1
|
Munk Lauridsen M, Ravnskjaer K, Gluud LL, Sanyal AJ. Disease classification, diagnostic challenges, and evolving clinical trial design in MASLD. J Clin Invest 2025; 135:e189953. [PMID: 40371650 PMCID: PMC12077896 DOI: 10.1172/jci189953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) diagnosis and management have evolved rapidly alongside the increasing prevalence of obesity and related complications. Hepatology has expanded its focus beyond late-stage cirrhosis and portal hypertension to earlier, complex MASLD cases in younger patients, necessitating closer collaboration with endocrinology. The renaming of nonalcoholic fatty liver disease (NAFLD) to MASLD reflects its pathophysiology, reduces stigma, and has prompted new research directions. Noninvasive tests such as liver stiffness measurement now play a crucial role in diagnosis, reducing reliance on invasive liver biopsies. However, advanced omics technologies, despite their potential to enhance diagnostic precision and patient stratification, remain underutilized in routine clinical practice. Behavioral factors, including posttraumatic stress disorder (PTSD) and lifestyle choices, influence disease outcomes and must be integrated into patient management strategies. Primary care settings are critical for early screening to prevent progression to advanced disease, yet sizable challenges remain in implementing effective screening protocols. This Review explores these evolving aspects of MASLD diagnosis and management, emphasizing the need for improved diagnostic tools, multidisciplinary collaboration, and holistic care approaches to address existing gaps and ensure comprehensive patient care across all healthcare levels.
Collapse
Affiliation(s)
- Mette Munk Lauridsen
- Stravitz-Sanyal Liver Institute, Department of Gastroenterology & Hepatology, Virginia Commonwealth University Medical Clinic, Richmond, Virginia, USA
- University Hospital of Southern Denmark, Liver Research Group, Department of Gastroenterology and Hepatology, Esbjerg, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital, Hvidovre, Denmark, and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arun J. Sanyal
- Stravitz-Sanyal Liver Institute, Department of Gastroenterology & Hepatology, Virginia Commonwealth University Medical Clinic, Richmond, Virginia, USA
| |
Collapse
|
2
|
Hu Y, Haessler J, Lundin JI, Darst BF, Whitsel EA, Grove M, Guan W, Xia R, Szeto M, Raffield LM, Ratliff S, Wang Y, Wang X, Fohner AE, Lynch MT, Patel YM, Lani Park S, Xu H, Mitchell BD, Bis JC, Sotoodehnia N, Brody JA, Psaty BM, Peloso GM, Tsai MY, Rich SS, Rotter JI, Smith JA, Kardia SLR, Reiner AP, Lange L, Fornage M, Pankow JS, Graff M, North KE, Kooperberg C, Peters U. Methylome-wide association analyses of lipids and modifying effects of behavioral factors in diverse race and ethnicity participants. Clin Epigenetics 2025; 17:54. [PMID: 40176173 PMCID: PMC11967142 DOI: 10.1186/s13148-025-01859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
Circulating lipid concentrations are clinically associated with cardiometabolic diseases. The phenotypic variance explained by identified genetic variants remains limited, highlighting the importance of searching for additional factors beyond genetic sequence variants. DNA methylation has been linked to lipid concentrations in previous studies, although most of the studies harbored moderate sample sizes and exhibited underrepresentation of non-European ancestry populations. In addition, knowledge of nongenetic factors on lipid profiles is extremely limited. In the Population Architecture Using Genomics and Epidemiology (PAGE) Study, we performed methylome-wide association analysis on 9,561 participants from diverse race and ethnicity backgrounds for HDL-c, LDL-c, TC, and TG levels, and also tested interactions between smoking or alcohol intake and methylation in their association with lipid levels. We identified novel CpG sites at 16 loci (P < 1.18E-7) with successful replication on 3,215 participants. One additional novel locus was identified in the self-reported White participants (P = 4.66E-8). Although no additional CpG sites were identified in the genome-wide interaction analysis, 13 reported CpG sites showed significant heterogeneous association across smoking or alcohol intake strata. By mapping novel and reported CpG sites to genes, we identified enriched pathways directly linked to lipid metabolism as well as ones spanning various biological functions. These findings provide new insights into the regulation of lipid concentrations.
