1
|
Mandelli WG, Alves AV, Abreu FEL, Morais BSD, Zanardi-Lamardo E, Castro ÍB, Choueri RB, Moreira LB. Biomarkers responses in the amphipod Tiburonella viscana exposed to the biocide DCOIT and CO 2-induced ocean acidification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126018. [PMID: 40057164 DOI: 10.1016/j.envpol.2025.126018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Anthropogenic carbon dioxide emissions (CO2) have led to climate change and marine acidification, with an estimated decrease in ocean surface pH of 0.3-0.4 units by the end of the current century. Chemical pollution also contributes to biodiversity loss in marine environments. This issue is particularly critical in areas under pressure from shipping activities, where the introduction of new antifouling system formulations poses a major threat to non-target species. The biocide DCOIT is the most widely used alternative to organotin compounds due to its rapid degradation in seawater. The toxicity of waterborne DCOIT to marine organisms has been documented, but sediment-bound effects are limited to apical responses and pH scenarios corresponding to current levels. In this study, we determine in a combined way, the toxicity of DCOIT under marine acidification scenarios assessing biomarker responses in the burrowing amphipod Tiburonella viscana as a parameter of sublethal effects in solid phase exposures. Environmental relevant concentrations of DCOIT caused inhibition of the enzyme glutathione S-transferases (GST), changed acetylcholinesterase-like activity (AChE), and increased DNA damage at pHs of 7.7 and 7.4. For lipid peroxidation (LPO), increased levels caused by DCOIT were found for both control (8.1) and intermediate (7.7) conditions of pH. Our data provides evidence of oxidative and genotoxic effects induced by DCOIT, with activation of detoxification and defense mechanisms in T. viscana. These results are important for ecological risk assessment and managing of antifouling paint biocides in multiple stressors scenarios.
Collapse
Affiliation(s)
- Wanessa Gentil Mandelli
- Instituto Do Mar, Universidade Federal de São Paulo (IMar UNIFESP), Rua Maria Máximo 168, Ponta da Praia, Santos, SP, 11030-100, Brazil
| | - Aline Vecchio Alves
- Instituto Do Mar, Universidade Federal de São Paulo (IMar UNIFESP), Rua Maria Máximo 168, Ponta da Praia, Santos, SP, 11030-100, Brazil
| | - Fiamma Eugênia Lemos Abreu
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, Cidade Universitária, Recife, PE, 50740-550, Brazil
| | - Bruna Santana de Morais
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, Cidade Universitária, Recife, PE, 50740-550, Brazil
| | - Eliete Zanardi-Lamardo
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, Cidade Universitária, Recife, PE, 50740-550, Brazil
| | - Ítalo Braga Castro
- Instituto Do Mar, Universidade Federal de São Paulo (IMar UNIFESP), Rua Maria Máximo 168, Ponta da Praia, Santos, SP, 11030-100, Brazil
| | - Rodrigo Brasil Choueri
- Instituto Do Mar, Universidade Federal de São Paulo (IMar UNIFESP), Rua Maria Máximo 168, Ponta da Praia, Santos, SP, 11030-100, Brazil
| | - Lucas Buruaem Moreira
- Instituto Do Mar, Universidade Federal de São Paulo (IMar UNIFESP), Rua Maria Máximo 168, Ponta da Praia, Santos, SP, 11030-100, Brazil.
| |
Collapse
|
2
|
Tambe PK, Shetty MP, Rana K, Bharati S. Targeted Modulation of Mitochondrial Oxidative Stress Ameliorates 5-Fluorouracil-Induced Renal Injury in BALB/c Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:8892026. [PMID: 40225412 PMCID: PMC11986914 DOI: 10.1155/omcl/8892026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/15/2025] [Indexed: 04/15/2025]
Abstract
Background: The present study reports the protective effect conferred by scavenging mitochondrial oxidative stress (mtOS) in 5-fluorouracil (5-FU)-induced renal injury. Methods: 5-FU renal toxicity model was created by administering 5-FU (12 mg/kg b.w. intraperitoneally [i.p.], for 4 days) to male BALB/c mice. The protective effect of mitochondria-targeted antioxidant (MTA), Mito-TEMPO coadministered at a dosage of 0.1 mg/kg b.w. i.p., was established in terms of levels/expressions of renal injury markers, histopathological alterations, oxidative DNA damage, proinflammatory markers, mtOS, mitochondrial dysfunction, and modulation of apoptotic proteins and apoptotic cell death. Results: A significant rise in the levels of serum urea, uric acid, and creatinine was noted after 5-FU administration to the animals. Immunohistochemical and ELISA findings demonstrated significant decrease in podocin and conversely a significant increase in neutrophil gelatinase-associated lipocalin (NGAL) expression after 5-FU challenge. The histopathological analysis further revealed Bowman's capsule dilation, glomerular condensation, and vacuolar degeneration. Mito-TEMPO treatment significantly lowered renal injury markers, reversed the expressions of podocin and NGAL to normal, and restored normal histoarchitecture of renal tissue. Mitochondrial reactive oxygen species (mtROS), mtLPO, activity of mitochondrial enzyme complexes, and mitochondrial antioxidant defense status were significantly improved in Mito-TEMPO protected group as compared to the 5-FU group. Further, significantly decreased expression of 8-OHdG, reduction in apoptotic cell death, and modulation of apoptotic proteins Bax, Bcl-2, and caspase-3 were noted in Mito-TEMPO protected group, indicating its protective effect against 5-FU-induced renal injury. Conclusion: The approach of targeting mtOS using MTA, Mito-TEMPO, may prove as safe adjuvant in alleviating renal toxicity during 5-FU chemotherapy.
Collapse
Affiliation(s)
- Prasad Kisan Tambe
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Maya P. Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Komal Rana
- Manipal Government of Karnataka Bioincubator Advanced Research Centre, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Herruzo-Ruiz AM, Trombini C, Sendra M, Michán C, Moreno-Garrido I, Alhama J, Blasco J. Accumulation, biochemical responses and changes in the redox proteome promoted by Ag and Cd in the burrowing bivalve Scrobicularia plana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107123. [PMID: 39423745 DOI: 10.1016/j.aquatox.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Silver (Ag) and cadmium (Cd) are non-essential metals that, as a result of natural processes and human activities, reach the aquatic environment where they interact with biota inducing potential toxic effects. To determine the biological effects of these metals on the endobenthic bivalve Scrobicularia plana, specimens were exposed to Ag and Cd at two concentrations, 5 and 50 μg∙L-1, for 7 days in a controlled microcosm system. The levels of the metals were measured in the seawater, sediments and clam tissues. The possible toxic biological effects of Ag and Cd were studied using a battery of biochemical biomarkers that are responsive to oxidative stress: superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST) activities, and metallothioneins (MTs) and lipid peroxidation (LPO) levels. Since both metals have been linked to oxidative stress, redox modifications to proteins were studied by differential isotopic labelling of the oxidised and reduced forms of cysteines (Cys). An accumulation of metals was observed in the digestive gland and gills following exposure, together with the activation of enzyme activities (SOD for the Cd exposure; SOD, CAT, GST, and GR for the Ag exposure). The MT and LPO levels (after individual exposure to Ag and Cd) increased, which suggests the existence of antioxidant and detoxification processes to mitigate the toxic oxidative effects of both metals. The redox proteomic analysis identified 771 Cys-containing peptides (out of 514 proteins), of which 195 and 226 changed after exposure to Ag and Cd, respectively. Bioinformatics analysis showed that exposure to metal affects relevant functional pathways and biological processes in S. plana, such as: "cellular respiration" (Ag), "metabolism of amino acids" and "synthesis and degradation of proteins" (Ag and Cd), "carbohydrate metabolism" and "oxidative stress" (Cd). The proteomic approach implemented here is a powerful complement to conventional biochemical biomarkers, since it evaluates changes at the protein level in a high-throughput unbiased manner, thus providing a general appraisal of the biological responses altered by exposure to the contaminants.
Collapse
Affiliation(s)
- Ana María Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Marta Sendra
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Ignacio Moreno-Garrido
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
4
|
Vilke JM, Fonseca TG, Alkimin GD, Gonçalves JM, Edo C, Errico GD, Seilitz FS, Rotander A, Benedetti M, Regoli F, Lüchmann KH, Bebianno MJ. Looking beyond the obvious: The ecotoxicological impact of the leachate from fishing nets and cables in the marine mussel Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134479. [PMID: 38762985 DOI: 10.1016/j.jhazmat.2024.134479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Once in the marine environment, fishing nets and cables undergo weathering, breaking down into micro and nano-size particles and leaching plastic additives, which negatively affect marine biota. This study aims to unravel the ecotoxicological impact of different concentrations of leachate obtained from abandoned or lost fishing nets and cables in the mussel Mytilus galloprovincialis under long-term exposure (28 days). Biochemical biomarkers linked to antioxidant defense system, xenobiotic biotransformation, oxidative damage, genotoxicity, and neurotoxicity were evaluated in different mussel tissues. The chemical nature of the fishing nets and cables and the chemical composition of the leachate were assessed and metals, plasticizers, UV stabilizers, flame retardants, antioxidants, dyes, flavoring agents, preservatives, intermediates and photo initiators were detected. The leachate severely affected the antioxidant and biotransformation systems in mussels' tissues. Following exposure to 1 mg·L-1 of leachate, mussels' defense system was enhanced to prevent oxidative damage. In contrast, in mussels exposed to 10 and 100 mg·L-1 of leachate, defenses failed to overcome pro-oxidant molecules, resulting in genotoxicity and oxidative damage. Principal component analysis (PCA) and Weight of Evidence (WOE) evaluation confirmed that mussels were significantly affected by the leachate being the hazard of the leachate concentrations of 10 mg·L-1 ranked as major, while 1 and 100 mg·L-1 was moderate. These results highlighted that the leachate from fishing nets and cables can be a threat to the heath of the mussel M. galloprovincialis.
Collapse
Affiliation(s)
- Juliano M Vilke
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal; Multicenter Program in Postgraduate in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages 88520-000, Brazil
| | - Tainá G Fonseca
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal
| | - Gilberto D Alkimin
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal
| | - Joanna M Gonçalves
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal
| | - Carlos Edo
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Giuseppe d' Errico
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | | | - Anna Rotander
- Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Maura Benedetti
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianopolis 88035-001, Brazil
| | - Maria João Bebianno
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal.
| |
Collapse
|
5
|
Beghin M, Lambert J, Sturve J, Cornet V, Kestemont P. Immunomodulatory effects of single and combined exposure to ZnO and TiO 2 nanoparticles on rainbow trout challenged with Aeromonas salmonicida achromogenes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106981. [PMID: 38843740 DOI: 10.1016/j.aquatox.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
The increasing release of engineered nanoparticles (ENPs) in aquatic ecosystems stresses the need for stringent investigations of nanoparticle mixture toxicity towards aquatic organisms. Here, the individual and combined immunotoxicity of two of the most consumed ENPs, the ZnO and the TiO2 ones, was investigated on rainbow trout juveniles (Oncorhynchus mykiss). Fish were exposed to environmentally realistic concentrations (21 and 210 µg L-1 for the ZnO and 210 µg L-1 for the TiO2) for 28 days, and then challenged with the pathogenic bacterium, Aeromonas salmonicida achromogenes. Antioxidant and innate immune markers were assessed before and after the bacterial infection. None of the experimental conditions affected the basal activity of the studied innate immune markers and the redox balance. However, following the bacterial infection, the expression of genes coding for pro and anti-inflammatory cytokines (il1β and il10), as well as innate immune compounds (mpo) were significantly reduced in fish exposed to the mixture. Conversely, exposure to ZnO NPs alone seemed to stimulate the immune response by enhancing the expression of the IgM and c3 genes for instance. Overall, our results suggest that even though the tested ENPs at their environmental concentration do not strongly affect basal immune functions, their mixture may alter the development of the immune response when the organism is exposed to a pathogen by interfering with the inflammatory response.
Collapse
Affiliation(s)
- Mahaut Beghin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium.
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 40530 Göteborg, Sweden
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
6
|
Nobre CR, Moreno BB, Alves AV, Fontes MK, Campos BGD, Silva LFD, Maranho LA, Duarte LFDA, Abessa DMDS, Choueri RB, Gusso-Choueri PK, Pereira CDS. Microplastics and 17α Ethinylestradiol: How Do Different Aquatic Invertebrates Respond to This Combination of Contaminants? TOXICS 2024; 12:319. [PMID: 38787099 PMCID: PMC11125900 DOI: 10.3390/toxics12050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
The synthetic hormone 17α ethinyl estradiol (EE2) is a molecule widely used in female contraceptives and recognized as a contaminant of attention (Watch List) in the European Union due to its high consumption, endocrine effects and occurrence in aquatic environments. Its main source of introduction is domestic sewage where it can be associated with other contaminants such as microplastics (MPs). Due to their characteristics, they can combine with each other and exacerbate their isolated effects on biota. This study evaluated the combined effects of microplastics (MPs) and 17α ethinylestradiol (EE2) on two tropical estuarine invertebrate species: Crassostrea gasar and Ucides cordatus. Polyethylene particles were spiked with EE2 and organisms were exposed to three treatments, categorized into three groups: control group (C), virgin microplastics (MPs), and spiked microplastics with EE2 (MPEs). All treatments were evaluated after 3 and 7 days of exposure. Oysters exhibited changes in phase 2 enzymes and the antioxidant system, oxidative stress in the gills, and reduced lysosomal membrane stability after exposure to MPs and MPEs. Crabs exposed to MPs and MPEs after seven days showed changes in phase 1 enzymes in the gills and changes in phases 1 and 2 enzymes in the hepatopancreas, such as disturbed cellular health. The combined effects of microplastics and EE2 increased the toxicity experienced by organisms, which may trigger effects at higher levels of biological organization, leading to ecological disturbances in tropical coastal ecosystems.
