1
|
Hâncu IM, Giuchici S, Furdui-Lința AV, Lolescu B, Sturza A, Muntean DM, Dănilă MD, Lighezan R. The highs and lows of monoamine oxidase as molecular target in cancer: an updated review. Mol Cell Biochem 2025; 480:3225-3252. [PMID: 39714760 DOI: 10.1007/s11010-024-05192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
The global burden of cancer as a major cause of death and invalidity has been constantly increasing in the past decades. Monoamine oxidases (MAO) with two isoforms, MAO-A and MAO-B, are mammalian mitochondrial enzymes responsible for the oxidative deamination of neurotransmitters and amines in the central nervous system and peripheral tissues with the constant generation of hydrogen peroxide as the main deleterious ancillary product. However, given the complexity of cancer biology, MAO involvement in tumorigenesis is multifaceted with different tumors displaying either an increased or decreased MAO profile. MAO inhibitors are currently approved for the treatment of neurodegenerative diseases (mainly, Parkinson's disease) and as secondary/adjunctive therapeutic options for the treatment of major depression. Herein, we review the literature characterizing MAO's involvement and the putative role of MAO inhibitors in several malignancies, and also provide perspectives regarding the potential biomarker role that MAO could play in the future in oncology.
Collapse
Affiliation(s)
- Iasmina M Hâncu
- Doctoral School of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Silvia Giuchici
- Doctoral School of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adina V Furdui-Lința
- Doctoral School of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Bogdan Lolescu
- Doctoral School of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Adrian Sturza
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Danina M Muntean
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| | - Maria D Dănilă
- Department III Functional Sciences-Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., no.2, 300041, Timișoara, Romania.
- Centre for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania.
| | - Rodica Lighezan
- Department XIII Infectious Diseases-Parasitology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Timișoara, Romania
| |
Collapse
|
2
|
Yan B, Dong X, Wu Z, Chen D, Jiang W, Cheng J, Chen G, Yan J. Association of proteomics with lymph node metastasis in early gastric cancer patients. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167773. [PMID: 40048938 DOI: 10.1016/j.bbadis.2025.167773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/13/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025]
Abstract
Surgical decision making for early gastric cancer (EGC) is heavily influenced by its metastasis into the lymph nodes. Currently, the clinicopathological features of EGC cannot be used to accurately distinguish between EGC patients with and without lymph node metastasis. Our retrospective case-matching study included a total of 132 samples from 66 pairs of EGC patients with or without lymph node metastasis and conducted proteomic assays. By comparing the lymph node metastasis group and the nonmetastasis group, we found that two proteins, GABARAPL2 and NAV1, were significantly associated with lymph node metastasis in EGC patients. Our prediction model using protein biomarkers had good prediction accuracy, with an area under the curve (AUC) of 0.87, a sensitivity of 0.78, a specificity of 0.89, and an accuracy of 0.84, which can help distinguish between EGC patients with and without lymph node metastasis and guide the decision-making process for performing tailored surgery.
Collapse
Affiliation(s)
- Botao Yan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaoyu Dong
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Zaizeng Wu
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, Fujian 350001, PR China
| | - Dexin Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Wei Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Jiaxin Cheng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Gang Chen
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, Fujian 350001, PR China.
| | - Jun Yan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, PR China.
| |
Collapse
|
3
|
Genetic and Proteinic Linkage of MAO and COMT with Oral Potentially Malignant Disorders and Cancers of the Oral Cavity and Pharynx. Cancers (Basel) 2021; 13:cancers13133268. [PMID: 34209963 PMCID: PMC8268107 DOI: 10.3390/cancers13133268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The prevention and treatment of cancers of the oral cavity and pharynx are currently important issues for national health. Currently, the incidence of oral cavity and pharynx cancers is globally the highest in Taiwanese men. Regarding the occurrence of oral cavity and pharynx cancers and oral potentially malignant disorders (OPMD), no report has ascertained how betel quid (BQ) can induce the expression of monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). We aimed to explore the role and clinical significance of specific markers of BQ exposure and human susceptibility to MAO and COMT. Our findings highlight the association of MAO and COMT biomarkers to risks of oral and pharyngeal cancers and OPMD. These novel findings will provide important strategies for disease prevention, early clinical diagnosis, and treatment effectiveness, and will offer a strong foundation to reduce BQ-related cancers of the oral cavity and pharynx and OPMD. Abstract Betel quid (BQ), a group I human carcinogen, strongly contributes to an increased risk of oral potentially malignant disorders (OPMD) and cancers of the oral cavity and pharynx. This study was conducted to discover whether monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT) variants play a potential role in the risk assessment of oral cavity and pharynx cancers and OPMD, particularly among BQ users. We applied a case–control study to confirm the polymorphism of MAO and COMT using single-nucleotide polymorphisms. We used qRT-PCR, Western blotting, and immunohistochemistry (IHC) to determine MAO and COMT expression. Carriers of the MAOA rs6323 G-allele, MAOB rs6324 G-allele, and COMT rs4633 C/C-genotype had a prominently increased risk of oral cavity and pharynx cancers (AOR = 56.99; p < 0.001). Compared to adjacent noncancerous tissues, a significant downregulation of MAO and COMT expression was exhibited in cancerous tissues (p < 0.01). Furthermore, in different cell models, MAO and COMT expression was significantly downregulated with an increased dose of arecoline (p < 0.01). In personalized preventive medicine for oral and pharyngeal cancers, our findings are the first to demonstrate the potential role of lower MAO and COMT expression levels, with the risk polymorphisms utilized as clinical biomarkers.