Collapse
Grants
- N01HC95160 NHLBI NIH HHS
- 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, 75N92021D00005, and S10OD028685 NIH HHS
- 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, DK063491, HL148610, and R01HL105756 NHLBI NIH HHS
- R01 HL087652 NHLBI NIH HHS
- UL1 TR000040 NCATS NIH HHS
- HHSN268201800010I NHLBI NIH HHS
- N01HC85081 NHLBI NIH HHS
- R01 HL103612 NHLBI NIH HHS
- 75N92020D00002 NHLBI NIH HHS
- 75N92021D00002 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- U01HG007397 NHGRI NIH HHS
- HHSN268201800012C NHLBI NIH HHS
- 75N92020D00005 NHLBI NIH HHS
- 75N92021D00005 WHI NIH HHS
- U01HL054457, RC1HL100185, R01HL087660, R01HL119443, R01HL133221 NHLBI NIH HHS
- 75N92022D00001 NIH HHS
- N01HC95163 NHLBI NIH HHS
- U01 HL080295 NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- DK063491 National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center
- HHSN268201800014I NHLBI NIH HHS
- U01CA164973 NCI NIH HHS
- U01 HL130114 NHLBI NIH HHS
- R01 HL087660 NHLBI NIH HHS
- HHSN268200800007C NHLBI NIH HHS
- S10 OD028685 NIH HHS
- 75N92020D00001 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- N01HC95164 NHLBI NIH HHS
- UL1 TR000124 NCATS NIH HHS
- N01HC55222 NHLBI NIH HHS
- HHSN268201800014C NHLBI NIH HHS
- N01HC95162 NHLBI NIH HHS
- N01HC85086 NHLBI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- R01 HL119443 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- N01HC95168 NHLBI NIH HHS
- K08 HL116640 NHLBI NIH HHS
- 75N92021D00001 NHLBI NIH HHS
- P30 DK063491 NIDDK NIH HHS
- RC1 HL100185 NHLBI NIH HHS
- HHSN268201200036C NHLBI NIH HHS
- HHSN268201800001C NHLBI NIH HHS
- HHSN268201800013I NIMHD NIH HHS
- UL1TR000124 NCATS NIH HHS
- U01 HL054457 NHLBI NIH HHS
- N01HC95165 NHLBI NIH HHS
- N01HC95159 NHLBI NIH HHS
- HHSN268201800012I NHLBI NIH HHS
- 75N92021D00003 WHI NIH HHS
- N01HC95161 NHLBI NIH HHS
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- HHSN268201800011C NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- R01AG023629 NIA NIH HHS
- HHSN268201800013I, HHSN268201800014I, HHSN268201800015I, HHSN268201800010I, HHSN268201800011I, and HHSN268201800012I NIMHD NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- R01HL105756, HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, R01AG023629, 75N92021D00006, U01HL080295, U01HL130114, K08HL116640, R01HL087652, R01HL092111, R01HL103612, R01HL111089, R01HL116747 and R01HL120393 NHLBI NIH HHS
- R01 HL133221 NHLBI NIH HHS
- 75N92021D00006 NHLBI NIH HHS
- R01HG010297 NHGRI NIH HHS
- N01HC85082 NHLBI NIH HHS
- N01HC95167 NHLBI NIH HHS
- N01HC85083 NHLBI NIH HHS
- HHSN268201800015I NHLBI NIH HHS
- 75N92020D00006 NHLBI NIH HHS
- N01HC85079 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
- R01 AG023629 NIA NIH HHS
- UL1 TR001881 NCATS NIH HHS
- HHSN268201800011I NHLBI NIH HHS
- N01HC85080 NHLBI NIH HHS
- R01 HG010297 NHGRI NIH HHS
- U01 CA164973 NCI NIH HHS
- 75N92021D00004 WHI NIH HHS
- R01 HL111089 NHLBI NIH HHS
- R01 HL116747 NHLBI NIH HHS
- R01 HL092111 NHLBI NIH HHS
- National Institutes of Health
- National Human Genome Research Institute
- National Institute on Minority Health and Health Disparities
- National Heart, Lung, and Blood Institute
- National Institute on Aging
- National Center for Advancing Translational Sciences
- National Cancer Institute
Collapse
Affiliation(s)
- Yao Hu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jessica I Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Burcu F Darst
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Megan Grove
- School of Public Health, Human Genetics Center, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Weihua Guan
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Rui Xia
- McGovern Medical School, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mindy Szeto
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Scott Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Xuzhi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alison E Fohner
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Megan T Lynch
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yesha M Patel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - S Lani Park
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Huichun Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Leslie Lange
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Myriam Fornage
- School of Public Health, Human Genetics Center, University of Texas Health Sciences Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Zhang L, Du Y, Li Y, Wang T, Pan Y, Xue X, Mu X, Qiu J, Qian Y. Mitochondrial mechanism of florfenicol-induced nonalcoholic fatty liver disease in zebrafish using multi-omics technology. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136958. [PMID: 39724715 DOI: 10.1016/j.jhazmat.2024.136958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Florfenicol (FF), a third-generation chloramphenicol antibiotic widely used in food-producing animals, has become a "pseudopersistent" environmental contaminant, raising concerns about its potential ecological and human health impacts. However, its bioaccumulation behavior and hepatotoxic mechanisms remain poorly understood. This study aims to address these gaps with a 28-day exposure experiment in adult zebrafish at 0.05 and 0.5 mg/L FF. Multiomic analyses (metabolomics, lipidomics, and transcriptomics), combined with histological and mitochondrial function assessments, were employed. Higher bioaccumulation was observed at 0.05 mg/L, potentially due to metabolic saturation at higher concentrations. Histological analysis revealed significant hepatic steatosis (>5 % steatosis area), indicative of moderate nonalcoholic fatty liver disease (NAFLD). Multiomic data demonstrated global dysregulation in energy metabolism, including marked alterations in lipids (accumulation of toxic sphingolipids, excessive fatty acids, and acylglycerol), amino acids, tricarboxylic acid cycle intermediates, and nucleotides. Crucially, mitochondrial dysfunction was identified as a central mechanism, with impaired respiratory chain activities, adenosine triphosphate depletion, elevated reactive oxygen species, and oxidative stress promoting NAFLD progression. These findings highlight mitochondrial impairment and oxidative stress as key drivers of FF-induced hepatotoxicity, providing novel insights into its toxicological mechanisms and emphasizing the ecological risks posed by antibiotic pollution in aquatic systems.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yang Du
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yameng Li
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yecan Pan
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiyan Mu
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Qiu
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yongzhong Qian