Collapse
Affiliation(s)
- Caio Rodrigues Nobre
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
| | - Aline Vecchio Alves
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
| | - Mayana Karoline Fontes
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Bruno Galvão de Campos
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Leticia Fernanda da Silva
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Luciane Alves Maranho
- Morphofunctional Laboratory, University of Ribeirão Preto (UNAERP), Avenida Dom Pedro I, 3.300, Guarujá 11440-003, Brazil
| | | | - Denis Moledo de Souza Abessa
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
| | - Paloma Kachel Gusso-Choueri
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, Santos 11045-907, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, Santos 11045-907, Brazil
| |
Collapse
|
7
|
Pintado-Herrera MG, Aguirre-Martínez GV, Martin-Díaz LM, Blasco J, Lara-Martín PA, Sendra M. Personal care products: an emerging threat to the marine bivalve Ruditapes philippinarum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20461-20476. [PMID: 38376785 PMCID: PMC10927873 DOI: 10.1007/s11356-024-32391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
In the last few decades, there has been a growing interest in understanding the behavior of personal care products (PCPs) in the aquatic environment. In this regard, the aim of this study is to estimate the accumulation and effects of four PCPs within the clam Ruditapes philippinarum. The PCPs selected were triclosan, OTNE, benzophenone-3, and octocrylene. A progressive uptake was observed and maximum concentrations in tissues were reached at the end of the exposure phase, up to levels of 0.68 µg g-1, 24 µg g-1, 0.81 µg g-1, and 1.52 µg g-1 for OTNE, BP-3, OC, and TCS, respectively. After the PCP post-exposure period, the removal percentages were higher than 65%. The estimated logarithm bioconcentration factor ranged from 3.34 to 2.93, in concordance with the lipophobicity of each substance. No lethal effects were found although significant changes were observed for ethoxyresorufin O-demethylase activity, glutathione S-transferase activity, lipid peroxidation, and DNA damage.
Collapse
Affiliation(s)
- Marina G Pintado-Herrera
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain.
| | | | - Laura M Martin-Díaz
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Rio S. Pedro, 11510, Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain
| | - Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
- International Research Center in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos S/N, 09001, Burgos, Spain
| |
Collapse
|
8
|
Gonçalves JM, Bebianno MJ. Ecotoxicity of emerging contaminants in the reproductive organ of marine mussels Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163486. [PMID: 37068673 DOI: 10.1016/j.scitotenv.2023.163486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Contaminants of emerging concern (CECs) present a new threat to the marine environment, and it is vital to understand the interactions and possible toxicity of CEC mixtures once they reach the ocean. CECs-such as metal nanoparticles, nanoplastics, and pharmaceuticals-are groups of contaminants some of which have been individually evaluated, though their interactions as mixtures are still not fully understood. To ensure a healthy and prosperous future generation, successful reproduction is key: however, if hindered, population dynamics may be at danger leading to a negative impact on biodiversity. This study aimed to understand the effects of silver (20 nm nAg, 10 μg/L), polystyrene nanoparticles (50 nm nPS, 10 μg/L), and 5-fluorouracil (5FU, 10 ng/L) individually and as a mixture (10 μg/L of nPS + 10 μg/L of nAg +10 ng/L of 5FU) in the gonads of Mytilus galloprovincialis. A multibiomarker approach, namely the antioxidant defence system (ADS; superoxide dismutase, catalase, glutathione peroxidases, glutathione - S - transferases activities), and oxidative damage (OD; lipid peroxidation) were analysed in the gonads of mussels. All exposure treatments after 3 days led to an increase of enzymatic activity, followed by an inhibition after 14 and 21 days. Thus, ADS was overwhelmed due to the generation of ROS, resulting in OD, except for nPS exposed mussels. The OD in Mix exposed mussels increased exponentially by 57-fold. When CEC mixtures interact, they are potentially more hazardous than their individual components, posing a major threat to marine species. To understand synergistic and antagonistic interactions, a model was applied, and antagonistic interactions were observed in evaluated biomarkers at all time-points, apart from a synergistic interaction at day 3 relative to LPO. Results indicate that the effects observed in Mix-exposed mussel gonads are mainly due to the interaction of nAg and 5FU but not nPS.
Collapse
Affiliation(s)
- J M Gonçalves
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - M J Bebianno
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal.
| |
Collapse
|
9
|
Tambe PK, Qsee HS, Bharati S. Mito-TEMPO mitigates 5-fluorouracil-induced intestinal injury via attenuating mitochondrial oxidative stress, inflammation, and apoptosis: an in vivo study. Inflammopharmacology 2023:10.1007/s10787-023-01261-6. [PMID: 37338659 DOI: 10.1007/s10787-023-01261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Recent evidences highlight role of mitochondria in the development of 5-fluorouracil (5-FU)-induced intestinal toxicity. Mitochondria-targeted antioxidants are well-known for their protective effects in mitochondrial oxidative stress- mediated diseases. In the present study, we investigated protective effect of Mito-TEMPO in 5-FU-induced intestinal toxicity. METHODS Mito-TEMPO (0.1 mg/kg b.w.) was administered intraperitoneally to male BALB/c mice for 7 days, followed by co-administration of 5-FU for next 4 days (intraperitoneal 12 mg/kg b.w.). Protective effect of Mito-TEMPO on intestinal toxicity was assessed in terms of histopathological alterations, modulation in inflammatory markers, apoptotic cell death, expression of 8-OhDG, mitochondrial functional status and oxidative stress. RESULTS 5-FU administered animals showed altered intestinal histoarchitecture wherein a shortening and atrophy of the villi was observed. The crypts were disorganized and inflammatory cell infiltration was noted. Mito-TEMPO pre-protected animals demonstrated improved histoarchitecture with normalization of villus height, better organized crypts and reduced inflammatory cell infiltration. The inflammatory markers and myeloperoxidase activity were normalized in mito-TEMPO protected group. A significant reduction in intestinal apoptotic cell death and expression of 8-OhDG was also observed in mito-TEMPO group as compared to 5-FU group. Further, mtROS, mtLPO and mitochondrial antioxidant defense status were improved by mito-TEMPO. CONCLUSION Mito-TEMPO exerted significant protective effect against 5-FU-induced intestinal toxicity. Therefore, it may be used as an adjuvant in 5-FU chemotherapy.
Collapse
Affiliation(s)
- Prasad Kisan Tambe
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - H S Qsee
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
10
|
Tambe PK, Mathew AJ, Bharati S. Cardioprotective potential of mitochondria-targeted antioxidant, mito-TEMPO, in 5-fluorouracil-induced cardiotoxicity. Cancer Chemother Pharmacol 2023; 91:389-400. [PMID: 36997656 PMCID: PMC10156775 DOI: 10.1007/s00280-023-04529-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Abstract
Purpose
The mitochondria-targeted antioxidants (MTAs) are known to offer protection against mitochondrial oxidative stress. The recent evidences support their role in mitigating oxidative stress-induced diseases, including cancer. Therefore, this study investigated cardioprotective potential of mito-TEMPO against 5-FU-induced cardiotoxicity.
Methods
Mito-TEMPO was administered to male BALB/C mice (intraperitoneally, 0.1 mg/kg b.w. for 7 days) followed by intraperitoneal administration of 5- FU (12 mg/kg b.w. for 4 days). During this period, mito-TEMPO treatment was also continued. The cardioprotective potential of mito-TEMPO was assessed by evaluating cardiac injury markers, extent of non-viable myocardium and histopathological alterations. Mitochondrial functional status and mitochondrial oxidative stress were assessed in cardiac tissue. 8-OHdG expression and apoptotic cell death were assessed using immunohistochemical techniques.
Results
The level of cardiac injury markers CK-MB and AST were significantly (P ≤ 0.05) decreased in mito-TEMPO pre-protected group which was further reflected in histopathology as decrease in the percentage of non-viable myocardial tissue, disorganization, and loss of myofibrils. Mito-TEMPO ameliorated mtROS, mtLPO and conserved mitochondrial membrane potential. Further, it had significantly (P ≤ 0.05) improved the activity of mitochondrial complexes and mitochondrial enzymes. A significant (P ≤ 0.05) increase in the level of mtGSH, activity of mitochondrial glutathione reductase, glutathione peroxidase, and mitochondrial superoxide dismutase was observed. A decreased expression of 8-OHdG and reduced apoptotic cell death were observed in mito-TEMPO pre-protected group.
Conclusion
Mito-TEMPO effectively mitigated 5-FU-induced cardiotoxicity by modulating mitochondrial oxidative stress, hence may serve as a protective agent/adjuvant in 5-FU-based combinatorial chemotherapy.
Collapse
|
11
|
Magnuson JT, Sandheinrich MB. Relation among Mercury, Selenium, and Biomarkers of Oxidative Stress in Northern Pike ( Esox lucius). TOXICS 2023; 11:244. [PMID: 36977009 PMCID: PMC10057176 DOI: 10.3390/toxics11030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is a toxic environmental contaminant associated with oxidative stress in freshwater fish. A known antagonist to Hg, selenium (Se), may reduce the toxic effects of Hg. In this study, the relation among Se, methylmercury (MeHg), inorganic mercury (IHg), total mercury (THg), and the expression of biomarkers of oxidative stress and metal regulation in livers of northern pike were examined. Livers from northern pike were collected from 12 lakes in Isle Royale National Park, Pictured Rocks National Lakeshore, Sleeping Bear Dunes National Lakeshore, and Voyageurs National Park. The concentrations of MeHg, THg, and Se were measured in liver tissue, and the expression of superoxide dismutase (sod), catalase (cat), glutathione s-transferase (gst), and metallothionein (mt) was assessed. There was a positive relationship between the concentrations of THg and Se, with a Hg:Se molar ratio less than one in all livers examined. There was no significant relation between sod, cat, gst, or mt expression and Hg:Se molar ratios. cat and sod expression were significantly related to increases in percent MeHg, relative to THg; however, gst and mt expression were not significantly altered. This suggests that incorporating biomarkers containing Se may be a better indicator than non-selenium-containing proteins of assessing the long-term effect of Hg and the interactions between Hg and Se in the livers of fish, such as northern pike, especially when molar concentrations of Se are greater than Hg.
Collapse
|
12
|
Rashid H, Akhter MS, Alshahrani S, Qadri M, Nomier Y, Sageer M, Khan A, Alam MF, Anwer T, Ayoub R, Bahkali RJH. Mitochondrial oxidative damage by co-exposure to bisphenol A and acetaminophen in rat testes and its amelioration by melatonin. Clin Exp Reprod Med 2023; 50:26-33. [PMID: 36935409 PMCID: PMC10030205 DOI: 10.5653/cerm.2022.05568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/05/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVE Human exposure to multiple xenobiotics, over various developmental windows, results in adverse health effects arising from these concomitant exposures. Humans are widely exposed to bisphenol A, and acetaminophen is the most commonly used over-the-counter drug worldwide. Bisphenol A is a well-recognized male reproductive toxicant, and increasing evidence suggests that acetaminophen is also detrimental to the male reproductive system. The recent recognition of male reproductive system dysfunction in conditions of suboptimal reproductive outcomes makes it crucial to investigate the contributions of toxicant exposures to infertility and sub-fertility. We aimed to identify toxicity in the male reproductive system at the mitochondrial level in response to co-exposure to bisphenol A and acetaminophen, and we investigated whether melatonin ameliorated this toxicity. METHODS Male Wistar rats were divided into six groups (n=10 each): a control group and groups that received melatonin, bisphenol A, acetaminophen, bisphenol A and acetaminophen, and bisphenol A and acetaminophen with melatonin treatment. RESULTS Significantly higher lipid peroxidation was observed in the testicular mitochondria and sperm in the treatment groups than in the control group. Levels of glutathione and the activities of catalase, glutathione peroxidase, glutathione reductase, and manganese superoxide dismutase decreased significantly in response to the toxicant treatments. Likewise, the toxicant treatments significantly decreased the sperm count and motility, while significantly increasing sperm mortality. Melatonin mitigated the adverse effects of bisphenol A and acetaminophen. CONCLUSION Co-exposure to bisphenol A and acetaminophen elevated oxidative stress in the testicular mitochondria, and this effect was alleviated by melatonin.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammad Suhail Akhter
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Yousra Nomier
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Maryam Sageer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammad F Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Razan Ayoub
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rana J H Bahkali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
13
|
Dash MK, Rahman MS. Molecular and biochemical responses to tributyltin (TBT) exposure in the American oyster: Triggers of stress-induced oxidative DNA damage and prooxidant-antioxidant imbalance in tissues by TBT. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109523. [PMID: 36427667 DOI: 10.1016/j.cbpc.2022.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Environmental pollution increases due to anthropogenic activities. Toxic chemicals in the environment affect the health of aquatic organisms. Tributyltin (TBT) is a toxic chemical widely used as an antifouling paint on boats, hulls, and ships. The toxic effect of TBT is well documented in aquatic organisms; however, little is known about the effects of TBT on DNA lesions in shellfish. The American oyster (Crassostrea virginica, an edible and commercially important species) is an ideal marine mollusk to examine the effects of TBT exposure on DNA lesions and oxidative/nitrative stress. In this study, we investigated the effects of TBT on 8'-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), dinitrophenyl protein (DNP, a biomarker on reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, a biomarker of reactive nitrogen species, RNS), catalase (CAT, an antioxidant), and acetylcholinesterase (AChE, a cholinergic enzyme) expressions in the gills and digestive glands of oysters. We also analyzed extrapallial (EF) fluid conditions. Immunohistochemical and qRT-PCR results showed that TBT exposure significantly increased 8-OHdG, dsDNA, DNP, NTP, and CAT mRNA and/or protein expressions in the gills and digestive glands. However, AChE mRNA and protein expressions, and EP fluid pH and protein concentrations were decreased in TBT-exposed oysters. Taken together, these results suggest that antifouling biocide-induced production of ROS/RNS results in DNA damage, which may lead to decreased cellular functions in oysters. To the best of our knowledge, the present study provides the first molecular/biochemical evidence that TBT exposure results in oxidative/nitrative stress and DNA lesions in oysters.
