BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Golia Pernicka JS, Gagniere J, Chakraborty J, Yamashita R, Nardo L, Creasy JM, Petkovska I, Do RRK, Bates DDB, Paroder V, Gonen M, Weiser MR, Simpson AL, Gollub MJ. Radiomics-based prediction of microsatellite instability in colorectal cancer at initial computed tomography evaluation. Abdom Radiol (NY) 2019;44:3755-63. [PMID: 31250180 DOI: 10.1007/s00261-019-02117-w] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Cho CS. Radiomics: A Well-Intentioned Leap of Faith. Ann Surg Oncol 2019;26:4178-9. [PMID: 31520206 DOI: 10.1245/s10434-019-07818-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Cao Y, Zhang G, Bao H, Ren J, Wang Z, Zhang J, Zhao Z, Yan X, Chai Y, Zhou J. Development of a dual-energy spectral computed tomography-based nomogram for the preoperative discrimination of histological grade in colorectal adenocarcinoma patients. J Gastrointest Oncol 2021;12:544-55. [PMID: 34012648 DOI: 10.21037/jgo-20-368] [Reference Citation Analysis]
3 Caruso D, Polici M, Zerunian M, Pucciarelli F, Guido G, Polidori T, Landolfi F, Nicolai M, Lucertini E, Tarallo M, Bracci B, Nacci I, Rucci C, Iannicelli E, Laghi A. Radiomics in Oncology, Part 1: Technical Principles and Gastrointestinal Application in CT and MRI. Cancers (Basel) 2021;13:2522. [PMID: 34063937 DOI: 10.3390/cancers13112522] [Reference Citation Analysis]
4 Pei Q, Yi X, Chen C, Pang P, Fu Y, Lei G, Chen C, Tan F, Gong G, Li Q, Zai H, Chen BT. Pre-treatment CT-based radiomics nomogram for predicting microsatellite instability status in colorectal cancer. Eur Radiol 2021. [PMID: 34258636 DOI: 10.1007/s00330-021-08167-3] [Reference Citation Analysis]
5 Zhang W, Huang Z, Zhao J, He D, Li M, Yin H, Tian S, Zhang H, Song B. Development and validation of magnetic resonance imaging-based radiomics models for preoperative prediction of microsatellite instability in rectal cancer. Ann Transl Med 2021;9:134. [PMID: 33569436 DOI: 10.21037/atm-20-7673] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Li J, Yang Z, Xin B, Hao Y, Wang L, Song S, Xu J, Wang X. Quantitative Prediction of Microsatellite Instability in Colorectal Cancer With Preoperative PET/CT-Based Radiomics. Front Oncol 2021;11:702055. [PMID: 34367985 DOI: 10.3389/fonc.2021.702055] [Reference Citation Analysis]
7 Goiffon RJ, O'Shea A, Harisinghani MG. Advances in radiological staging of colorectal cancer. Clin Radiol 2021:S0009-9260(21)00310-X. [PMID: 34243943 DOI: 10.1016/j.crad.2021.06.005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Badic B, Tixier F, Cheze Le Rest C, Hatt M, Visvikis D. Radiogenomics in Colorectal Cancer. Cancers (Basel) 2021;13:973. [PMID: 33652647 DOI: 10.3390/cancers13050973] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Huang Z, Zhang W, He D, Cui X, Tian S, Yin H, Song B. Development and validation of a radiomics model based on T2WI images for preoperative prediction of microsatellite instability status in rectal cancer: Study Protocol Clinical Trial (SPIRIT Compliant). Medicine (Baltimore) 2020;99:e19428. [PMID: 32150094 DOI: 10.1097/MD.0000000000019428] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
10 Tang S, Ou J, Wu YP, Li R, Chen TW, Zhang XM. Contrast-enhanced CT radiomics features to predict recurrence of locally advanced oesophageal squamous cell cancer within 2 years after trimodal therapy: A case-control study. Medicine (Baltimore) 2021;100:e26557. [PMID: 34232198 DOI: 10.1097/MD.0000000000026557] [Reference Citation Analysis]
11 Wu D, Chen D, Shi W, Liu W, Zhou W, Qian J. Whole Exome Sequencing Identifies Two Novel Mutations in a Patient with UC Associated with PSC and SSA. Can J Gastroenterol Hepatol 2021;2021:9936932. [PMID: 34545326 DOI: 10.1155/2021/9936932] [Reference Citation Analysis]