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Muralidharan S, Lee JWJ, Lim YS, Muthiah M, Tan E, Demicioglu D, Shabbir A, Loo WM, Koo CS, Lee YM, Soon G, Wee A, Halisah N, Abbas S, Ji S, Triebl A, Burla B, Koh HWL, Chan YS, Lee MC, Ng HH, Wenk MR, Torta F, Dan YY. Serum lipidomic signatures in patients with varying histological severity of metabolic-dysfunction associated steatotic liver disease. Metabolism 2025; 162:156063. [PMID: 39522592 DOI: 10.1016/j.metabol.2024.156063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum of pathologies ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. Patients with metabolic associated steatohepatitis (MASH) with fibrosis are at greatest risk of liver and cardiovascular complications. To identify such at-risk MASLD patients, physicians are still reliant on invasive liver biopsies. This study aimed to identify circulating lipidomic signatures to better identify patients with MASH in a multi-ethnic Asian cohort. APPROACH & RESULTS A lipidomic approach was used to quantify a total of 481 serum lipids from 151 Singaporean patients paired with protocolized liver biopsies. Lipidomic signatures for MASLD, at-risk MASH and advanced fibrosis were identified. 210 lipids showed significant differences for varying histological subtypes of MASLD. Majority of these lipids were associated with liver steatosis (198/210). We identified a panel of 13 lipids associated with lobular inflammation, ballooning and significant fibrosis. Of note, dihexosylceramides were novel markers for significant fibrosis. Using the serum lipidome alone, we could stratify patients with MASLD (AUROC 0.863), as well as those with at-risk MASH (AUROC 0.912) and advanced fibrosis (AUROC 0.95). The lipidomic at-risk MASH predictor, using 14 markers, was independently validated (n = 105) with AUROC 0.76. CONCLUSIONS The dynamic shift in serum lipid profile was associated with progressive histological stages of MASLD, providing surrogate markers for distinguishing stages of MASLD as well as identifying novel pathways in the pathogenesis.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Jonathan W J Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology & Hepatology, National University Hospital, Singapore; iHealthtech, National University of Singapore, Singapore
| | - Yee Siang Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | - Eunice Tan
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | | | - Asim Shabbir
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Surgery, National University Hospital, Singapore
| | - Wai Mun Loo
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | - Chieh Sian Koo
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | - Yin Mei Lee
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | - Gwyneth Soon
- Department of Pathology, National University Hospital, Singapore
| | - Aileen Wee
- Department of Pathology, National University Hospital, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nur Halisah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sakinah Abbas
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Alexander Triebl
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Hiromi W L Koh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Shen Chan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Mei Chin Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Huck Hui Ng
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Programme and Department of Biochemistry, National University of Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Programme and Department of Biochemistry, National University of Singapore, Singapore; Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Yock Young Dan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology & Hepatology, National University Hospital, Singapore.
| |
Collapse
|
5
|
Vouilloz A, Bourgeois T, Diedisheim M, Pilot T, Jalil A, Le Guern N, Bergas V, Rohmer N, Castelli F, Leleu D, Varin A, de Barros JPP, Degrace P, Rialland M, Blériot C, Venteclef N, Thomas C, Masson D. Impaired unsaturated fatty acid elongation alters mitochondrial function and accelerates metabolic dysfunction-associated steatohepatitis progression. Metabolism 2025; 162:156051. [PMID: 39454822 DOI: 10.1016/j.metabol.2024.156051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND AND AIMS Although qualitative and quantitative alterations in liver Polyunsaturated Fatty Acids (PUFAs) are observed in MASH in humans, a causal relationship of PUFAs biosynthetic pathways is yet to be clarified. ELOVL5, an essential enzyme in PUFA elongation regulates hepatic triglyceride metabolism. Nonetheless, the long-term consequences of elongase disruption, particularly in murine models of MASH, have not been evaluated. APPROACH & RESULTS In humans, transcriptomic data indicated that PUFAs biosynthesis enzymes and notably ELOVL5 were induced during MASH progression. Moreover, gene module association determination revealed that ELOVL5 expression was associated with mitochondrial function in both humans and mice. WT and Elovl5-deficient mice were fed a high-fat, high-sucrose (HF/HS) diet for four months. Elovl5 deficiency led to limited systemic metabolic alterations but significant hepatic phenotype was observed in Elovl5-/- mice after the HF/HS diet, including hepatomegaly, pronounced macrovesicular and microvesicular steatosis, hepatocyte ballooning, immune cell infiltration, and fibrosis. Lipid analysis confirmed hepatic triglyceride accumulation and a reshaping of FA profile. Transcriptomic analysis indicated significant upregulation of genes involved in immune cell recruitment and fibrosis, and downregulation of genes involved in oxidative phosphorylation in Elovl5-/- mice. Alterations of FA oxidation and energy metabolism were confirmed by non-targeted metabolomic approach. Analysis of mitochondrial function in Elovl5-/- mice showed morphological alterations, qualitative cardiolipin changes with an enrichment in species containing shorter unsaturated FAs, and decreased activity of I and III respiratory chain complexes. CONCLUSION Enhanced susceptibility to diet-induced MASH and fibrosis in Elovl5-/- mice is intricately associated with disruptions in mitochondrial homeostasis, stemming from a profound reshaping of mitochondrial lipids, notably cardiolipins.
Collapse
Affiliation(s)
- Adrien Vouilloz
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Thibaut Bourgeois
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Marc Diedisheim
- Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France; Clinique Saint Gatien Alliance (NCT+), Saint-Cyr-sur-Loire, France
| | - Thomas Pilot
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Antoine Jalil
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Naig Le Guern
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Victoria Bergas
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; Lipidomic Analytical Facility, 21000 Dijon, France
| | - Noéline Rohmer
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour La Santé (DMTS), MetaboHUB, F-91191 Gif-sur-Yvette, France
| | - Florence Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour La Santé (DMTS), MetaboHUB, F-91191 Gif-sur-Yvette, France
| | - Damien Leleu
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, 21000 Dijon, France
| | - Alexis Varin
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; Lipidomic Analytical Facility, 21000 Dijon, France
| | - Jean-Paul Pais de Barros
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; Lipidomic Analytical Facility, 21000 Dijon, France
| | - Pascal Degrace
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Mickael Rialland
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - Camille Blériot
- Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France
| | - Nicolas Venteclef
- Institut Necker-Enfants Malades, INSERM UMR-S1151, Université Paris Cité, 75015 Paris, France
| | - Charles Thomas
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France
| | - David Masson
- Université de Bourgogne, 21000 Dijon, France; INSERM, LNC UMR1231, 21000 Dijon, France; LipSTIC LabEx, 21000 Dijon, France; CHRU Dijon Bourgogne, Laboratory of Clinical Chemistry, 21000 Dijon, France.