Collapse
|
4
|
Nazir SU, Kumar R, Singh A, Khan A, Tanwar P, Tripathi R, Mehrotra R, Hussain S. Breast cancer invasion and progression by MMP-9 through Ets-1 transcription factor. Gene 2019; 711:143952. [PMID: 31265880 DOI: 10.1016/j.gene.2019.143952] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
Abstract
Ets-1 is one of the crucial member of transcription factor family which share a unique DNA binding domain. It is predominantly expressed in various tumor subtypes and has shown its association in the regulation of various important genes which include ECM-degrading proteases. Our study aimed to understand the mechanism(s) in the pathogenesis of breast carcinogenesis by Ets-1 transcription factor and its downstream target gene MMP-9. Role of Ets-1 in MCF-7 and MDA-MB-231 breast cancer cells was studied by RNA-interference in combination with pull down and ChIP assays to identify the regulation of MMP-9 in these cell lines. Our results showed that transfection of Ets-1 siRNA in breast cancer cell lines resulted in downregulation of Ets-1 and MMP-9. Ets-1 knock down also showed reduced cell invasion and altered expression of EMT markers. Moreover, we could also predict that MMP-9 gene promoter harbors a binding site for Ets-1 transcription factor may be responsible in direct transactivation of Ets-1 along with EMT markers. Phenotypic changes and molecular alterations that may result in increased aggressiveness/invasiveness and metastatic nature of cancerous cells may lead to changes in EMT markers. Therefore, these findings may suggest a plausible role of Ets-1 dependent regulation of MMP-9 gene and may have a significant impact on breast carcinogenesis.
Collapse
Affiliation(s)
- Sheeraz Un Nazir
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India; Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Ankita Singh
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Asiya Khan
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Richa Tripathi
- Division of Preventive Oncology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Ravi Mehrotra
- Division of Preventive Oncology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Showket Hussain
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India.
| |
Collapse
|
5
|
Lu JB, Li RY. Gene expression profiling in digestive tract tumors: From basic research to clinical practice. Shijie Huaren Xiaohua Zazhi 2018; 26:1966-1978. [DOI: 10.11569/wcjd.v26.i34.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gene expression profiling is a new method that can be used to study the whole genome function. It is also a comprehensive research technique combining life science with information science. Gene expression profiles have not only been thoroughly and fundamentally studied in digestive tract tumors with regard to gene function, pathogenesis, gene network regulation, and biological characteristics, but also been applied to clinical diagnosis, differential diagnosis, molecular typing, targeted therapy, and other aspects. However, it is still necessary to fully mine and utilize the huge amount of data generated continuously in this process, effectively standardize the construction and management of the existing gene expression database, gradually realize data sharing, and strengthen the quality control of gene expression profiling technology in order to make the gene expression profiling technology become more stable and rapid in the future research.