Collapse
Affiliation(s)
- Mohan Kumar Dash
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
14
|
Trombini C, Rodríguez-Moro G, Ramírez Acosta S, Gómez Ariza JL, Blasco J, García-Barrera T. Single and joint effects of cadmium and selenium on bioaccumulation, oxidative stress and metabolomic responses in the clam Scrobicularia plana. CHEMOSPHERE 2022; 308:136474. [PMID: 36126739 DOI: 10.1016/j.chemosphere.2022.136474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Selenium (Se) is a vital trace element for many living organisms inclusive of aquatic species. Although the antagonistic action of this element against other pollutants has been previously described for mammals and birds, limited information on the join effects in bivalves is available. To this end, bivalves of the species Scrobicularia plana were exposed to Se and Cd individually and jointly. Digestive glands were analysed to determine dose-dependent effects, the potential influence of Se on Cd bioaccumulationas well as the possible recover of the oxidative stress and metabolic alterations induced by Cd. Selenium co-exposure decreased the accumulation of Cd at low concentrations. Cd exposure significantly altered the metabolome of clams such as aminoacyltRNA biosynthesis, glycerophospholipid and amino acid metabolism, while Se co-exposure ameliorated several altered metabolites such asLysoPC (14:0), LysoPE (20:4), LysoPE (22:6), PE (14:0/18:0), PE (20:3/18:4) andpropionyl-l-carnitine.Additionally, Se seems to be able to regulate the redox status of the digestive gland of clams preventing the induction of oxidativedamage in this organ. This study shows the potential Se antagonism against Cd toxicity in S. plana and the importance to study join effects of pollutants to understand the mechanism underlined the effects.
Collapse
Affiliation(s)
- Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Gema Rodríguez-Moro
- Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Department of Chemistry. Universityof Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain
| | - Sara Ramírez Acosta
- Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Department of Chemistry. Universityof Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain
| | - José Luis Gómez Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Department of Chemistry. Universityof Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Tamara García-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Department of Chemistry. Universityof Huelva, Fuerzas Armadas Ave, 21007, Huelva, Spain.
| |
Collapse
|
15
|
Nobre CR, Moreno BB, Alves AV, de Lima Rosa J, Fontes MK, Campos BGD, Silva LFD, Almeida Duarte LFD, Abessa DMDS, Choueri RB, Gusso-Choueri PK, Pereira CDS. Combined effects of polyethylene spiked with the antimicrobial triclosan on the swamp ghost crab (Ucides cordatus; Linnaeus, 1763). CHEMOSPHERE 2022; 304:135169. [PMID: 35671813 DOI: 10.1016/j.chemosphere.2022.135169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Domestic sewage is an important source of pollutants in aquatic ecosystems and includes both microplastics (MPs) and pharmaceuticals and personal care products (PPCPs). This study sought to assess the biological effects of the interaction between plastic particles and the antibacterial agent triclosan (TCS). The study relied on the swamp ghost crab Ucides cordatus as a model. Herein polyethylene particles were contaminated with triclosan solution. Triclosan concentrations in the particles were then chemically analyzed. Swamp ghost crab specimens were exposed to experimental compounds (a control, microplastics, and microplastics with triclosan) for 7 days. Samplings were performed on days 3 (T3) and 7 (T7). Gill, hepatopancreas, muscle and hemolymph tissue samples were collected from the animals to evaluate the biomarkers ethoxyresorufin O-deethylase (EROD), dibenzylfluorescein dealkylase (DBF), glutathione S-transferase (GST), glutathione peroxidase (GPx), reduced glutathione (GSH), lipid peroxidation (LPO), DNA strands break (DNA damage), cholinesterase (ChE) through protein levels and neutral red retention time (NRRT). Water, organism, and microplastic samples were collected at the end of the assay for post-exposure chemical analyses. Triclosan was detected in the water and crab tissue samples, results which indicate that microplastics serve as triclosan carriers. Effects on the gills of organisms exposed to triclosan-spiked microplastics were observed as altered biomarker results (EROD, GST, GPx, GSH, LPO, DNA damage and NRRT). The effects were more closely associated with microplastic contaminated with triclosan exposure than with microplastic exposure, since animals exposed only to microplastics did not experience significant effects. Our results show that microplastics may be important carriers of substances of emerging interest in marine environments in that they contaminate environmental matrices and have adverse effects on organisms exposed to these stressors.
Collapse
Affiliation(s)
- Caio Rodrigues Nobre
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil.
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Aline Vecchio Alves
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Jonas de Lima Rosa
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Mayana Karoline Fontes
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Bruno Galvão de Campos
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Leticia Fernanda da Silva
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Luís Felipe de Almeida Duarte
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil; Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Denis Moledo de Souza Abessa
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, 11330-900, São Vicente, São Paulo, Brazil
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Paloma Kachel Gusso-Choueri
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Baixada Santista Campus, Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil; Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| |
Collapse
|
16
|
Gonçalves JM, Beckmann C, Bebianno MJ. Assessing the effects of the cytostatic drug 5-Fluorouracil alone and in a mixture of emerging contaminants on the mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 305:135462. [PMID: 35753414 DOI: 10.1016/j.chemosphere.2022.135462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The assessment of contaminants of emerging concern, alone and in mixtures, and their effects on marine biota requires attention. 5-Fluorouracil is a cytostatic category 3 anti-cancer medication (IARC) that is used to treat a variety of cancers, including colon, pancreatic, and breast cancer. In the presence of other pollutants, this pharmaceutical can interact and form mixtures of contaminants, such as adhering to plastics and interaction with metal nanoparticles. This study aimed to comprehend the effects of 5-Fluorouracil (5FU; 10 ng/L) and a mixture of emerging contaminants (Mix): silver nanoparticles (nAg; 20 nm; 10 μg/L), polystyrene nanoparticles (nPS; 50 nm; 10 μg/L) and 5FU (10 ng/L), in an in vivo (21 days) exposure of the mussel Mytilus galloprovincialis. A multibiomarker approach namely genotoxicity, the antioxidant defence system (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione - S - transferases (GST) activities), and oxidative damage (LPO) was used to assess the effects in gills and digestive gland of mussels. Both treatments cause genotoxicity in mussel's haemolymph, and antagonism between contaminants was observed in the Mix. Genotoxicity observed confirms 5FU's mode of action (MoA) by DNA damage. The antioxidant defence system of mussels exposed to 5FU kicked in and counter balanced ROS generated during the exposure, though the same was not seen in Mix-exposed mussels. Mussels were able to withstand the effects of the single compound but not the effects of the Mix. For oxidative stress and damage, the interactions of the components of the mixture have a synergistic effect.
Collapse
Affiliation(s)
- Joanna M Gonçalves
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Clara Beckmann
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Maria João Bebianno
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
17
|
Trombini C, Kazakova J, Villar-Navarro M, Hampel M, Fernández-Torres R, Bello-López MÁ, Blasco J. Bioaccumulation and biochemical responses in the peppery furrow shell Scrobicularia plana exposed to a pharmaceutical cocktail at sub-lethal concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113845. [PMID: 35809397 DOI: 10.1016/j.ecoenv.2022.113845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical drugs in the aquatic medium may pose significant risk to non-target organisms. In this study, the potential toxicity of a mixture of three compounds commonly detected in marine waters (ibuprofen, ciprofloxacin and flumequine) was assessed, by studying bioaccumulation, oxidative stress and neurotoxicity parameters (catalase CAT, superoxide dismutase SOD, glutathione reductase GR, glutathione S-transferase GST, lipid peroxidation LPO, glutathione peroxidase GPX, metallothionein MT and acetylcholinesterase AChE) in the clam Scrobicularia plana. Temporal evolution of selected endpoints was evaluated throughout an exposure period (1, 7 and 21 days) followed by a depuration phase. The accumulation of all drugs was fast, however clams showed the ability to control the internal content of drugs, keeping their concentration constant throughout the exposure and reducing their content after 7 days of depuration. The induction of biochemical alterations (SOD, CAT, LPO, MT, AChE) was observed in gills and digestive gland probably related to an imbalance in the redox state of clams as a consequence of the exposure to the drug mixture. These alterations were also maintained at the end of the depuration week when the high levels of SOD, CAT, GST and LPO indicated the persistence of oxidative stress and damage to lipids despite the fact that clams were no longer exposed to the mixture.
Collapse
Affiliation(s)
- Chiara Trombini
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Julia Kazakova
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | - Mercedes Villar-Navarro
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | - Miriam Hampel
- Instituto Universitario de Investigación Marina (INMAR), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | | | - Julián Blasco
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
18
|
Fernandez R, Colás-Ruiz NR, Martínez-Rodríguez G, Lara-Martín PA, Mancera JM, Trombini C, Blasco J, Hampel M. The antibacterials ciprofloxacin, trimethoprim and sulfadiazine modulate gene expression, biomarkers and metabolites associated with stress and growth in gilthead sea bream (Sparus aurata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106243. [PMID: 35872527 DOI: 10.1016/j.aquatox.2022.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The high consumption and subsequent input of antibacterial compounds in marine ecosystems has become a worldwide problem. Their continuous presence in these ecosystems allows a direct interaction with aquatic organisms and can cause negative effects over time. The objective of the present study was to evaluate the effects of exposure to three antibacterial compounds of high consumption and presence in marine ecosystems (Ciprofloxacin CIP, Sulfadiazine SULF and Trimethoprim TRIM) on the physiology of the gilthead sea bream, Sparus aurata. Plasma parameters, enzymatic biomarkers of oxidative stress and damage and expression of genes related to stress and growth were assessed in exposed S. aurata specimens. For this purpose, sea bream specimens were exposed to individual compounds at concentrations of 5.2 ± 2.1 μg L-1 for CIP, 3.8 ± 2.7 μg L-1 for SULF and 25.7 ± 10.8 μg L-1 for TRIM during 21 days. Exposure to CIP up-regulated transcription of genes associated with the hypothalamic-pituitary-thyroid (HPT) (thyrotropin-releasing hormone, trh) and hypothalamic-pituitary-interrenal (HPI) axes (corticotropin-releasing hormone-binding protein, crhbp) in the brain, as well as altering several hepatic stress biomarkers (catalase, CAT; glutathione reductase, GR; and lipid peroxidation, LPO). Similar alterations at the hepatic level were observed after exposure to TRIM. Overall, our study indicates that S. aurata is vulnerable to environmentally relevant concentrations of CIP and TRIM and that their exposure could lead to a stress situation, altering the activity of antioxidant defense mechanisms as well as the activity of HPT and HPI axes.