| |
Collapse
|
6
|
Heymann CJF, Mak AL, Holleboom AG, Verheij J, Shiri-Sverdlov R, van Mil SWC, Tushuizen ME, Koek GH, Grefhorst A. The plasma lipidome varies with the severity of metabolic dysfunction-associated steatotic liver disease. Lipids Health Dis 2024; 23:402. [PMID: 39696394 DOI: 10.1186/s12944-024-02380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is closely associated with many aspects of disturbed metabolic health. MASLD encompasses a wide spectrum of liver diseases, ranging from isolated steatosis to metabolic dysfunction-associated steatohepatitis (MASH), up to fibrosis, cirrhosis, and ultimately hepatocellular carcinoma. Limited noninvasive diagnostic tools are currently available to distinguish the various stages of MASLD and as such liver biopsy remains the gold standard for MASLD diagnostics. We aimed to explore whether the plasma lipidome and its variations can serve as a biomarker for MASLD stages. METHODS We investigated the plasma lipidome of 7 MASLD-free subjects and 32 individuals with MASLD, of whom 11 had MASH based on biopsy scoring. RESULTS Compared with the MASLD-free subjects, individuals with MASLD had higher plasma concentrations of sphingolipids, glycerolipids, and glycerophospholipids. Only plasma concentrations of ceramide-1-phosphate C1P(d45:1) and phosphatidylcholine PC(O-36:3), PC(O-38:3), and PC(36:2) differed significantly between presence of MASH in individuals with MASLD. Of these lipids, the first three have a very low relative plasma abundance, thus only PC(36:2) might serve as a biomarker with higher plasma concentrations in MASLD individuals without MASH compared to those with MASH. CONCLUSIONS Plasma lipids hold promise as biomarkers of MASLD stages, whereas plasma PC(36:2) concentrations would be able to distinguish individuals with MASH from those with MASLD without MASH.
Collapse
Affiliation(s)
- Clément J F Heymann
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Anne Linde Mak
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ger H Koek
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 PMCID: PMC11722125 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
8
|
Tkachev A, Stekolshchikova E, Golubova A, Serkina A, Morozova A, Zorkina Y, Riabinina D, Golubeva E, Ochneva A, Savenkova V, Petrova D, Andreyuk D, Goncharova A, Alekseenko I, Kostyuk G, Khaitovich P. Screening for depression in the general population through lipid biomarkers. EBioMedicine 2024; 110:105455. [PMID: 39571307 PMCID: PMC11617895 DOI: 10.1016/j.ebiom.2024.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Anxiety and depression significantly contribute to the overall burden of mental disorders, with depression being one of the leading causes of disability. Despite this, no biochemical test has been implemented for the diagnosis of these mental disorders, while recent studies have highlighted lipids as potential biomarkers. METHODS Using a streamlined high-throughput lipidome analysis method, direct-infusion mass spectrometry, we evaluated blood plasma lipid levels in 604 individuals from a general urban population and analysed their association with self-reported anxiety and depression symptoms. We also assessed lipidome profiles in 32 patients with clinical depression, matched to 21 healthy controls. FINDINGS We found a significant correlation between lipid abundances and the severity of self-reported depression symptoms. Moreover, lipid alterations detected in high scoring volunteers mirrored the lipidome profiles identified in patients with clinical depression included in our study. Based on these findings, we developed a lipid-based predictive model distinguishing individuals reporting severe depressive symptoms from non-depressed subjects with high accuracy. INTERPRETATION This study demonstrates the possibility of generalizing lipid alterations from a clinical cohort to the general population and underscores the potential of lipid-based biomarkers in assessing depressive states. FUNDING This study was sponsored by the Moscow Center for Innovative Technologies in Healthcare, №2707-2, №2102-11.
Collapse
Affiliation(s)
- Anna Tkachev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia; LLC NeurOmix, Moscow, 119571, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anastasia Golubova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Serkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Morozova
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Yana Zorkina
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Daria Riabinina
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Elizaveta Golubeva
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Aleksandra Ochneva
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Valeria Savenkova
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Daria Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Denis Andreyuk
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Economy Faculty, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, Moscow, 123473, Russia
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow Region, 142290, Russia
| | - Georgiy Kostyuk
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia.
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia; LLC NeurOmix, Moscow, 119571, Russia.
| |
Collapse
|
9
|
Carli F, Della Pepa G, Sabatini S, Vidal Puig A, Gastaldelli A. Lipid metabolism in MASLD and MASH: From mechanism to the clinic. JHEP Rep 2024; 6:101185. [PMID: 39583092 PMCID: PMC11582433 DOI: 10.1016/j.jhepr.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 11/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is recognised as a metabolic disease characterised by excess intrahepatic lipid accumulation due to lipid overflow and synthesis, alongside impaired oxidation and/or export of these lipids. But where do these lipids come from? The main pathways related to hepatic lipid accumulation are de novo lipogenesis and excess fatty acid transport to the liver (due to increased lipolysis, adipose tissue insulin resistance, as well as excess dietary fatty acid intake, in particular of saturated fatty acids). Not only triglycerides but also other lipids are secreted by the liver and are associated with a worse histological profile in MASH, as shown by lipidomics. Herein, we review the role of lipid metabolism in MASLD/MASH and discuss the impact of weight loss (diet, bariatric surgery, GLP-1RAs) or other pharmacological treatments (PPAR or THRβ agonists) on hepatic lipid metabolism, lipidomics, and the resolution of MASH.
