biomedical EngineeringUniversity of California DavisDavisCaliforniaUSA
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Seena Dehkharghani
- Department of RadiologyAlbert Einstein College of Medicine‐Montefiore HealthNew YorkNew YorkUSA
| | | |
Collapse
|
2
|
Wang M, Liu Y, Zhong L, Wu F, Wang J. Advancements in the investigation of gut microbiota-based strategies for stroke prevention and treatment. Front Immunol 2025; 16:1533343. [PMID: 40103814 PMCID: PMC11914130 DOI: 10.3389/fimmu.2025.1533343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Stroke represents a predominant cause of mortality and disability on a global scale, impacting millions annually and exerting a considerable strain on healthcare systems. The incidence of stroke exhibits regional variability, with ischemic stroke accounting for the majority of occurrences. Post-stroke complications, such as cognitive impairment, motor dysfunction, and recurrent stroke, profoundly affect patients' quality of life. Recent advancements have elucidated the microbiota-gut-brain axis (MGBA), underscoring the complex interplay between gut health and brain function. Dysbiosis, characterized by an imbalance in gut microbiota, is significantly linked to an elevated risk of stroke and unfavorable outcomes. The MGBA plays a crucial role in modulating immune function, neurotransmitter levels, and metabolic byproducts, which may intensify neuroinflammation and impair cerebral health. This review elucidates the role of MGBA in stroke pathophysiology and explores potential gut-targeted therapeutic strategies to reduce stroke risk and promote recovery, including probiotics, prebiotics, pharmacological interventions, and dietary modifications. However, the current prevention and treatment strategies based on intestinal flora still face many problems, such as the large difference of individual intestinal flora, the stability of efficacy, and the long-term safety need to be considered. Further research needs to be strengthened to promote its better application in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Jinjin Wang
- Department of Gastroenterology, The First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Wei J, Liu C, Qin D, Ren F, Duan J, Chen T, Wu A. Targeting inflammation and gut microbiota with antibacterial therapy: Implications for central nervous system health. Ageing Res Rev 2024; 102:102544. [PMID: 39419400 DOI: 10.1016/j.arr.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Jing Wei
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China; School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Chunmeng Liu
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Ting Chen
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Zhang S, Cai H, Wang C, Zhu J, Yu Y. Sex-dependent gut microbiota-brain-cognition associations: a multimodal MRI study. BMC Neurol 2023; 23:169. [PMID: 37106317 PMCID: PMC10134644 DOI: 10.1186/s12883-023-03217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND There is bidirectional communication between the gut microbiota and the brain. Empirical evidence has demonstrated sex differences in both the gut microbiome and the brain. However, the effects of sex on the gut microbiota-brain associations have yet to be determined. We aim to elucidate the sex-specific effects of gut microbiota on brain and cognition. METHODS One hundred fifty-seven healthy young adults underwent brain structural, perfusion, functional and diffusion MRIs to measure gray matter volume (GMV), cerebral blood flow (CBF), functional connectivity strength (FCS) and white matter integrity, respectively. Fecal samples were collected and 16S amplicon sequencing was utilized to assess gut microbial diversity. Correlation analyses were conducted to test for sex-dependent associations between microbial diversity and brain imaging parameters, and mediation analysis was performed to further characterize the gut microbiota-brain-cognition relationship. RESULTS We found that higher gut microbial diversity was associated with higher GMV in the right cerebellum VI, higher CBF in the bilateral calcarine sulcus yet lower CBF in the left superior frontal gyrus, higher FCS in the bilateral paracentral lobule, and lower diffusivity in widespread white matter regions in males. However, these associations were absent in females. Of more importance, these neuroimaging biomarkers significantly mediated the association between gut microbial diversity and behavioral inhibition in males. CONCLUSIONS These findings highlight sex as a potential influential factor underlying the gut microbiota-brain-cognition relationship, and expose the gut microbiota as a biomarker-driven and sex-sensitive intervention target for mental disorders with abnormal behavioral inhibition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, 272007, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
5
|