Collapse
Affiliation(s)
- Ronield Fernandez
- Microbiology Research Laboratory, University Simon Bolivar, Carrera 59 No. 59-65 Barranquilla, Colombia.
| | - Nieves R Colás-Ruiz
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| | - Gonzalo Martínez-Rodríguez
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University Institute for Marine Research (INMAR), International Excellence Campus of the Sea (CEI-MAR), University of Cádiz, 11510 Puerto Real, Spain
| | - Chiara Trombini
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (ICMAN), Department of Marine Biology and Aquaculture, Spanish National Research Council (CSIC), Puerto Real, 11519, Spain
| | - Miriam Hampel
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, University Institute for Marine Research (INMAR), 11510 Puerto Real, Spain
| |
Collapse
|
19
|
Genome-wide mining of gpx gene family provides new insights into cadmium stress responses in common carp (Cyprinus carpio). Gene 2022; 821:146291. [PMID: 35176426 DOI: 10.1016/j.gene.2022.146291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 01/11/2023]
Abstract
Glutathione peroxidase (Gpx) is an important member of antioxidant enzymes, which can play a vital role in metabolizing reactive oxygen species (ROS) and in maintaining cell homeostasis. In order to study the evolutionary dynamics of gpx gene family in allotetraploid fish species, we identified a total of 14 gpx genes in common carp Cyprinus carpio, while 9 gpx genes were discovered in the diploid progenitor-like species Poropuntius huangchuchieni. Comparative genomic analysis and phylogenetic analysis revealed that the common carp gpx genes had significant expansion and were divided into five distinct subclades. Exon-intron distribution patterns and conserved motif analysis revealed highly conserved evolutionary patterns. Transcript profiles suggested that different gpx genes had specific patterns of regulation during early embryonic development. In adult tissues, gpx genes had a relatively broad expression distribution, most of which were highly expressed in the gills, intestines, and gonads. RT-qPCR studies showed that most gpx genes were downregulated during the initial cd2+ treatment stage. Dietary supplementation of Bacillus coagulans at different concentrations (Group 2 of 1.0 × 107 cfu/g, Group 3 of 1.0 × 108 cfu/g, and Group 4 of 1.0 × 109 cfu/g) induced different regulatory responses of gpx subclades. This result suggested that the appropriate concentration of B. coagulans can improve gpx gene expression when exposed to heavy metal cadmium treatment, which may play a vital role in the resistance to oxidative stress and immune responses. This study has expanded our understanding of the functional evolution of the gpx gene family in common carp.
Collapse
|
20
|
Influence of Particle Size on Ecotoxicity of Low-Density Polyethylene Microplastics, with and without Adsorbed Benzo-a-Pyrene, in Clam Scrobicularia plana. Biomolecules 2022; 12:biom12010078. [PMID: 35053226 PMCID: PMC8773861 DOI: 10.3390/biom12010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
This study investigated the ecotoxicological effects of differently sized (4–6 µm and 20–25 µm) low-density polyethylene (LDPE) microplastics (MPs), with and without adsorbed benzo-a-pyrene (BaP), in clam Scrobicularia plana. Biomarkers of oxidative stress (superoxide dismutase—SOD; catalase—CAT), biotransformation (glutathione-S-transferases—GST), oxidative damage (lipid peroxidation—LPO) and neurotoxicity (acetylcholinesterase—AChE) were analysed in gills and digestive glands at different time intervals for a total of 14 days of exposure. In order to have a better impact perspective of these contaminants, an integrated biomarker response index (IBR) and Health Index were applied. Biomarker alterations are apparently more related to smaller sized (4–6 µm) MPs in gills and to virgin LDPE MPs in the digestive gland according to IBR results, while the digestive gland was more affected by these MPs according to the health index.
Collapse
|
21
|
Gonçalves JM, Sousa VS, Teixeira MR, Bebianno MJ. Chronic toxicity of polystyrene nanoparticles in the marine mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 287:132356. [PMID: 34600009 DOI: 10.1016/j.chemosphere.2021.132356] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 05/24/2023]
Abstract
Nanoplastics (NP) (1-100 nm) are a growing global concern, and their adverse effects in marine organisms are still scarce. This study evaluated the effects of polystyrene nanoplastics (10 μg/L; 50 nm nPS) in the marine mussel Mytilus galloprovincialis after a 21 - day exposure. The hydrodynamic diameter and zeta potential of nPS were analysed, over time, in seawater and ultrapure water. A multibiomarker approach (genotoxicity (the comet assay) was assessed in mussel haemocytes, and the antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)), biotransformation enzyme (glutathione - S - transferase (GST)), and oxidative damage (LPO)) was assessed in gills and digestive glands to evaluate the toxicity of nPS towards mussels. In seawater, aggregation of nPS is favoured and consequently the hydrodynamic diameter increases. Genotoxicity was highly noticeable in mussels exposed to nPS, presenting a higher % tail DNA when compared to controls. Antioxidant enzymes are overwhelmed after nPS exposure, leading to oxidative damage in both tissues. Results showed that mussel tissues are incapable of dealing with the effects that this emerging stressor pursues towards the organism. The Integrated Biomarker Response index, used to summarise the biomarkers analysed into one index, shows that nPS toxicity towards mussels are both tissue and time dependent, being that gills are the tissue most compromised.
Collapse
Affiliation(s)
- Joanna M Gonçalves
- CIMA - Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Vânia Serrão Sousa
- CENSE, Centre for Environmental and Sustainability Research, University of Algarve, Faculty of Sciences and Technology, Bldg 7, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Margarida Ribau Teixeira
- CENSE, Centre for Environmental and Sustainability Research, University of Algarve, Faculty of Sciences and Technology, Bldg 7, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maria João Bebianno
- CIMA - Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
22
|
Campos BGD, Fontes MK, Gusso-Choueri PK, Marinsek GP, Nobre CR, Moreno BB, Abreu FEL, Fillmann G, de Britto Mari R, Abessa DMDS. A preliminary study on multi-level biomarkers response of the tropical oyster Crassostrea brasiliana to exposure to the antifouling biocide DCOIT. MARINE POLLUTION BULLETIN 2022; 174:113241. [PMID: 34923405 DOI: 10.1016/j.marpolbul.2021.113241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/29/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This study investigated the sublethal effects of environmentally relevant concentrations of DCOIT on the neotropical oyster Crassostrea brasiliana. Gills and digestive glands of animals exposed to increasing concentrations of DCOIT were analyzed for biochemical, cellular, and histopathological responses. Exposure to DCOIT (0.2 to 151 μg L-1) for 120 h triggered oxidative stress in both tissues (through the modulation of GPX, GST, GSH and GR), which led to damage of membrane lipids (increase of LPO and reduction of the NRRT). DCOIT increased histopathological pathologies in gills, such as necrosis, lymphocyte infiltration and epithelial desquamation. This study showed that short term exposure to environmental concentrations of DCOIT causes negative effects on C. brasiliana at biochemical, physiological, and histological levels. Therefore, the use of DCOIT as a booster biocide in antifouling paints should be further assessed, as it may cause environmental hazards to marine organisms.
Collapse
Affiliation(s)
- Bruno Galvão de Campos
- Bioscience Institute, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil.
| | - Mayana Karoline Fontes
- Bioscience Institute, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil
| | | | - Gabriela Pustiglione Marinsek
- Bioscience Institute, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil; Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Av. João Francisco Bensdorp, 1178, 11350-011 São Vicente, SP, Brazil
| | - Caio Rodrigues Nobre
- Bioscience Institute, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil
| | - Beatriz Barbosa Moreno
- Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Maria Máximo, 168, 11030-100 Santos, SP, Brazil
| | - Fiamma Eugenia Lemos Abreu
- Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Itália s/n, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Itália s/n, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Renata de Britto Mari
- Bioscience Institute, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil
| | - Denis Moledo de Souza Abessa
- Bioscience Institute, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil
| |
Collapse
|
23
|
Fanali LZ, De Oliveira C, Sturve J. Enzymatic, morphological, and genotoxic effects of benzo[a]pyrene in rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53926-53935. [PMID: 34036510 DOI: 10.1007/s11356-021-14583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Fish have defense systems that are capable of repairing damages caused by xenobiotics like benzo[a]pyrene (BaP), so the aims of this study were to identify BaP toxicity in melanomacrophages (MMs) cytoskeleton, evaluate the melanin area in MMs, and analyze genotoxicity. Rainbow trout juveniles (n = 24) were split in 48h and 7d treatments that received 2 mg/kg of BaP. After the experiment, blood samples were collected and liver was removed, to proceed with the analysis: EROD activity, MMs melanin area quantification, melanosomes movements, and a genotoxicity test. The results revealed increased in EROD activity after 48-h and 7-day BaP exposure. The group 7d displayed a reduction in MMs pigmented area, melanosomes aggregation, in addition to an increased frequency of micronucleus. By means of the EROD assay, it was possible to confirm the activation of BaP biotransformation system. The impairment of the melanosomes' movements possibly by an inactivation of the protein responsible for the pigment dispersion consequently affects the melanin area and thus might negatively impact the MMs detoxification capacity. In addition to this cytotoxicity, the increased frequency of micronucleus might also indicate the genotoxicity of BaP in this important fish species.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Classius De Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Göteborg, Sweden
| |
Collapse
|
24
|
Trombini C, Kazakova J, Montilla-López A, Fernández-Cisnal R, Hampel M, Fernández-Torres R, Bello-López MÁ, Abril N, Blasco J. Assessment of pharmaceutical mixture (ibuprofen, ciprofloxacin and flumequine) effects to the crayfish Procambarus clarkii: A multilevel analysis (biochemical, transcriptional and proteomic approaches). ENVIRONMENTAL RESEARCH 2021; 200:111396. [PMID: 34062201 DOI: 10.1016/j.envres.2021.111396] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/30/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The knowledge about the effects of pharmaceuticals on aquatic organisms has been increasing in the last decade. However, due to the variety of compounds presents in the aquatic medium, exposure scenarios and exposed organisms, there are still many gaps in the knowledge on how mixtures of such bioactive compounds affect exposed non target organisms. The crayfish Procambarus clarkii was used to analyze the toxicity effects of mixtures of ciprofloxacin, flumequine and ibuprofen at low and high concentrations (10 and 100 μg/L) over 21 days of exposure and to assess the recovery capacity of the organism after a depuration phase following exposure during additional 7 days in clean water. The crayfish accumulated the three compounds throughout the entire exposure in the hepatopancreas. The exposure to the mixture altered the abundance of proteins associated with different cells functions such as biotransformation and detoxification processes (i.e. catalase and glutathione transferase), carbohydrate metabolism and immune responses. Additionally changes in expression of genes encoding antioxidant enzymes and in activity of the corresponding enzymes (i.e. superoxide dismutase, glutathione peroxidase and glutathione transferase) were reported. Alterations at different levels of biological organization did not run in parallel under all circumstances and can be related to changes in the redox status of the target tissue. No differences were observed between control and exposed organisms for most of selected endpoints after a week of depuration, indicating that exposure to the drug mixture did not produce permanent damage in the hepatopancreas of P. clarkii.
Collapse
Affiliation(s)
- Chiara Trombini
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Julia Kazakova
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | - Alejandro Montilla-López
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Miriam Hampel
- Instituto Universitario de Investigación Marina (INMAR), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Rut Fernández-Torres
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad de Sevilla, 41012, Spain.
| | | | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus Universitario de Rabanales, 14071, Córdoba, Spain.
| | - Julián Blasco
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
25
|
Qi KK, Wu J, Wen Jun Z, Bo D, Xu ZW. Catch-up growth in intrauterine growth-restricted piglets associated with the restore of pancreatic and intestinal functions via porcine glucagon-like peptide-2 microspheres. Arch Anim Nutr 2020; 74:462-475. [PMID: 33076701 DOI: 10.1080/1745039x.2020.1833598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intrauterine growth restriction (IUGR) results in abnormal morphology and gastrointestinal function, such as reduced villi height and crypt depth, thinner mucosa and muscle layers, and reduced brush border enzyme activities, delayed gastric emptying, increased stress response. As a gastrointestinal growth factor, the manner by which the porcine glucagon-like peptide-2 (pGLP-2) microsphere administration restored the gastrointestinal function and growth performance of IUGR piglets was investigated. Fourteen newborn Duroc × (Yorkshire × Landrace) IUGR piglets (0.92 ± 0.113 kg) were assigned into the IUGR (negative control group) and pGLP-2 microsphere groups. The piglets in group pGLP-2 were intraperitoneally administered with 100 mg pGLP-2 microspheres on day 1 after birth. From days 15 to 26 of trial, the body weight of the pGLP-2 group was significantly higher than that of the control. IUGR piglets of group pGLP-2 showed a significantly increased pancreas weight, serum insulin content and activity of lipase and amylase. Injection of pGLP-2 microspheres restored the intestinal absorptive capacity by significantly increasing the mRNA expression of the sodium-glucose cotransporter 1 in the jejunum and the peptide transporter 1 in the jejunum. It also restored the redox balance by increasing the catalase mRNA expression and decreasing the heat shock protein 70 mRNA expression. In addition, this improvement was associated with the significant increase in gut diameter, length and weight. Therefore, it was concluded that the injection of pGLP-2 microspheres was a suitable therapeutic strategy for compensatory growth in low birth weight IUGR piglets.