Collapse
Affiliation(s)
- Fabrizia Carli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Giuseppe Della Pepa
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Silvia Sabatini
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Antonio Vidal Puig
- Metabolic Research Laboratories, Medical Research Council Institute of Metabolic Science University of Cambridge, Cambridge CB2 0QQ UK
- Centro de Investigacion Principe Felipe Valencia 46012 Spain
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
10
|
Lan T, Tacke F. Diagnostics and omics technologies for the detection and prediction of metabolic dysfunction-associated steatotic liver disease-related malignancies. Metabolism 2024; 161:156015. [PMID: 39216799 DOI: 10.1016/j.metabol.2024.156015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it the leading etiology of chronic liver diseases and a prime cause of liver-related mortality. MASLD can progress into steatohepatitis (termed MASH), fibrosis, cirrhosis, and ultimately cancer. MASLD is associated with increased risks of hepatocellular carcinoma (HCC) and also extrahepatic malignancies, which can develop in both cirrhotic and non-cirrhotic patients, emphasizing the importance of identifying patients with MASLD at risk of developing MASLD-associated malignancies. However, the optimal screening, diagnostic, and risk stratification strategies for patients with MASLD at risk of cancer are still under debate. Individuals with MASH-associated cirrhosis are recommended to undergo surveillance for HCC (e.g. by ultrasound and biomarkers) every six months. No specific screening approaches for MASLD-related malignancies in non-cirrhotic cases are established to date. The rapidly developing omics technologies, including genetics, metabolomics, and proteomics, show great potential for discovering non-invasive markers to fulfill this unmet need. This review provides an overview on the incidence and mortality of MASLD-associated malignancies, current strategies for HCC screening, surveillance and diagnosis in patients with MASLD, and the evolving role of omics technologies in the discovery of non-invasive markers for the prediction and risk stratification of MASLD-associated HCC.
Collapse
Affiliation(s)
- Tian Lan
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
11
|
Chen J, Lu RS, Diaz-Canestro C, Song E, Jia X, Liu Y, Wang C, Cheung CK, Panagiotou G, Xu A. Distinct changes in serum metabolites and lipid species in the onset and progression of NAFLD in Obese Chinese. Comput Struct Biotechnol J 2024; 23:791-800. [PMID: 38318437 PMCID: PMC10839226 DOI: 10.1016/j.csbj.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Metabolic disturbances are major contributors to the onset and progression of non-alcoholic fatty liver disease (NAFLD), which includes a histological spectrum ranging from single steatosis (SS) to non-alcoholic steatohepatitis (NASH). This study aimed to identify serum metabolites and lipids enriched in different histological stages of NAFLD and to explore metabolites/lipids as non-invasive biomarkers in risk prediction of NAFLD and NASH in obese Chinese. METHODS Serum samples and liver biopsies were obtained from 250 NAFLD subjects. Untargeted metabolomic and lipidomic profiling were performed using Liquid Chromatography-Mass Spectrometry. Significantly altered metabolites and lipids were identified by MaAsLin2. Pathway enrichment was conducted with MetaboAnalyst and LIPEA. WGCNA was implemented to construct the co-expression network. Logistic regression models were developed to classify different histological stages of NAFLD. RESULTS A total of 263 metabolites and 550 lipid species were detected in serum samples. Differential analysis and pathway enrichment analysis revealed the progressive patterns in metabolic mechanisms during the transition from normal liver to SS and to NASH, including N-palmitoyltaurine, tridecylic acid, and branched-chain amino acid signaling pathways. The co-expression network showed a distinct correlation between different triglyceride and phosphatidylcholine species with disease severity. Multiple models classifying NAFLD versus normal liver and NASH versus SS identified important metabolic features associated with significant improvement in disease prediction compared to conventional clinical parameters. CONCLUSION Different histological stages of NAFLD are enriched with distinct sets of metabolites, lipids, and metabolic pathways. Integrated algorithms highlight the important metabolic and lipidomic features for diagnosis and staging of NAFLD in obese individuals.
Collapse
Affiliation(s)
- Jiarui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Leibniz Insitute for Natural Product Research and Infection Biology, Microbiome Dynamics, Hans Knöll Institute, Jena, Germany
| | - Ronald Siyi Lu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xi Jia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cynthia K.Y. Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Gianni Panagiotou
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Leibniz Insitute for Natural Product Research and Infection Biology, Microbiome Dynamics, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Department of Pharmacology and Pharmacy, the University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
12
|
Thiele M, Villesen IF, Niu L, Johansen S, Sulek K, Nishijima S, Espen LV, Keller M, Israelsen M, Suvitaival T, Zawadzki AD, Juel HB, Brol MJ, Stinson SE, Huang Y, Silva MCA, Kuhn M, Anastasiadou E, Leeming DJ, Karsdal M, Matthijnssens J, Arumugam M, Dalgaard LT, Legido-Quigley C, Mann M, Trebicka J, Bork P, Jensen LJ, Hansen T, Krag A. Opportunities and barriers in omics-based biomarker discovery for steatotic liver diseases. J Hepatol 2024; 81:345-359. [PMID: 38552880 DOI: 10.1016/j.jhep.2024.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 07/26/2024]
Abstract
The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.