Zhan Y, Al-Nusaif M, Ding C, Zhao L, Dong C. The potential of the gut microbiome for identifying Alzheimer's disease diagnostic biomarkers and future therapies. Front Neurosci 2023; 17:1130730. [PMID: 37179559 PMCID: PMC10174259 DOI: 10.3389/fnins.2023.1130730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Being isolated from the peripheral system by the blood-brain barrier, the brain has long been considered a completely impervious tissue. However, recent findings show that the gut microbiome (GM) influences gastrointestinal and brain disorders such as Alzheimer's disease (AD). Despite several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid plaques, neurofibrillary tangles, and oxidative stress, being proposed to explain the origin and progression of AD, the pathogenesis remains incompletely understood. Epigenetic, molecular, and pathological studies suggest that GM influences AD development and have endeavored to find predictive, sensitive, non-invasive, and accurate biomarkers for early disease diagnosis and monitoring of progression. Given the growing interest in the involvement of GM in AD, current research endeavors to identify prospective gut biomarkers for both preclinical and clinical diagnoses, as well as targeted therapy techniques. Here, we discuss the most recent findings on gut changes in AD, microbiome-based biomarkers, prospective clinical diagnostic uses, and targeted therapy approaches. Furthermore, we addressed herbal components, which could provide a new venue for AD diagnostic and therapy research.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratories for Research on the Pathogenic Mechanism of Neurological Disease, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cong Ding
- The Center for Gerontology and Geriatrics, Dalian Friendship Hospital, Dalian, China
| | - Li Zhao
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Li Zhao,
| | - Chunbo Dong
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Chunbo Dong,
| |
Collapse
|
6
|
Chen Z, Feng Y, Li S, Hua K, Fu S, Chen F, Chen H, Pan L, Wu C, Jiang G. Altered functional connectivity strength in chronic insomnia associated with gut microbiota composition and sleep efficiency. Front Psychiatry 2022; 13:1050403. [PMID: 36483137 PMCID: PMC9722753 DOI: 10.3389/fpsyt.2022.1050403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND There is limited evidence on the link between gut microbiota (GM) and resting-state brain activity in patients with chronic insomnia (CI). This study aimed to explore the alterations in brain functional connectivity strength (FCS) in CI and the potential associations among altered FCS, GM composition, and neuropsychological performance indicators. MATERIALS AND METHODS Thirty CI patients and 34 age- and gender-matched healthy controls (HCs) were recruited. Each participant underwent resting-state functional magnetic resonance imaging (rs-fMRI) for the evaluation of brain FCS and was administered sleep-, mood-, and cognitive-related questionnaires for the evaluation of neuropsychological performance. Stool samples of CI patients were collected and subjected to 16S rDNA amplicon sequencing to assess the relative abundance (RA) of GM. Redundancy analysis or canonical correspondence analysis (RDA or CCA, respectively) was used to investigate the relationships between GM composition and neuropsychological performance indicators. Spearman correlation was further performed to analyze the associations among alterations in FCS, GM composition, and neuropsychological performance indicators. RESULTS The CI group showed a reduction in FCS in the left superior parietal gyrus (SPG) compared to the HC group. The correlation analysis showed that the FCS in the left SPG was correlated with sleep efficiency and some specific bacterial genera. The results of CCA and RDA showed that 38.21% (RDA) and 24.62% (CCA) of the GM composition variation could be interpreted by neuropsychological performance indicators. Furthermore, we found complex relationships between Alloprevotella, specific members of the family Lachnospiraceae, Faecalicoccus, and the FCS alteration, and neuropsychological performance indicators. CONCLUSION The brain FCS alteration of patients with CI was related to their GM composition and neuropsychological performance indicators, and there was also an association to some extent between the latter two, suggesting a specific interaction pattern among the three aspects: brain FCS alteration, GM composition, and neuropsychological performance indicators.
Collapse
Affiliation(s)
- Ziwei Chen
- Jinan University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Feng
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shumei Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Kelei Hua
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feng Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huiyu Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | | | - Caojun Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,Jinan University, Guangzhou, China
| |
Collapse
|