Collapse
Affiliation(s)
- Ke Ke Qi
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| | - Jie Wu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| | - Zhou Wen Jun
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| | - Deng Bo
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| | - Zi Wei Xu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences , Hangzhou, China
| |
Collapse
|
26
|
Aguirre-Martínez GV, Martín-Díaz ML. A multibiomarker approach to assess toxic effects of wastewater treatment plant effluents and activated defence mechanisms in marine (Ruditapes philippinarum) and fresh water (Corbicula fluminea) bivalve species. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:941-958. [PMID: 32350641 DOI: 10.1007/s10646-020-02216-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Since it has been demonstrated that urban effluents can have adverse effects on aquatic organisms, a multibiomarker study was used to evaluate the effects of wastewater treatment plant (WWTP) effluents discharged into the marine and freshwater environments on clams in Cádiz, Spain. One bioassay was performed in the Bay of Cádiz, exposing Ruditapes philippinarum (marine) to a reference site as well as two sites close to WWTP discharges for 14 days. A second bioassay was performed in the Guadalete River, exposing Corbicula fluminea (fresh water) to three sites for 21 days. The biomarkers analysed included defence mechanisms and various toxic effects. Results indicated that WWTP effluents activated defence mechanisms and induced toxic effects in clams exposed to both environments, thus indicating bioavailability of contaminants present in water. Elevated enzymatic activity was found in clams deployed in La Puntilla and El Trocadero compared to control clams and those exposed to the reference site, and 96% of clams deployed at G2 in the Guadalete River died before day 7. Clams exposed to G1 and G3 indicated significant differences in all biomarkers analysed with respect to control clams (p < 0.05). Both species were sensitive to contaminants present in studied sites. This is the first time that these species were used in cages to assess the environmental risk of wastewater effluent discharges in freshwater and marine column environments. The multibiomarker approach provided important ecotoxicological information and is useful for the assessment of the bioavailability and effect of contaminants from WWTP effluents on marine and fresh water invertebrates.
Collapse
Affiliation(s)
- G V Aguirre-Martínez
- Faculty of Marine and Environmental Sciences, Cadiz University, Campus Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n. P. Real, Cádiz, Spain.
- Faculty of Health Science, Arturo Prat University, Casilla 121, 1110939, Iquique, Chile.
- Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, Puerto Real, 11510, Cádiz, Spain.
| | - M L Martín-Díaz
- Faculty of Marine and Environmental Sciences, Cadiz University, Campus Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n. P. Real, Cádiz, Spain
- Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
27
|
Isibor PO, Akinsanya B, Sogbamu T, Olaleru F, Excellence A, Komolafe B, Kayode SJ. Nilonema gymnarchi (Nematoda: Philometridae) and trace metals in Gymnarchus niloticus of Epe lagoon in Lagos State, Nigeria. Heliyon 2020; 6:e04959. [PMID: 33015385 PMCID: PMC7522485 DOI: 10.1016/j.heliyon.2020.e04959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022] Open
Abstract
The presence of trace metals in the sediment, water, and biota of the Epe lagoon has been recently linked to oil exploration and municipal perturbations around the lagoon. The study was aimed at assessing the concentrations and associated health risks of Fe, Zn, Cu, Ni, Pb, Cd, Cr, Mn, Co and V in the water, sediment, and Gymnarchus niloticus of Epe lagoon and to evaluate the role of the enteric parasite Nilonema gymnarchi in bioaccumulation of the metals in the fish. The temperature, pH, redox potential, conductivity, turbidity, dissolved oxygen (DO), total dissolved solids (TDS), and salinity were determined in-situ using a handheld multi-parameter probe (Horiba Water Checker Model U-10). The concentrations of Fe, Zn, Cu, Ni, Pb, Cd, Cr, Mn, Co, and V were determined in the surface water, bottom sediment, Gymnarchus niloticus, and its enteric parasites, Nilonema gymnarchi in Epe lagoon using the Flame Atomic Absorption Spectrometer (Philips model PU 9100). The bioaccumulation factors and target hazard quotients of the trace metals in the infected and uninfected fish were estimated and compared. The intestinal tissue sections of the infected and uninfected fish were examined using a binocular dissecting microscope (American Optical Corporation, Model 570) using hematoxylin and eosin (H&E) stain. Biochemical markers such as reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA) were determined in the liver of the infected and uninfected fish. The SOD level was higher in the uninfected fish than the infected ones supports the indications deduced from the bioaccumulation analysis. Strong positive correlations between SOD and most of the metals- Fe (0.916), Zn (0.919), Cu (0.896), and Ni (0.917) suggests that the metals may have inflicted more toxicity in the uninfected. The histopathological comparisons made between the uninfected and infected fish showed consistency with the outcomes of other comparisons made in this study. These evidence were marked by tissue alterations in the infected fish ranging from no observed changes to mild alterations, while the uninfected exhibited more severe tissue injuries such as hemorrhagic lesions, severe vascular congestion, edema, the increased connective tissue of the submucosa, and vascular congestion. The condition factors of the infected (0.252) and uninfected (0.268) fish indicated slenderness and unfitness possibly due to environmental stressors such as trace metals. The parasitized fish showing better-coping potentials than the uninfected, coupled with the significant bioaccumulation interferences exhibited by the parasite Nilonema gymnarchi is an indication that the parasites may be a good metal sequestration agent for the fish and can be used to forestall the significant health hazard quotient posed by the current level of iron and the synergy of all metals analyzed in the lagoon.
Collapse
Affiliation(s)
| | - Bamidele Akinsanya
- Department of Zoology, University of Lagos, P.O. Box 156, Akoka, Nigeria
| | - Temitope Sogbamu
- Department of Zoology, University of Lagos, P.O. Box 156, Akoka, Nigeria
| | - Fatsuma Olaleru
- Department of Zoology, University of Lagos, P.O. Box 156, Akoka, Nigeria
| | | | - Benjamin Komolafe
- Department of Zoology, University of Lagos, P.O. Box 156, Akoka, Nigeria
| | | |
Collapse
|
28
|
Ehiguese FO, Alam MR, Pintado-Herrera MG, Araújo CVM, Martin-Diaz ML. Potential of environmental concentrations of the musks galaxolide and tonalide to induce oxidative stress and genotoxicity in the marine environment. MARINE ENVIRONMENTAL RESEARCH 2020; 160:105019. [PMID: 32907733 DOI: 10.1016/j.marenvres.2020.105019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic musk compounds have been identified in environmental matrices (water, sediment and air) and in biological tissues in the last decade, yet only minimal attention has been paid to their chronic toxicity in the marine environment. In the present research, the clams Ruditapes philippinarum were exposed to 0.005, 0.05, 0.5, 5 and 50 μg/L of the fragrances Galaxolide® (HHCB) and Tonalide® (AHTN) for 21 days. A battery of biomarkers related with xenobiotics biotransformation (EROD and GST), oxidative stress (GPx, GR and LPO) and genotoxicity (DNA damage) were measured in digestive gland tissues. HHCB and AHTN significantly (p < 0.05) induced EROD and GST enzymatic activities at environmental concentrations. Both fragrances also induced GPx activity. All concentrations of both compounds induced an increase of LPO and DNA damage on day 21. Although these substances have been reported as not acutely toxic, this study shows that they might induce oxidative stress and genotoxicity in marine organisms.
Collapse
Affiliation(s)
- Friday O Ehiguese
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Md Rushna Alam
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain; Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Marina G Pintado-Herrera
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain
| | - M Laura Martin-Diaz
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
29
|
Moreira LB, Sasaki ST, Taniguchi S, Peres TF, Lopes Figueira RC, Bícego MC, Marins RV, Costa-Lotufo LV, Souza Abessa DM. Biomarkers responses of the clam Anomalocardia flexuosa in sediment toxicity bioassays using dredged materials from a semi-arid coastal system. Heliyon 2020; 6:e04030. [PMID: 32509987 PMCID: PMC7264064 DOI: 10.1016/j.heliyon.2020.e04030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 05/18/2020] [Indexed: 01/23/2023] Open
Abstract
Few test organisms are employed for sediment toxicity assessments in Tropical regions, including Brazil. We assessed the ability of the clam Anomalocardia flexuosa to respond to contamination in sediment bioassays using dredging materials of a semi-arid region (Ceará State, NE Brazil), with attention to sublethal responses. Sediments were collected during and after dredging (survey 1 and 2, respectively) and animals exposed in laboratory over 28 days, with responses measured at 7 days. Bioaccumulation of contaminants was determined in whole-body soft tissues as a metric of bioavailability, and biomarkers' changes were monitored in terms of enzymes of phase I and II metabolism, acetylcholinesterase (AChE), and antioxidant responses, lipid peroxidation (LPO) and DNA damage (strand breaks). Clams accumulated aliphatic (AHs) and aromatic hydrocarbons (PAHs), and linear alkylbenzenes (LABs) compared to control conditions (day 0), with increased amounts of As, Cd, Cu, and Zn observed in some samples. The enzyme glutathione S-transferase was enhanced in animals exposed to samples, indicating activation of phase II metabolism. Changes observed in glutathione peroxidase (GPx), glutathione reductase (GR), LPO and strand breaks were related to oxidative stress. AChE enzymatic activity also changed, as an indicator of neurotoxicity caused by sediment exposure. The computed integrated biomarker response index (IBR) ranked sites according to the contamination status and proximity to its sources. Correlations found for biomarkers and bioaccumulation of hydrocarbons indicated the influence of harbor activities, effluent discharges, and urban runoff on the sediment pollution of Mucuripe Bay. Data also showed that SQGs are unable to predict bioaccumulation and subchronic effects. Based on our results we consider that biomarkers responses in A. flexuosa are important endpoints to be applied in sediment toxicity bioassays in tropical regions.
Collapse
Affiliation(s)
- Lucas Buruaem Moreira
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, Brazil.,Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, UNESP São Vicente, Brazil
| | | | - Satie Taniguchi
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago Farias Peres
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Gonçalves JM, Rocha T, Mestre NC, Fonseca TG, Bebianno MJ. Assessing cadmium-based quantum dots effect on the gonads of the marine mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2020; 156:104904. [PMID: 32174334 DOI: 10.1016/j.marenvres.2020.104904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
This study assesses the sex-specific effects induced by CdTe QDs, on the marine mussel Mytilus galloprovincialis in comparison to its dissolved counterpart. A 14 days exposure to CdTe QDs and dissolved Cd was conducted (10 μg Cd L-1), analysing Cd accumulation, oxidative stress, biotransformation, metallothionein and oxidative damage in the gonads. Both Cd forms caused significant antioxidant alterations, whereby QDs were more pro-oxidant, leading to oxidative damage, being females more affected. Overall, biochemical impairments on gonads of M. galloprovincialis demonstrate that the reproductive toxicity induced by CdTe QDs in mussels are sex-dependent and mediated by oxidative stress and lipid peroxidation. It is crucial to acknowledge how gametes are affected by metal-based nanoparticles, such as Cd-based QDs. As well as understanding the potential changes they may undergo at the cellular level during gametogenesis, embryogenesis and larval development potentially leading to serious impacts on population sustainability and ecosystem health.
Collapse
Affiliation(s)
- J M Gonçalves
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - T Rocha
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - N C Mestre
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - T G Fonseca
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - M J Bebianno
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
31
|
Ryu HS, Song JA, Park HS, Choi YJ, Choi CY. Physiological and oxidative stress response of goldfish Carassius auratus induced by a light dimming system. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:585-595. [PMID: 31811578 DOI: 10.1007/s10695-019-00733-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Light is an essential factor for organisms and affects the endocrine and stress regulation of fish in nature. However, sudden changes in light and dark conditions in artificial environments can negatively impact fish. In the present study, to evaluate the physiological and oxidative stress responses of goldfish (Carassius auratus) exposed to two different light conditions, sudden light changes and slowly dimming light changes for 24 h, we analyzed the mRNA expression and activity of stress indicators [corticotropin-releasing hormone (CRH) and pro-opiomelanocortin (POMC)], levels of plasma cortisol and glucose, mRNA expression of glucocorticoid receptor (GR), and activity of plasma oxidative stress indicators (superoxide dismutase and catalase). Consequently, the mRNA expressions and activities of CRH and POMC, plasma levels of cortisol and glucose, and mRNA expression of GR were found to be significantly increased during the light changes, particularly in the control group. Additionally, plasma levels of cortisol and glucose in the control group were significantly higher than those in the dimming group during the light changes. However, no significant differences in mRNA expression levels and activities of antioxidant enzymes both in the control and dimming groups were observed. These results indicate that dimming light induces less stress than sudden changes in light.
Collapse
Affiliation(s)
- Han Seok Ryu
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Jin Ah Song
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Heung-Sik Park
- Marine Ecosystem and Biological Research Center, KIOST, Busan, 49111, Republic of Korea
| | - Young Jae Choi
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu, 59780, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| |
Collapse
|
32
|
Aouini F, Trombini C, Sendra M, Blasco J. Biochemical response of the clam Ruditapes philippinarum to silver (AgD and AgNPs) exposure and application of an integrated biomarker response approach. MARINE ENVIRONMENTAL RESEARCH 2019; 152:104783. [PMID: 31558295 DOI: 10.1016/j.marenvres.2019.104783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Silver is a ubiquitous metal in the marine environment which can be accumulated by marine organisms. In order to assess the effect of dissolved silver (AgD) and AgNPs in R. philippinarum, the organisms were exposed to 20 μg L-1 of AgD and AgNPs (15 nm) over 7 days. Bioaccumulation of the metal and oxidative and detoxification biomarkers were studied in control and exposed clams. Ag was accumulated in gills and digestive glands. Results for biochemical biomarkers (superoxide dismutase, catalase and glutathione reductase activity, lipid peroxidation and metallothionein provoked a general increase in the integrated biomarker response index (IBR) values) indicating the induction of oxidative stress in the clams exposed to both Ag treatments. Therefore, the presence of Ag forms at the tested concentration in the aquatic medium represent a risk for R. philippinarum.