Collapse
Affiliation(s)
- Maja Thiele
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ida Falk Villesen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stine Johansen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | | | - Suguru Nishijima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lore Van Espen
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Marisa Keller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mads Israelsen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Joseph Brol
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maria Camilla Alvarez Silva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Diana Julie Leeming
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Morten Karsdal
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonel Trebicka
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Aleksander Krag
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
13
|
Marigorta UM, Millet O, Lu SC, Mato JM. Dysfunctional VLDL metabolism in MASLD. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:16. [PMID: 39049993 PMCID: PMC11263124 DOI: 10.1038/s44324-024-00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024]
Abstract
Lipidomics has unveiled the intricate human lipidome, emphasizing the extensive diversity within lipid classes in mammalian tissues critical for cellular functions. This diversity poses a challenge in maintaining a delicate balance between adaptability to recurring physiological changes and overall stability. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), linked to factors such as obesity and diabetes, stems from a compromise in the structural and functional stability of the liver within the complexities of lipid metabolism. This compromise inaccurately senses an increase in energy status, such as during fasting-feeding cycles or an upsurge in lipogenesis. Serum lipidomic studies have delineated three distinct metabolic phenotypes, or "metabotypes" in MASLD. MASLD-A is characterized by lower very low-density lipoprotein (VLDL) secretion and triglyceride (TG) levels, associated with a reduced risk of cardiovascular disease (CVD). In contrast, MASLD-C exhibits increased VLDL secretion and TG levels, correlating with elevated CVD risk. An intermediate subtype, with a blend of features, is designated as the MASLD-B metabotype. In this perspective, we examine into recent findings that show the multifaceted regulation of VLDL secretion by S-adenosylmethionine, the primary cellular methyl donor. Furthermore, we explore the differential CVD and hepatic cancer risk across MASLD metabotypes and discuss the context and potential paths forward to gear the findings from genetic studies towards a better understanding of the observed heterogeneity in MASLD.
Collapse
Affiliation(s)
- Urko M. Marigorta
- Integrative Genomics Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, 48160 Derio, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - José M. Mato
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, 48160 Derio, Spain
| |
Collapse
|
14
|
Mouskeftara T, Kalopitas G, Liapikos T, Arvanitakis K, Germanidis G, Gika H. Predicting Non-Alcoholic Steatohepatitis: A Lipidomics-Driven Machine Learning Approach. Int J Mol Sci 2024; 25:5965. [PMID: 38892150 PMCID: PMC11172949 DOI: 10.3390/ijms25115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), nowadays the most prevalent chronic liver disease in Western countries, is characterized by a variable phenotype ranging from steatosis to nonalcoholic steatohepatitis (NASH). Intracellular lipid accumulation is considered the hallmark of NAFLD and is associated with lipotoxicity and inflammation, as well as increased oxidative stress levels. In this study, a lipidomic approach was used to investigate the plasma lipidome of 12 NASH patients, 10 Nonalcoholic Fatty Liver (NAFL) patients, and 15 healthy controls, revealing significant alterations in lipid classes, such as glycerolipids and glycerophospholipids, as well as fatty acid compositions in the context of steatosis and steatohepatitis. A machine learning XGBoost algorithm identified a panel of 15 plasma biomarkers, including HOMA-IR, BMI, platelets count, LDL-c, ferritin, AST, FA 12:0, FA 18:3 ω3, FA 20:4 ω6/FA 20:5 ω3, CAR 4:0, LPC 20:4, LPC O-16:1, LPE 18:0, DG 18:1_18:2, and CE 20:4 for predicting steatohepatitis. This research offers insights into the connection between imbalanced lipid metabolism and the formation and progression of NAFL D, while also supporting previous research findings. Future studies on lipid metabolism could lead to new therapeutic approaches and enhanced risk assessment methods, as the shift from isolated steatosis to NASH is currently poorly understood.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., 57001 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theodoros Liapikos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., 57001 Thessaloniki, Greece
| |
Collapse
|
15
|
de Lazzari E, Negredo EB, Domingo P, Tiraboschi JM, Ribera E, Abdulghani N, Alba V, Fernández-Arroyo S, Viladés C, Peraire J, Gatell JM, Blanco JL, Vidal F, Rull A, Martinez E. Multiomics plasma effects of switching from triple antiretroviral regimens to dolutegravir plus lamivudine. J Antimicrob Chemother 2024; 79:1133-1141. [PMID: 38546974 PMCID: PMC11062938 DOI: 10.1093/jac/dkae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
INTRODUCTION The DOLAM trial revealed that switching from triple antiretroviral therapy (three-drug regimen; 3DR) to dolutegravir plus lamivudine (two-drug regimen; 2DR) was virologically non-inferior to continuing 3DR after 48 weeks of follow-up. Weight increased with 2DR relative to 3DR but it did not impact on metabolic parameters. METHODS Multiomics plasma profile was performed to gain further insight into whether this therapy switch might affect specific biological pathways. DOLAM (EudraCT 201500027435) is a Phase 4, randomized, open-label, non-inferiority trial in which virologically suppressed persons with HIV treated with 3DR were assigned (1:1) to switch to 2DR or to continue 3DR for 48 weeks. Untargeted proteomics, metabolomics and lipidomics analyses were performed at baseline and at 48 weeks. Univariate and multivariate analyses were performed to identify changes in key molecules between both therapy arms. RESULTS Switching from 3DR to 2DR showed a multiomic impact on circulating plasma concentration of N-acetylmuramoyl-L-alanine amidase (Q96PD5), insulin-like growth factor-binding protein 3 (A6XND0), alanine and triglyceride (TG) (48:0). Correlation analyses identified an association among the up-regulation of these four molecules in persons treated with 2DR. CONCLUSIONS Untargeted multiomics profiling studies identified molecular changes potentially associated with inflammation immune pathways, and with lipid and glucose metabolism. Although these changes could be associated with potential metabolic or cardiovascular consequences, their clinical significance remains uncertain. Further work is needed to confirm these findings and to assess their long-term clinical consequences.