Collapse
Affiliation(s)
- Jian-Bo Lu
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, kunming 650032, Yunnan Province, China
| | - Ru-Yi Li
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, kunming 650032, Yunnan Province, China
| |
Collapse
|
6
|
Matsuoka T, Yashiro M. Biomarkers of gastric cancer: Current topics and future perspective. World J Gastroenterol 2018; 24:2818-2832. [PMID: 30018477 PMCID: PMC6048430 DOI: 10.3748/wjg.v24.i26.2818] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignant types in the world and an aggressive disease with a poor 5-year survival. This cancer is biologically and genetically heterogeneous with a poorly understood carcinogenesis at the molecular level. Although the incidence is declining, the outcome of patients with GC remains dismal. Thus, the detection at an early stage utilizing useful screening approaches, selection of an appropriate treatment plan, and effective monitoring is pivotal to reduce GC mortalities. Identification of biomarkers in a basis of clinical information and comprehensive genome analysis could improve diagnosis, prognosis, prediction of recurrence and treatment response. This review summarized the current status and approaches in GC biomarker, which could be potentially used for early diagnosis, accurate prediction of therapeutic approaches and discussed the future perspective based on the molecular classification and profiling.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masakazu Yashiro
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
7
|
Effect of expressions of tumor necrosis factor α and interleukin 1B on peritoneal metastasis of gastric cancer. Tumour Biol 2015; 36:8853-60. [DOI: 10.1007/s13277-015-3621-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022] Open
|
8
|
Loss of PCDH9 is associated with the differentiation of tumor cells and metastasis and predicts poor survival in gastric cancer. Clin Exp Metastasis 2015; 32:417-28. [DOI: 10.1007/s10585-015-9712-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 03/05/2015] [Indexed: 12/23/2022]
|
9
|
Shan YQ, Ying RC, Zhou CH, Zhu AK, Ye J, Zhu W, Ju TF, Jin HC. MMP-9 is increased in the pathogenesis of gastric cancer by the mediation of HER2. Cancer Gene Ther 2015; 22:101-7. [PMID: 25633484 DOI: 10.1038/cgt.2014.61] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression is not only closely associated with the tumor growth, but is also related to tumor invasion. We here aimed to investigate the mechanism of HER2 mediation in the pathogenesis of gastric cancer. The human gastric cancer cell lines SGC-7901, MKN-45, AGS, the immortalized cell line GES-1 derived from normal gastric mucosa. Cell transfection and selection of stable cell lines and the gene and protein levels of HER2 and Matrix metalloproteinase-9 (MMP-9) were examined to determine the molecular relationship between them in the pathogenesis of gastric cancer. The human gastric cancer cell lines SGC-7901, MKN-45, AGS, the immortalized cell line GES-1 derived from normal gastric mucosa. Cell transfection and selection of stable cell lines and the gene and protein levels of HER2 and MMP-9 were examined to determine the molecular relationship between them in the pathogenesis of gastric cancer. We demonstrated that vector-based shRNA significantly knocked down the expression of HER2 and considerably inhibited both the migration and invasion of gastric cancer cells. HER2 knockdown resulted in the downregulation of the expression of MMP-9, whereas HER2 overexpression improved the transcription of MMP-9 through the activation of an MMP-9 promoter. The promoter region of MMP-9 between -2500 and -2000 bp was found to be crucial for the upregulation of HER2-mediated transcription. Furthermore, a truncated promoter (-70 to +63) did not display any transcriptional activity. Cell invasion activity was almost completely inhibited when MMP-9 was knocked down. Conversely, the overexpression of MMP-9 partly rescued the invasion ability of cell strains with knockdown HER2. These findings help further understanding of the molecular mechanisms through which HER2 promotes malignancy, and suggest that targeting both HER2 and MMP-9 may be required to effectively block HER2 signaling in gastric cancer therapy.