Collapse
Affiliation(s)
- Fatma Aouini
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain; Laboratory of Ecology, Biology and Physiology of Aquatic Organisms. Department of Biology. Faculty of Sciences of Tunis. University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Chiara Trombini
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Marta Sendra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Julian Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
33
|
Mestre NC, Auguste M, de Sá LC, Fonseca TG, Cardoso C, Brown A, Barthelemy D, Charlemagne N, Hauton C, Machon J, Ravaux J, Shillito B, Thatje S, Bebianno MJ. Are shallow-water shrimps proxies for hydrothermal-vent shrimps to assess the impact of deep-sea mining? MARINE ENVIRONMENTAL RESEARCH 2019; 151:104771. [PMID: 31420206 DOI: 10.1016/j.marenvres.2019.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Polymetallic seafloor massive sulphide deposits are potential targets for deep-sea mining, but high concentrations of metals (including copper - Cu) may be released during exploitation activities, potentially inducing harmful impact. To determine whether shallow-water shrimp are suitable ecotoxicological proxies for deep-sea hydrothermal vent shrimp the effects of waterborne Cu exposure (3 and 10 days at 0.4 and 4 μM concentrations) in Palaemon elegans, Palaemon serratus, and Palaemon varians were compared with Mirocaris fortunata. Accumulation of Cu and a set of biomarkers were analysed. Results show different responses among congeneric species indicating that it is not appropriate to use shallow-water shrimps as ecotoxicological proxies for deep-water shrimps. During the evolutionary history of these species they were likely subject to different chemical environments which may have induced different molecular/biochemical adaptations/tolerances. Results highlight the importance of analysing effects of deep-sea mining in situ and in local species to adequately assess ecotoxicological effects under natural environmental conditions.
Collapse
Affiliation(s)
- N C Mestre
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus Universitário de Gambelas, 8005-139, Faro, Portugal.
| | - M Auguste
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus Universitário de Gambelas, 8005-139, Faro, Portugal
| | - L C de Sá
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus Universitário de Gambelas, 8005-139, Faro, Portugal
| | - T G Fonseca
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus Universitário de Gambelas, 8005-139, Faro, Portugal
| | - C Cardoso
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus Universitário de Gambelas, 8005-139, Faro, Portugal
| | - A Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - D Barthelemy
- Océanopolis, Port de Plaisance du Moulin Blanc BP 91039, 29210, Brest Cedex 1, France
| | - N Charlemagne
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7208, MNHN/IRD-207/UCN/UA, Biologie des Organismes et Ecosystèmes Aquatiques, 7 Quai St Bernard, 75252, Cedex 5 Paris, France
| | - C Hauton
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - J Machon
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7208, MNHN/IRD-207/UCN/UA, Biologie des Organismes et Ecosystèmes Aquatiques, 7 Quai St Bernard, 75252, Cedex 5 Paris, France
| | - J Ravaux
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7208, MNHN/IRD-207/UCN/UA, Biologie des Organismes et Ecosystèmes Aquatiques, 7 Quai St Bernard, 75252, Cedex 5 Paris, France
| | - B Shillito
- Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7208, MNHN/IRD-207/UCN/UA, Biologie des Organismes et Ecosystèmes Aquatiques, 7 Quai St Bernard, 75252, Cedex 5 Paris, France
| | - S Thatje
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - M J Bebianno
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus Universitário de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
34
|
Moreira LB, Sasaki ST, Taniguchi S, Bícego MC, Costa-Lotufo LV, Abessa DMS. Impacts of dredging on biomarkers responses of caged bivalves in a semi-arid region (Ceará State, NE Brazil). MARINE ENVIRONMENTAL RESEARCH 2019; 151:104784. [PMID: 31493851 DOI: 10.1016/j.marenvres.2019.104784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
In this study, the performance of two native bivalves in responding to sediment resuspension was investigated during dredging operations of a semi-arid bay (Mucuripe, NE Brazil). The clam Anomalocardia flexuosa and the oyster Crassostrea rhizophorae were selected and caged in two sites influenced by the dredging plume. We assessed the bioaccumulation of metals and hydrocarbons in both species as biomarkers of exposure and then, biomarkers' responses were assessed in gills and digestive glands over a 28 days period, at 7 days intervals: the activities of phase I and II, and antioxidant enzymes, levels of lipid peroxidation and DNA strand breaks. Both transplanted bivalves accumulated Cu, polycyclic aromatic hydrocarbons (PAHs), and linear alkylbenzenes (LABs) in their whole-body tissues, whereas Ni, Pb and Zn accumulation was species-dependent. The exposure time set at day 28 was considered appropriate. Biomarkers exhibited time-related responses in both species, but gills exhibited a more sensitive response, indicating a function of barrier against the uptake of chemicals and also a relevant tissue to be targeted. In clams, Phase I and II enzymes (ethoxyresorufin O-deethylase and glutathione S-transferase) were induced during the period of intense dredging, while in oysters they were activated at the end of operations. Induction of antioxidant enzymes (glutathione peroxidase and glutathione reductase) and elevated levels DNA damage were observed in both exposure surveys. Clams and oysters were sensitive and responded to the exposure of resuspended sediments and the biomarkers of effects were associated with bioaccumulation of contaminants in the integrated analysis. These results indicate that The clam A. flexuosa and the oyster C. rhizophorae are suitable models to be used in monitoring programs or field exposure experiments in tropical regions.
Collapse
Affiliation(s)
- Lucas B Moreira
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, Brazil; Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, UNESP - São Vicente, Brazil.
| | - Silvio T Sasaki
- Instituto Oceanográfico, Universidade de São Paulo - São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Instituto Oceanográfico, Universidade de São Paulo - São Paulo, São Paulo, Brazil
| | - Márcia C Bícego
- Instituto Oceanográfico, Universidade de São Paulo - São Paulo, São Paulo, Brazil
| | | | - Denis M S Abessa
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, UNESP - São Vicente, Brazil
| |
Collapse
|
35
|
Carrazco-Quevedo A, Römer I, Salamanca MJ, Poynter A, Lynch I, Valsami-Jones E. Bioaccumulation and toxic effects of nanoparticulate and ionic silver in Saccostrea glomerata (rock oyster). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:127-134. [PMID: 31030055 DOI: 10.1016/j.ecoenv.2019.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The increasing production of Ag nanoparticle (AgNP) containing products has inevitably led to a growing concern about their release into the aquatic environment, along with their potential behaviour, toxicity, and bioaccumulation in marine organisms exposed to NPs released from these products. Hence, this study is focused on the effects of AgNPs in Saccostrea glomerata (rock oyster) in artificial seawater (ASW); evaluating the NP's stability, dissolution, and bioaccumulation rate. AgNPs NM300K (20 ± 5 nm) in concentrations of 12.5 μgL-1 and 125 μgL-1 were used to conduct the experiments, and were compared to a blank and a positive control of 12.5 μgL-1 AgNO3. Dissolution in ASW was measured by ICP-OES and stability was assessed by TEM after 1 h and 3, 5, and 7 days of exposure. Bioaccumulation in gills and digestive glands was measured after 7 days of exposure. The higher concentration of AgNPs induced more aggregation, underwent less dissolution, and showed less bioaccumulation, while the lower concentration showed less aggregation, more dissolution and higher bioaccumulation. Five biomarkers (EROD: ethoxyresorufin-o-deethylase, DNA strand breaks, LPO: lipid peroxidation, GST: glutathione S-transferase and GR: glutathione reductase) were analysed at 0, 3, 5 and 7 days. Significant differences compared to the initial day of exposure (day 0) were reported in DNA strand breaks after 5 and 7 days of exposure, GST, from the third day of exposure, in all the Ag samples, and in some samples for LPO and GR biomarkers, while no significant induction of EROD was observed. A combined effect for each type of treatment and time of exposure was also reported for DNA strand breaks and GST biomarkers measured at the digestive glands. In general, the significant inductions measured showed the following trend: 125 μgL-1 AgNPs >12.5 μgL-1 AgNPs ∼12.5 μgL-1 AgNO3 even though bioaccumulation followed the opposite trend.
Collapse
Affiliation(s)
- Ana Carrazco-Quevedo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Isabella Römer
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maria J Salamanca
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alexander Poynter
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
36
|
Leris I, Kalogianni E, Tsangaris C, Smeti E, Laschou S, Anastasopoulou E, Vardakas L, Kapakos Y, Skoulikidis NT. Acute and sub-chronic toxicity bioassays of Olive Mill Wastewater on the Eastern mosquitofish Gambusia holbrooki. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:48-57. [PMID: 30884344 DOI: 10.1016/j.ecoenv.2019.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Olive oil production generates large volumes of wastewaters mostly in peri-Mediterranean countries with adverse impacts on the biota of the receiving aquatic systems. Few studies have however documented its toxicity on aquatic species, with an almost total lack of relative studies on fish. We assessed the acute and sub-chronic OMW toxicity, as well as the acute and sub-chronic behavioural, morphological and biochemical effects of OMW exposure on the mosquitofish Gambusia holbrooki. LC50 values of the acute bioassays ranged from 7.31% (24 h) to 6.38% (96 h). Behavioural symptoms of toxicity included hypoactivity and a shift away from the water surface, coupled with a range of morphological alterations, such as skin damage, excessive mucus secretion, hemorrhages, fin rot and exophhalmia, with indications also of gill swelling and anemia. Biochemical assays showed that OMW toxicity resulted in induction of catalase (CAT) and inhibition of acetylcholinesterase (AChE) activities. The implications of our results at the level of environmental policy for the sustainable management of the olive mill industry, i.e. the effective restriction of untreated OMW disposal of in adjacent waterways, as well as the implementation of new technologies that reduce their impact (detoxification and/or revalorization of its residues) are discussed.
Collapse
Affiliation(s)
- Ioannis Leris
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Eleni Kalogianni
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece.
| | - Catherine Tsangaris
- Hellenic Centre for Marine Research, Institute of Oceanography, Anavissos, 19013 Attica, Greece
| | - Evangelia Smeti
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Sofia Laschou
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Evangelia Anastasopoulou
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Leonidas Vardakas
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Yiannis Kapakos
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| | - Nikolaos Th Skoulikidis
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, Anavissos, 19013 Attica, Greece
| |
Collapse
|
37
|
Ding L, Li W, Li N, Liang L, Zhang X, Jin H, Shi H, Storey KB, Hong M. Antioxidant responses to salinity stress in an invasive species, the red-eared slider (Trachemys scripta elegans) and involvement of a TOR-Nrf2 signaling pathway. Comp Biochem Physiol C Toxicol Pharmacol 2019; 219:59-67. [PMID: 30738853 DOI: 10.1016/j.cbpc.2019.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023]
Abstract
The red-eared slider (Trachemys scripta elegans), a freshwater turtle, is an invasive species in many parts of the world where it survives in both freshwater and coastal saline habitats. High salinity can induce reactive oxygen species (ROS) production and lead to oxidative damage. In this study, we investigate the antioxidant defense mechanisms of T. s. elegans in response to salinity stress. The results showed that the mRNA expression levels of superoxide dismutase (SODs), catalase (CAT) and glutathione peroxidase (GSH-PXs) were significantly increased in both 5 psu and 15 psu groups at the early stages of salinity exposure (generally 6-48 h), but typically returned to control levels after the longest 30 d exposure. In addition, hepatic and cardiac mRNA levels of the NF-E2-related factor 2 (Nrf2), showed a similar upregulation as an early response to stress, but decreased at 30 d in the 5 psu and 15 psu groups. The mRNA levels of the negative regulator of Nrf2, kelch-like ECH associating protein 1 (Keap1), exhibited the opposite pattern. Moreover, mRNA expression levels of target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) in liver and heart showed roughly similar patterns to those for Nrf2. Furthermore, the content of malondialdehyde (MDA) was significantly increased in liver, especially in the 15 psu group by ~2.5-fold. Taken together, these results indicate that T. s. elegans may activate the TOR-Nrf2 pathway to modulate antioxidant genes transcription in order to promote enhanced antioxidant defense in response to salinity stress.
Collapse
Affiliation(s)
- Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Weihao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Lingyue Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xinying Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Huilin Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China.
| |
Collapse
|
38
|
Cortez FS, Souza LDS, Guimarães LL, Pusceddu FH, Maranho LA, Fontes MK, Moreno BB, Nobre CR, Abessa DMDS, Cesar A, Pereira CDS. Marine contamination and cytogenotoxic effects of fluoxetine in the tropical brown mussel Perna perna. MARINE POLLUTION BULLETIN 2019; 141:366-372. [PMID: 30955746 DOI: 10.1016/j.marpolbul.2019.02.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Concerns are growing about the presence of fluoxetine (FLX) in environmental matrices, as well as its harmful effects on non-target organisms. FLX in aquatic ecosystems has been detected in a range varying from pg/L to ng/L, while adverse effects have been reported in several organisms inhabiting freshwater and marine environments. The present study quantifies FLX concentrations in seawater samples from Santos Bay, Brazil and assesses metabolic responses and sublethal effects on the tropical brown mussel Perna perna. Levels of ethoxyresorufin‑O‑deethylase, dibenzylfluorescein dealkylase, glutathione S-transferase, glutathione peroxidase, cholinesterase, lipoperoxidation, and DNA damage were assessed in the gills and digestive gland of these animals, and lysosomal membrane stability was also assessed in hemocytes. FLX altered phase I and II enzyme activities, caused cytogenotoxic effects, and negatively impacted the overall health of mussels exposed to environmentally relevant concentrations. These findings contribute to characterize the risks of introducing this drug into the marine environment.