12 Hildebrand LA, Pierce CJ, Dennis M, Paracha M, Maoz A. Artificial Intelligence for Histology-Based Detection of Microsatellite Instability and Prediction of Response to Immunotherapy in Colorectal Cancer. Cancers (Basel). 2021;13. [PMID: 33494280 DOI: 10.3390/cancers13030391] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
13 Veeraraghavan H, Friedman CF, DeLair DF, Ninčević J, Himoto Y, Bruni SG, Cappello G, Petkovska I, Nougaret S, Nikolovski I, Zehir A, Abu-Rustum NR, Aghajanian C, Zamarin D, Cadoo KA, Diaz LA Jr, Leitao MM Jr, Makker V, Soslow RA, Mueller JJ, Weigelt B, Lakhman Y. Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers. Sci Rep 2020;10:17769. [PMID: 33082371 DOI: 10.1038/s41598-020-72475-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Wu J, Zhang Q, Zhao Y, Liu Y, Chen A, Li X, Wu T, Li J, Guo Y, Liu A. Radiomics Analysis of Iodine-Based Material Decomposition Images With Dual-Energy Computed Tomography Imaging for Preoperatively Predicting Microsatellite Instability Status in Colorectal Cancer.Front Oncol. 2019;9:1250. [PMID: 31824843 DOI: 10.3389/fonc.2019.01250] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
15 Zhang W, Yin H, Huang Z, Zhao J, Zheng H, He D, Li M, Tan W, Tian S, Song B. Development and validation of MRI-based deep learning models for prediction of microsatellite instability in rectal cancer. Cancer Med 2021;10:4164-73. [PMID: 33963688 DOI: 10.1002/cam4.3957] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Li Z, Zhong Q, Zhang L, Wang M, Xiao W, Cui F, Yu F, Huang C, Feng Z. Computed Tomography-Based Radiomics Model to Preoperatively Predict Microsatellite Instability Status in Colorectal Cancer: A Multicenter Study. Front Oncol 2021;11:666786. [PMID: 34277413 DOI: 10.3389/fonc.2021.666786] [Reference Citation Analysis]
17 Cao Y, Zhang G, Zhang J, Yang Y, Ren J, Yan X, Wang Z, Zhao Z, Huang X, Bao H, Zhou J. Predicting Microsatellite Instability Status in Colorectal Cancer Based on Triphasic Enhanced Computed Tomography Radiomics Signatures: A Multicenter Study. Front Oncol 2021;11:687771. [PMID: 34178682 DOI: 10.3389/fonc.2021.687771] [Reference Citation Analysis]
18 Zheng H, Momeni A, Cedoz PL, Vogel H, Gevaert O. Whole slide images reflect DNA methylation patterns of human tumors. NPJ Genom Med 2020;5:11. [PMID: 32194984 DOI: 10.1038/s41525-020-0120-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wu J, Mayer AT, Li R. Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. Semin Cancer Biol 2020:S1044-579X(20)30264-9. [PMID: 33290844 DOI: 10.1016/j.semcancer.2020.12.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
20 Ying M, Pan J, Lu G, Zhou S, Fu J, Wang Q, Wang L, Hu B, Wei Y, Shen J. Development and validation of a radiomics-based nomogram for the preoperative prediction of microsatellite instability in colorectal cancer. BMC Cancer 2022;22:524. [PMID: 35534797 DOI: 10.1186/s12885-022-09584-3] [Reference Citation Analysis]
21 Guo Y, Wang Q, Guo Y, Zhang Y, Fu Y, Zhang H. Preoperative prediction of perineural invasion with multi-modality radiomics in rectal cancer.Sci Rep. 2021;11:9429. [PMID: 33941817 DOI: 10.1038/s41598-021-88831-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Damilakis E, Mavroudis D, Sfakianaki M, Souglakos J. Immunotherapy in Metastatic Colorectal Cancer: Could the Latest Developments Hold the Key to Improving Patient Survival? Cancers (Basel) 2020;12:E889. [PMID: 32268531 DOI: 10.3390/cancers12040889] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
23 Stetson PD, Cantor MN, Gonen M. When Predictive Models Collide. JCO Clin Cancer Inform 2020;4:547-50. [PMID: 32543898 DOI: 10.1200/CCI.20.00024] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]