Collapse
Affiliation(s)
- Elisa de Lazzari
- Hospital Clinic - IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Eugenia B Negredo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Lluita contra les Infeccions, Hospital Universitari Germans Trias i Pujol, Badalona, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Domingo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Esteve Ribera
- Hospital Universitario de la Vall d’Hebron, Barcelona, Spain
| | | | - Verònica Alba
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Salvador Fernández-Arroyo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Consuelo Viladés
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Joaquim Peraire
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Jose M Gatell
- Universitat de Barcelona, Barcelona, Spain
- ViiV Healthcare, Barcelona, Spain
| | - Jose L Blanco
- Hospital Clinic - IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francesc Vidal
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Anna Rull
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Infection and Immunity Research Group (INIM), Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
- Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Esteban Martinez
- Hospital Clinic - IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Mouskeftara T, Deda O, Papadopoulos G, Chatzigeorgiou A, Gika H. Lipidomic Analysis of Liver and Adipose Tissue in a High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Mice Model Reveals Alterations in Lipid Metabolism by Weight Loss and Aerobic Exercise. Molecules 2024; 29:1494. [PMID: 38611773 PMCID: PMC11013466 DOI: 10.3390/molecules29071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Detailed investigation of the lipidome remodeling upon normal weight conditions, obesity, or weight loss, as well as the influence of physical activity, can help to understand the mechanisms underlying dyslipidemia in metabolic conditions correlated to the emergence and progression of non-alcoholic fatty liver disease (NAFLD). C57BL/6 male mice were fed a normal diet (ND) or a high-fat diet (HFD) for 20 weeks. Subgroups within the high-fat diet (HFD) group underwent different interventions: some engaged in exercise (HFDex), others were subjected to weight loss (WL) by changing from the HFD to ND, and some underwent a combination of weight loss and exercise (WLex) during the final 8 weeks of the 20-week feeding period. To support our understanding, not only tissue-specific lipid remodeling mechanisms but also the cross-talk between different tissues and their impact on the systemic regulation of lipid metabolism are essential. Exercise and weight loss-induced specific adaptations in the liver and visceral adipose tissue lipidomes of mice were explored by the UPLC-TOF-MS/MS untargeted lipidomics methodology. Lipidomic signatures of ND and HFD-fed mice undergoing weight loss were compared with animals with and without physical exercise. Several lipid classes were identified as contributing factors in the discrimination of the groups by multivariate analysis models, such as glycerolipids, glycerophospholipids, sphingolipids, and fatty acids, with respect to liver samples, whereas triglycerides were the only lipid class identified in visceral adipose tissue. Lipids found to be dysregulated in HFD animals are related to well-established pathways involved in the biosynthesis of PC, PE, and TG metabolism. These show a reversing trend back to basic levels of ND when animals change to a normal diet after 12 weeks, whereas the impact of exercise, though in some cases it slightly enhances the reversing trend, is not clear.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (O.D.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Olga Deda
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (O.D.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (G.P.); (A.C.)
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (G.P.); (A.C.)
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.M.); (O.D.)
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| |
Collapse
|
17
|
Yang J, Dai M, Wang Y, Yan Z, Mao S, Liu A, Lu C. A CDAHFD-induced mouse model mimicking human NASH in the metabolism of hepatic phosphatidylcholines and acyl carnitines. Food Funct 2024; 15:2982-2995. [PMID: 38411344 DOI: 10.1039/d3fo05111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of a cluster of conditions associated with lipid metabolism disorders. Ideal animal models mimicking the human NASH need to be explored to better understand the pathogenesis. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has recently been used to induce the NASH model, but the advantages are not established. NASH models were induced using the well-known traditional methionine- and choline-deficient (MCD) diet for 5 weeks and the recently used CDAHFD for 3 weeks. Liver phenotypes were analyzed to evaluate the differences in markers related to NASH. Lipidomics and metabolism analyses were used to investigate the effects of dietary regimens on the lipidome of the liver. The CDAHFD induced stronger NASH responses than the MCD, including lipid deposition, liver injury, inflammation, bile acid overload and hepatocyte proliferation. A significant difference in the hepatic lipidome was revealed between the CDAHFD and MCD-induced NASH models. In particular, the CDAHFD reduced the hepatic levels of phosphatidylcholines (PCs) and acylcarnitines (ACs), which was supported by the metabolism analysis and in line with the tendency of human NASH. Pathologically, the CDAHFD could effectively induce a more human-like NASH model over the traditional MCD. The hepatic PCs, ACs and their metabolism in CDAHFD-treated mice were down-regulated, similar to those in human NASH.
Collapse
Affiliation(s)
- Jie Yang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, China.
| | - Manyun Dai
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ying Wang
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Zheng Yan
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shuqi Mao
- Department of Hepatopancreatobiliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, China.
| | - Aiming Liu
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Caide Lu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, China.