Collapse
Affiliation(s)
- Fernando Sanzi Cortez
- Universidade Santa Cecília, Rua Oswaldo Cruz 266, Santos, SP CEP:11045-907, Brazil; Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | | | | | | | | | - Mayana Karoline Fontes
- Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | - Beatriz Barbosa Moreno
- Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP CEP 11030-100, Brazil
| | - Caio Rodrigues Nobre
- Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | - Denis Moledo de Souza Abessa
- Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | - Augusto Cesar
- Universidade Santa Cecília, Rua Oswaldo Cruz 266, Santos, SP CEP:11045-907, Brazil; Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP CEP 11030-100, Brazil
| | - Camilo Dias Seabra Pereira
- Universidade Santa Cecília, Rua Oswaldo Cruz 266, Santos, SP CEP:11045-907, Brazil; Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP CEP 11030-100, Brazil.
| |
Collapse
|
39
|
Trombini C, Hampel M, Blasco J. Assessing the effect of human pharmaceuticals (carbamazepine, diclofenac and ibuprofen) on the marine clam Ruditapes philippinarum: An integrative and multibiomarker approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:146-156. [PMID: 30677710 DOI: 10.1016/j.aquatox.2019.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
The presence of pharmaceuticals in the aquatic ecosystem has become a topic of growing interest in recent years. In this study, the marine clam Ruditapes philippinarum was exposed during 14 days to concentrations close to those found in the environment: (15 μg L-1) of carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBU), three pharmaceuticals widely used worldwide and commonly found within the aquatic environment. Additionally, exposure was followed by a depuration phase (7 days). A battery of biomarkers (superoxide dismutase SOD, catalase CAT, glutathione reductase GR, total glutathione peroxidase T-GPx, glutathione transferase GST, lipid peroxidation LPO, acetylcholinesterase AChE and metallothionein MT) was evaluated throughout the exposure and depuration. The Integrated Biomarker Response index was calculated with all selected biomarkers and used as a complementary tool in the evaluation of the organisms' health status. Exposure induced changes in the clams' biochemical responses that led to the hypothesis of the harmful role of the pharmaceuticals resulting in negative effects (changes in enzyme activities, LPO and MT levels, related to ROS production) particularly after short-term exposure. However, the clams showed the ability to cope with these imbalances by recovering their general oxidative status by the end of exposure.
Collapse
Affiliation(s)
- Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Miriam Hampel
- Instituto Universitario de Investigación Marina (INMAR), Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
40
|
Bonnail E, Macías F, Osta V. Ecological improvement assessment of a passive remediation technology for acid mine drainage: Water quality biomonitoring using bivalves. CHEMOSPHERE 2019; 219:695-703. [PMID: 30557726 DOI: 10.1016/j.chemosphere.2018.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
A passive treatment plant, located in the Iberian Pyrite Belt (Huelva, Southwest Spain), was designed for acid mine drainage remediation. Since its installation, the improvement of water quality in terms of hydrochemical composition has been demonstrated successfully. However, according to the Water Framework Directive, the treated effluent must have ecological values for potential living. The freshwater clam Corbicula fluminea was chosen to carry out bioassessments (survival, biomarker responses, and metal bioaccumulation in soft tissue) with effluents from the mining site, as well as, products from the passive treatment plant in order to determine the level of quality of that water from the biological point of view in toxicity tests. Results discarded mortality as endpoint for biomonitoring purposes. Only the lipid peroxidation of the cell membrane evidenced significant responses, even in correlation with the pollution degree of each effluent. Regarding bioaccumulation, some elements displayed a strong relationship (Fe, Cu, Co, and Zn) between concentrations in the environment and in the tissue. As final conclusion, the usage of the Asian clam was validated as biomonitor tool in short term exposure to acid mine drainage, and, as early warning responses (72 h), the chosen parameters would be lipid peroxidation and bioaccumulation of a specific set of elements (Fe, Cu, Co, Zn). Ecological water quality levels reached by the passive treatment plant were in agreement with the efficiency of hydrochemical improvements.
Collapse
Affiliation(s)
- Estefanía Bonnail
- Centro de Investigaciones Costeras-Universidad de Atacama (CIC-UDA), University of Atacama, Chile.
| | - Francisco Macías
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment (RENSMA), University of Huelva, Campus "El Carmen", 21071, Huelva, Spain.
| | - Victoria Osta
- UNESCO UNITWIN/WiCop Department of Physical-Chemistry, University of Cádiz, Campus Río de San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
41
|
Bonnail E, Riba I, de Seabra AA, DelValls TÁ. Sediment quality assessment in the Guadalquivir River (SW, Spain) using caged Asian clams: A biomarker field approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1996-2003. [PMID: 30290342 DOI: 10.1016/j.scitotenv.2018.09.346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
This study assesses the sediment quality of the Guadalquivir River watercourse between the Alcalá del Río dam and the city of Seville. The main objective of this work is to address sediment quality in the area using an integrative approach that links sediment contamination and toxicity using the Asiatic clam (Corbicula fluminea) under field conditions. This is the first study conducted in the area that use of a battery of biomarkers from exposure (GST, GPx) to adverse biological effect (DNA and histopathological damage) to identify the contamination adverse effects in a river area affected by a cocktail of different anthropogenic activities (urban, industrial, agricultural, etc.). The sediment quality characterized in the area shows a significant biological stress related to metal(loid)s at station located in Alcalá del Río in the river upper part of the studied area, being this stress toxic when approaching the city of Seville. The sediments located nearby this city showed toxicity by means of positive values in the biomarkers of effects measured in the caged clams and related to contaminants with an industrial and urban discharge origins. These results have shown the useful and strength of the biomarker approach used in this study that combines biomarker responses from exposure to effects and allows identifying the contamination adverse effects by means of using caging individuals of the Asian clam. It has been proved in the different experiments how once the exposure biomarkers reach a maximum value of their system the detoxification ability of the organisms is collapsed and then the biomarkers of effect are measured significantly in the different tissues. The use of field surveys using tolerant specie such as the Asian clam is recommendable to determine sediment quality under an integrative point of view as here reported.
Collapse
Affiliation(s)
- Estefanía Bonnail
- Centro de Investigaciones Costeras-Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó, Atacama, Chile.
| | - Inmaculada Riba
- Departmento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain; Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | - T Ángel DelValls
- Departmento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain; Department of Ecotoxicology, University of Santa Cecilia, Santos, Sao Paulo, Brazil
| |
Collapse
|
42
|
Pustiglione Marinsek G, Moledo de Souza Abessa D, Gusso-Choueri PK, Brasil Choueri R, Nascimento Gonçalves AR, D'angelo Barroso BV, Souza Santos G, Margarete Cestari M, Galvão de Campos B, de Britto Mari R. Enteric nervous system analyses: New biomarkers for environmental quality assessment. MARINE POLLUTION BULLETIN 2018; 137:711-722. [PMID: 30503489 DOI: 10.1016/j.marpolbul.2018.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The gastrointestinal tract (GIT) of fish is a target of contaminants since it can absorb these substances. We evaluated the morphophysiological alterations in the GIT of Sphoeroides testudineus collected in two estuaries presenting differences in their environmental quality (NIA and IA). The intestine was analyzed for histological and neuronal changes; liver and gills for biochemical markers; muscle tissues for neurotoxicity and peripheral blood for genotoxic damage. The results showed alterations in the GIT of the animals collected in the IA, such as muscle tunica and goblet cell density reduction, increased intraepithelial lymphocytes density and changes in neuronal density. Furthermore, changes were observed in MTs and LPO in the gills. Thus, we suggest that TGI is functioning as a barrier that responds to ingested contaminants, in order to reduce their absorption and translocation. Thus, alterations in morphophysiological and enteric neurons in S. testudineus can be used as biomarkers of environmental contamination.
Collapse
Affiliation(s)
- Gabriela Pustiglione Marinsek
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil..
| | - Denis Moledo de Souza Abessa
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Paloma Kachel Gusso-Choueri
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP - Santos), Av. Almirante Saldanha da Gama, 89, CP 11030-490 Santos, SP, Brazil
| | | | - Beatriz Vivian D'angelo Barroso
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Gustavo Souza Santos
- Genetics Department, Federal University of Paraná (UFPR), 81531-990 Curitiba, PR, Brazil
| | | | - Bruno Galvão de Campos
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| | - Renata de Britto Mari
- São Paulo State University (UNESP), Institute of Biosciences, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, SP, Brazil
| |
Collapse
|
43
|
Bonnail E, Cunha Lima R, Bautista-Chamizo E, Salamanca MJ, Cruz-Hernández P. Biomarker responses of the freshwater clam Corbicula fluminea in acid mine drainage polluted systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1659-1668. [PMID: 30064871 DOI: 10.1016/j.envpol.2018.07.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The environmental quality of an acid mine drainage polluted river (Odiel River) in the Iberian Pyrite Belt (SW Spain) was assessed by combining analyses of biomarkers (DNA strand breaks, LPO, EROD, GST, GR, GPx) in freshwater clams (Corbicula fluminea) exposed during 14 days and correlated with metal(loid) environmental concentrations. Results pointed that enzymatic systems are activated to combat oxidative stress in just 24 h. Along exposure, there were homeostatic regulations with the glutathione activity that influenced in lipid peroxidation oscillations, provoking significant DNA strand damage after 14 exposure days. EROD activity showed no changes throughout the exposure period. The Asian clam displayed balance biomarkers of exposure-antioxidant activity under non-stressfully environments; meanwhile, when was introduced into acid polymetallic environments, such as the acid mine drainage, its enzymatic activity was displaced towards biomarkers of effect and the corresponding antioxidant activity.
Collapse
Affiliation(s)
- Estefanía Bonnail
- Centro de Investigaciones Costeras- Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó, Región Atacama, Chile.
| | - Ricardo Cunha Lima
- Centro de Investigaciones Costeras- Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó, Región Atacama, Chile
| | | | - María José Salamanca
- Departamento de Química-Física, Universidad de Cádiz, CP 11510, Puerto Real, Cádiz, Spain
| | - Pablo Cruz-Hernández
- Department of Earth Sciences, University of Huelva, Campus 'El Carmen', Huelva, E-21071, Spain; Department of Mining Egineering, University of Chile, FCFM, Santiago, Chile
| |
Collapse
|
44
|
Cortez FS, Souza LDS, Guimarães LL, Almeida JE, Pusceddu FH, Maranho LA, Mota LG, Nobre CR, Moreno BB, Abessa DMDS, Cesar A, Santos AR, Pereira CDS. Ecotoxicological effects of losartan on the brown mussel Perna perna and its occurrence in seawater from Santos Bay (Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1363-1371. [PMID: 29801229 DOI: 10.1016/j.scitotenv.2018.05.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 05/20/2023]
Abstract
The antihypertensive losartan (LOS) has been detected in wastewater and environmental matrices, however further studies focused on assessing the ecotoxicological effects on aquatic ecosystems are necessary. Considering the intensive use of this pharmaceutical and its discharges into coastal zones, our study aimed to determine the environmental concentrations of LOS in seawater, as well as to assess the biological effects of LOS on the marine bivalve Perna perna. For this purpose, fertilization rate and embryolarval development were evaluated through standardized assays. Phase I (ethoxyresorufin O‑deethylase EROD and dibenzylfluorescein dealkylase DBF) and II (glutathione S-transferase GST) enzymes, glutathione peroxidase (GPx), Cholinesterase (ChE), lipoperoxidation (LPO) and DNA damage were used to analyze sublethal responses in gills and digestive gland of adult individuals. Lysosomal membrane stability was also assessed in hemocytes. Our results showed the occurrence of LOS in 100% of the analyzed water samples located in Santos Bay, Sao Paulo, Brazil, in a range of 0.2 ng/L-8.7 ng/L. Effects on reproductive endpoints were observed after short-term exposure to concentrations up to 75 mg/L. Biomarker responses demonstrated the induction of CYP450 like activity and GST in mussel gills exposed to 300 and 3000 ng/L of LOS, respectively. GPx activity was also increased in concentration of exposure to 3000 ng/L of LOS. Cyto-genotoxic effects were found in gills and hemocytes exposed in concentrations up to 300 ng/L. These results highlighted the concern of introducing this class of contaminants into marine environments, and pointed out the need to include antihypertensive compounds in environmental monitoring programs.