Collapse
Affiliation(s)
- Y-Q Shan
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - R-C Ying
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - C-H Zhou
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - A-K Zhu
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - J Ye
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - W Zhu
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - T-F Ju
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| | - H-C Jin
- 1] Department of General Surgery, Hangzhou First People's Hospital, Hangzhou, China [2] Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
10
|
Fu YF, Gui R, Liu J. HER-2-induced PI3K signaling pathway was involved in the pathogenesis of gastric cancer. Cancer Gene Ther 2015; 22:145-53. [PMID: 25613482 DOI: 10.1038/cgt.2014.80] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/02/2023]
Abstract
Human epidermal growth factor receptor-2 (HER-2) overexpression was closely associated with the tumor growth and invasion, we here aimed to investigate the mechanism of HER-2 mediation in the pathogenesis of gastric cancer (GC). We first detected the expression of HER-2 in GC cell line SGC-7901 and then examined the levels of nuclear factor-κB (NF-κB), matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) and the association between them by molecular methods. Statistical analysis was used to compare the significance. We further detected the possible molecular mechanism involved in their relationship in the SGC-7901 genesis. The MMP-9, NF-κB and secretory type (s-ICAM-1) levels were significantly greater in peripheral blood serum from SGC-7901 than healthy control GES-1 (P<0.01). ICAM-1, MMP-9 and NF-κB mRNA and protein levels were more highly expressed in SGC-7901 than healthy control GES-1. The expression levels of NF-κB, MMP-9 and ICAM-1 were positively related in GC cell line SGC-7901, which was HER-2 positive. The HER-2 positive SGC-7901 secreted more transforming growth factor beta 1 (TGF-β1) and resultantly activated MMP-9 to enhance s-ICAM-1 secretion and further studies showed that phosphatidylinositol-3 kinase (PI3K)/Akt/NF-κB signaling pathway was involved in GC pathogenesis. The GC cells that express the HER-2 oncogene spur the activation of NF-κB that can upregulate the expression of ICAM-1 and induce the expression of MMP-9, which hydrolyzes ICAM-1 into s-ICAM-1 to promote tumor immune escape. TGF-β1-induced PI3K/Akt/NF-κB signaling pathway was involved in the pathogenesis of GC and they could be a new target for cancer therapy. The GC cells that express the HER-2 oncogene spur the activation of NF-κB that can upregulate the expression of ICAM-1 and induce the expression of MMP-9, which hydrolyzes ICAM-1 into s-ICAM-1 to promote tumor immune escape. TGF-β1-induced PI3K/Akt/NF-κB signaling pathway was involved in the pathogenesis of GC and they could be a new target for cancer therapy.
Collapse
Affiliation(s)
- Y F Fu
- The Third Xiang-Ya Hospital, Central South University, Changsha, China
| | - R Gui
- The Third Xiang-Ya Hospital, Central South University, Changsha, China
| | - J Liu
- The Third Xiang-Ya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
The influence of monoamine oxidase variants on the risk of betel quid-associated oral and pharyngeal cancer. ScientificWorldJournal 2014; 2014:183548. [PMID: 25389533 PMCID: PMC4214165 DOI: 10.1155/2014/183548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/04/2023] Open
Abstract
Betel quid (BQ) and areca nut (AN) (major BQ ingredient) are group I human carcinogens illustrated by International Agency for Research on Cancer and are closely associated with an elevated risk of oral potentially malignant disorders (OPMDs) and cancers of the oral cavity and pharynx. The primary alkaloid of AN, arecoline, can be metabolized via the monoamine oxidase (MAO) gene by inducing reactive oxygen species (ROS). The aim of this study was to investigate whether the variants of the susceptible candidate MAO genes are associated with OPMDs and oral and pharyngeal cancer. A significant trend of MAO-A mRNA expression was found in in vitro studies. Using paired human tissues, we confirmed the significantly decreased expression of MAO-A and MAO-B in cancerous tissues when compared with adjacent noncancerous tissues. Moreover, we determined that MAO-A single nucleotide polymorphism variants are significantly linked with oral and pharyngeal cancer patients in comparison to OPMDs patients [rs5953210 risk G-allele, odds ratio = 1.76; 95% confidence interval = 1.02-3.01]. In conclusion, we suggested that susceptible MAO family variants associated with oral and pharyngeal cancer may be implicated in the modulation of MAO gene activity associated with ROS.
Collapse
|
12
|
D’Angelo G, Rienzo TD, Ojetti V. Microarray analysis in gastric cancer: A review. World J Gastroenterol 2014; 20:11972-11976. [PMID: 25232233 PMCID: PMC4161784 DOI: 10.3748/wjg.v20.i34.11972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/03/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common tumors worldwide. Although several treatment options have been developed, the mortality rate is increasing. Lymph node involvement is considered the most reliable prognostic indicator in gastric cancer. Early diagnosis improves the survival rate of patients and increases the likelihood of successful treatment. The most reliable diagnostic method is endoscopic examination, however, it is expensive and not feasible in poorer countries. Therefore, many innovative techniques have been studied to develop a new non-invasive screening test and to identify specific serum biomarkers. DNA microarray analysis is one of the new technologies able to measure the expression levels of a large number of genes simultaneously. It is possible to define the gene expression profile of the tumor and to correlate it with the prognosis and metastasis formation. Several studies in the literature have been published on the role of microarray analysis in gastric cancer and the mechanisms of proliferation and metastasis formation. The aim of this review is to analyze the importance of microarray analysis and its clinical applications to better define the genetic characteristics of gastric cancer and its possible implications in a more decisive treatment.
Collapse
|