Collapse
Affiliation(s)
- Fernando Sanzi Cortez
- Unisanta - Universidade Santa Cecília, Santos, SP, Brazil; Unesp - Universidade Estadual Paulista Julio de Mesquita, São Vicente, SP, Brazil
| | | | | | | | | | - Luciane Alves Maranho
- Unisanta - Universidade Santa Cecília, Santos, SP, Brazil; Unesp - Universidade Estadual Paulista Julio de Mesquita, São Vicente, SP, Brazil
| | | | - Caio Rodrigues Nobre
- Unesp - Universidade Estadual Paulista Julio de Mesquita, São Vicente, SP, Brazil
| | | | | | - Augusto Cesar
- Unisanta - Universidade Santa Cecília, Santos, SP, Brazil; Unifesp - Universidade Federal de São Paulo, Santos, SP, Brazil
| | | | - Camilo Dias Seabra Pereira
- Unisanta - Universidade Santa Cecília, Santos, SP, Brazil; Unifesp - Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
45
|
Aouini F, Trombini C, Volland M, Elcafsi M, Blasco J. Assessing lead toxicity in the clam Ruditapes philippinarum: Bioaccumulation and biochemical responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:193-203. [PMID: 29702460 DOI: 10.1016/j.ecoenv.2018.04.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 05/26/2023]
Abstract
Lead (Pb) is a non-essential metal. Its occurrence in the environment is related principally to anthropogenic contamination. Pb is toxic to aquatic organisms and can provoke damage to membranes and inhibit the activity of essential enzymes. The filter-feeding, Manila clam Ruditapes philippinarum is widely used as a biomonitor organism to assess metal toxicity. Among biomarkers related to the Pb toxicity, the enzymatic activity of δ-aminolevulinic acid dehydratase (δ-ALAD) has been adopted as a specific tool. Metallothionein (MT), lipid peroxidation (LPO) and antioxidant enzymes activities, such as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) and superoxidase dismutase (SOD) have also been employed to assess the toxic effect of metals. Two target tissues, the gills and the digestive gland, were selected to examine biomarker responses. In order to assess the effects of Pb accumulation and the mechanisms involved in the recovery from it, clams were exposed at two Pb levels (10 and 100 µg/L) for 7 days and were later maintained in clean water for 7 days as a depuration period. Pb accumulation was dependent on the exposure concentration and higher Pb levels were observed in the gills compared to the digestive gland. Inhibition of δ-ALAD, GST and SOD and the induction of MT and LPO over the exposure period were observed in the gills and the digestive gland of R. philippinarum. The depuration period showed a continuous inhibition of the δ-ALAD activity and induction of MT and LPO in both tissues. These results demonstrate that lead induced an exposure effect and the 7 days of depuration were not sufficient to recover the basal health status of the clams.
Collapse
Affiliation(s)
- Fatma Aouini
- Research Unit of Ecophysiology and Aquatic Environment, Sciences Faculty of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia; Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Moritz Volland
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Mhamed Elcafsi
- Research Unit of Ecophysiology and Aquatic Environment, Sciences Faculty of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Julian Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
46
|
Bonnail E, Buruaem LM, Morais LG, Araujo GS, Abessa DMS, Sarmiento AM, Ángel DelValls T. Integrative assessment of sediment quality in lower basin affected by former mining in Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1465-1480. [PMID: 28612322 DOI: 10.1007/s10653-017-9996-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
The Ribeira de Iguape River (Southeast Brazil) is metal contaminated by mining activities. Despite it has been cataloged as "in via of restoration" by the literature, this basin is still a sink of pollution in some segments of the fluvial system. This study aimed to assess the sediment quality in the lower part of the RIR basin. The employed approach was based on biological responses of the freshwater clam Corbicula fluminea after 7-day exposure bioassays using as the reference site the Perequê Ecological Park. Toxic responses (burial activity and lethality) and biochemical biomarkers (GST, GR, GPx, LPO, MTs, AChE and DNA damage) were evaluated and then integrated with metal bioavailability and chemical concentrations to address the sediment quality in the area through the weight-of-evidence approach. A multivariate analysis identified linkages between biological responses and contamination. Results pointed that, despite being below the benchmarks of the US Environmental Protection Agency, there is slight metal contamination in the lower part of the basin which induces oxidative stress in C. fluminea; other toxic responses were sometimes attributed to As and Cr bioaccumulation. The sediment quality values (TEL-PEL values in mg/kg) were calculated for the current study for As (0.63-1.31), Cr (3.5-11.05), Cs (1.0-1.17), Cu (6.32-7.32), Ni (6.78-7.46), Ti (42.0-215), V (1.77-8.00). By comparison with other international guidelines, the sediment quality of the lower basin of the Vale de Ribeira does not identify a significant environmental risk.
Collapse
Affiliation(s)
- Estefanía Bonnail
- Centro de Investigaciones Costeras-Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó, III Región, Chile.
| | - Lucas M Buruaem
- Campus Experimental do Litoral Paulista, Núcleo de Estudos sobre Poluição e Ecotoxicologia Aquática, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Praça Infante Dom Henrique s/n, São Vicente, SP, 11330-900, Brazil
| | - Lucas G Morais
- Campus Experimental do Litoral Paulista, Núcleo de Estudos sobre Poluição e Ecotoxicologia Aquática, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Praça Infante Dom Henrique s/n, São Vicente, SP, 11330-900, Brazil
| | - Giuliana S Araujo
- Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Denis M S Abessa
- Campus Experimental do Litoral Paulista, Núcleo de Estudos sobre Poluição e Ecotoxicologia Aquática, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Praça Infante Dom Henrique s/n, São Vicente, SP, 11330-900, Brazil
| | - Aguasanta M Sarmiento
- Department of Earth Sciences & Research Center of Natural Resources, Health and the Environment, University of Huelva, 21071, Huelva, Spain
| | - T Ángel DelValls
- UNESCO UNITWIN/WiCop, Department of Physical-Chemistry, Faculty of Marine and Environmental Sciences, University of Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
47
|
Gomes Silva AP, da Silva Araujo Santiago M, Maranho LA, de Oliveira RP, Constantino DHJ, Pereira CDS, da Silva RCB, Perobelli JE. Could male reproductive system be the main target of subchronic exposure to manganese in adult animals? Toxicology 2018; 409:1-12. [PMID: 29990519 DOI: 10.1016/j.tox.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/28/2023]
Abstract
Manganese (Mn) is one of the most common chemical elements on Earth and an essential micronutrient in animal organism. However, in supraphysiological levels and long-term exposures, it is a potential toxicant. Although nervous system is the most studied in relation to Mn toxicity, other tissues can have their function impaired by Mn in high doses. The present study investigated the possible adverse effects of subchronic exposure to supraphysiologic level of Mn (5 mg/kg or 15 mg/kg, intraperitoneally) on reproductive, neurobehavioral, renal and hepatic parameters of male rats. For the first time, the vulnerability of these parameters to Mn was concomitantly investigated. While our results demonstrate that Mn treatments were not sufficient to produce a marked effect of neurotoxic, hepatotoxic or renal toxicity in adult rats, we found typical indicators of reproductive toxicity such as histopathological changes (major in testes and epididymis) and impaired sperm concentration and quality. Mn, under these experimental conditions, seems to exert reproductive toxicity by different testicular mechanisms, i.e. direct and indirect action on germ cells. On the other hand, exposure to Mn did not change the pattern of cognitive and emotional behaviors and the histological organization of kidneys of experimental rats. The liver showed a weight increasement and hidropic degeneration, probable due to the detoxification overload. In summary, for the first time it was demonstrated that adult male reproductive system was more sensitive to Mn toxicity than nervous, hepatic and renal systems, although nervous system is known as the main target tissue of this metal.
Collapse
Affiliation(s)
- Ana Priscila Gomes Silva
- Laboratório de Toxicologia Experimental-LATOEX, Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Marcella da Silva Araujo Santiago
- Laboratório de Toxicologia Experimental-LATOEX, Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Luciane Alves Maranho
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Rodolpho Pereira de Oliveira
- Laboratório de Psicobiologia da Esquizofrenia, Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | | | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Regina Cláudia Barbosa da Silva
- Laboratório de Psicobiologia da Esquizofrenia, Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| | - Juliana Elaine Perobelli
- Laboratório de Toxicologia Experimental-LATOEX, Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, SP, Brazil.
| |
Collapse
|
48
|
Choi CY, Choe JR, Shin YS, Kim TH, Choi JY, Kim BS. Effects of waterborne copper on oxidative stress and immune responses in red seabream, Pagrus major. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0032-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Fontes MK, Gusso-Choueri PK, Maranho LA, Abessa DMDS, Mazur WA, de Campos BG, Guimarães LL, de Toledo MS, Lebre D, Marques JR, Felicio AA, Cesar A, Almeida EA, Pereira CDS. A tiered approach to assess effects of diclofenac on the brown mussel Perna perna: A contribution to characterize the hazard. WATER RESEARCH 2018; 132:361-370. [PMID: 29353198 DOI: 10.1016/j.watres.2017.12.077] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 05/17/2023]
Abstract
Pharmaceutical discharges into the aquatic ecosystem are of environmental concern and sewage treatment plants (STPs) have been pointed out as the major source of these compounds to coastal zones, where oceanic disposal of sewage occurs through submarine outfalls. Diclofenac (DCF) is one of the most frequently detected pharmaceuticals in water, but little is known about the effects on marine organisms. In this study, we employed a tiered approach involving the determination of environmental concentrations of DCF in marine water and the adverse biological effects for fertilization, embryo-larval development and biomarker responses of the mussel Perna perna. Results indicate that effects in fertilization rate and embryo-larval development were found in the order of mg·L-1. However, low concentrations of DCF (ng·L-1) significantly decreased the lysosomal membrane stability and COX activity, as well as triggered DNA damage, oxidative stress and changes in antioxidant defenses. Our results point to an environmental hazard at coastal ecosystems and suggest the need for improvements in the treatment of domestic wastewater aiming to reduce DCF concentrations, as well as regulation on current environmental legislation and monitoring of aquatic ecosystems.
Collapse
Affiliation(s)
- Mayana Karoline Fontes
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil; Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista "Júlio de Mesquita Filho", Infante Dom Henrique, s/n, 11330-900 São Vicente, Brazil
| | - Paloma Kachel Gusso-Choueri
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista "Júlio de Mesquita Filho", Infante Dom Henrique, s/n, 11330-900 São Vicente, Brazil
| | - Luciane Alves Maranho
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Denis Moledo de Souza Abessa
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista "Júlio de Mesquita Filho", Infante Dom Henrique, s/n, 11330-900 São Vicente, Brazil
| | - Wesley Almeida Mazur
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil; Departamento de Bioquímica da Universidade Federal de São Paulo, Rua Botucatu, 862, 04023-901 São Paulo, Brazil
| | - Bruno Galvão de Campos
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista "Júlio de Mesquita Filho", Infante Dom Henrique, s/n, 11330-900 São Vicente, Brazil
| | - Luciana Lopes Guimarães
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil; Departamento de Bioquímica da Universidade Federal de São Paulo, Rua Botucatu, 862, 04023-901 São Paulo, Brazil
| | - Marcos Sergio de Toledo
- Departamento de Bioquímica da Universidade Federal de São Paulo, Rua Botucatu, 862, 04023-901 São Paulo, Brazil
| | - Daniel Lebre
- CEMSA - Centro de Espectrometria de Massas Aplicada, CIETEC/IPEN, Av. Prof. Lineu Prestes, 2242, Salas 112 e 113, 05508-000 São Paulo, Brazil
| | - Joyce Rodrigues Marques
- CEMSA - Centro de Espectrometria de Massas Aplicada, CIETEC/IPEN, Av. Prof. Lineu Prestes, 2242, Salas 112 e 113, 05508-000 São Paulo, Brazil
| | - Andreia Arantes Felicio
- Universidade Estadual Paulista Júlio de Mesquita Filho - Campus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Augusto Cesar
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Eduardo Alves Almeida
- Fundação Universidade Regional de Blumenau, Rua Antônio da Veiga 498, Itoupava Seca, 89030-103 Blumenau, Brazil
| | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil.
| |
Collapse
|
50
|
Díaz-Garduño B, Perales JA, Biel-Maeso M, Pintado-Herrera MG, Lara-Martin PA, Garrido-Pérez C, Martín-Díaz ML. Biochemical responses of Solea senegalensis after continuous flow exposure to urban effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:486-497. [PMID: 29017122 DOI: 10.1016/j.scitotenv.2017.09.304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Urban effluent potential toxicity was assessed by a battery of biomarkers aimed at determining sub-lethal effects after continuous exposure on the marine organism Solea senegalensis. Specimens were exposed to five effluent concentrations (1/2, 1/4, 1/8, 1/16, 1/32) during 7-days, simulating the dispersion plume at the discharge point. Three different groups of biomarkers were selected in the present study: biomarkers of exposure (Phase I: EROD and DBF; Phase II: GST), biomarkers with antioxidant responses (GR and GPX) and biomarkers of effects (DNA damage and LPO). Additionally, a biological depuration treatment (photobiotreatment (PhtBio)) was tested in order to reduce the adverse effects on aquatic organisms. Effluent exposure caused sub-lethal responses in juvenile fish suggesting oxidative stress. After PhtBio application, concentrations of the major part of measured contaminants were reduced, as well as their bioavailability and adverse effects.
Collapse
Affiliation(s)
- B Díaz-Garduño
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - J A Perales
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - M Biel-Maeso
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - M G Pintado-Herrera
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - P A Lara-Martin
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - C Garrido-Pérez
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - M L Martín-Díaz
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|