| |
Collapse
|
18
|
Kronborg TM, Gao Q, Trošt K, Ytting H, O’Connell MB, Werge MP, Thing M, Gluud LL, Hamberg O, Møller S, Moritz T, Bendtsen F, Kimer N. Low sphingolipid levels predict poor survival in patients with alcohol-related liver disease. JHEP Rep 2024; 6:100953. [PMID: 38283758 PMCID: PMC10820332 DOI: 10.1016/j.jhepr.2023.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Background & Aims Alcohol-related hepatitis (AH) and alcohol-related cirrhosis are grave conditions with poor prognoses. Altered hepatic lipid metabolism can impact disease development and varies between different alcohol-related liver diseases. Therefore, we aimed to investigate lipidomics and metabolomics at various stages of alcohol-related liver diseases and their correlation with survival. Methods Patients with newly diagnosed alcohol-related cirrhosis, who currently used alcohol (ALC-A), stable outpatients with decompensated alcohol-related cirrhosis with at least 8 weeks of alcohol abstinence (ALC), and patients with AH, were compared with each other and with healthy controls (HC). Circulating lipids and metabolites were analysed using HPLC and mass spectrometry. Results Forty patients with ALC, 95 with ALC-A, 30 with AH, and 42 HC provided plasma. Lipid levels changed according to disease severity, with generally lower levels in AH and cirrhosis than in the HC group; this was most pronounced for AH, followed by ALC-A. Nine out of 10 free fatty acids differed between cirrhosis groups by relative increases of 0.12-0.66 in ALC compared with the ALC-A group (p <0.0005). For metabolomics, total bile acids increased by 19.7, 31.3, and 80.4 in the ALC, ALC-A, and AH groups, respectively, compared with HC (all p <0.0001). Low sphingolipid ([d42:1] and [d41:1]) levels could not predict 180-day mortality (AUC = 0.73, p = 0.95 and AUC = 0.73, p = 0.95) more accurately than the model for end-stage liver disease score (AUC = 0.71), but did predict 90-day mortality (AUC d42:1 = 0.922, AUC d41:1 = 0.893; pd42:1 = 0.005, pd41:1 = 0.007) more accurately than the MELD score AUCMELD = 0.70, pMELD = 0.19). Conclusions Alcohol-related severe liver disease is characterised by low lipid levels progressing with severity of liver disease, especially low sphingomyelins, which also associate to poor prognoses. Impact and implications Lipidomics has the potential to diagnose and risk stratify patients with liver diseases. Lipidomics differed between patients with alcohol-related hepatitis and alcohol-related cirrhosis with and without recent alcohol use. Furthermore, lipidomics could predict short-term mortality and might be suitable as a prognostic tool in the future. Clinical Trials Registration Scientific Ethics Committee of the Capital Region of Denmark, journal no. H-21013476.
Collapse
Affiliation(s)
| | - Qian Gao
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kajetan Trošt
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Ytting
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Mira Thing
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Ole Hamberg
- Medical Department, University Hospital of Zealand, Koege, Denmark
| | - Søren Møller
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Functional and Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Hvidovre Hospital, Hvidovre, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Nina Kimer
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
19
|
CHEN Q, YOU L, GUAN P, FANG C, QIN W, LIU X, XU G. [Risk analysis of serum chemical residues for metabolic associated fatty liver disease based on exposome-lipidome wide association study]. Se Pu 2024; 42:164-175. [PMID: 38374597 PMCID: PMC10877480 DOI: 10.3724/sp.j.1123.2023.12014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 02/21/2024] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is a common liver disease with a prevalence of up to 25%; it not only adversely affects human health but also aggravates the economic burden of society. An increasing number of studies have suggested that the occurrence of chronic noncommunicable diseases is affected by both environmental exposures and genetic factors. Research has also shown that environmental pollution may increase the risk of MAFLD and promote its occurrence and development. However, the relationship between these concepts, as well as the underlying exposure effects and mechanism, remains incompletely understood. Lipidomics, a branch of metabolomics that studies lipid disorders, can help researchers investigate abnormal lipid metabolites in various disease states. Lipidome-exposome wide association studies are a promising paradigm for investigating the health effects of cumulative environmental exposures on biological responses, and could provide new ideas for determining the associations between metabolic and lipid changes and disease risk caused by chemical-pollutant exposure. Hence, in this study, targeted exposomics and nontargeted lipidomics studies based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) were used to characterize exogenous chemical pollutants and endogenous lipid metabolites in the sera of patients with MAFLD and healthy subjects. The results demonstrated that fipronil sulfone, malathion dicarboxylic acid, and monocyclohexyl phthalate may be positively associated with the disease risk of patients diagnosed as simple fatty liver disease (hereafter referred to as MAFLD(0)). Moreover, fipronil sulfone, acesulfame potassium, perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUnDA), 4-hydroxybenzophenone, and 3,5-di-tert-butyl-4-hydroxybenzoic acid (DBPOB) may be positively associated with the disease risk of patients diagnosed as fatty liver complicated by single or multiple metabolic disorders. Association analysis was carried out to explore the lipid metabolites induced by chemical residues. Triglyceride (TG) and diglyceride (DG) were significantly increased in MAFLD and MAFLD(0). The numbers of carbons of significantly changed DGs and TGs were mainly in the ranges of 32-40 and 35-60, respectively, and both were mainly characterized by changes in polyunsaturated lipids. Most of the lipid-effect markers were positively correlated with chemical residues and associated with increased disease risk. Our research provides a scientific basis for studies on the association and mechanism between serum chemical-pollutant residues and disease outcomes.
Collapse
|
20
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
21
|
Wang S, Link F, Han M, Chaudhary R, Asimakopoulos A, Liebe R, Yao Y, Hammad S, Dropmann A, Krizanac M, Rubie C, Feiner LK, Glanemann M, Ebert MPA, Weiskirchen R, Henis YI, Ehrlich M, Dooley S. The Interplay of TGF-β1 and Cholesterol Orchestrating Hepatocyte Cell Fate, EMT, and Signals for HSC Activation. Cell Mol Gastroenterol Hepatol 2023; 17:567-587. [PMID: 38154598 PMCID: PMC10883985 DOI: 10.1016/j.jcmgh.2023.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND & AIMS Transforming growth factor-β1 (TGF-β1) plays important roles in chronic liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD involves various biological processes including dysfunctional cholesterol metabolism and contributes to progression to metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma. However, the reciprocal regulation of TGF-β1 signaling and cholesterol metabolism in MASLD is yet unknown. METHODS Changes in transcription of genes associated with cholesterol metabolism were assessed by RNA sequencing of murine hepatocyte cell line (alpha mouse liver 12/AML12) and mouse primary hepatocytes treated with TGF-β1. Functional assays were performed on AML12 cells (untreated, TGF-β1 treated, or subjected to cholesterol enrichment [CE] or cholesterol depletion [CD]), and on mice injected with adenovirus-associated virus 8-control/TGF-β1. RESULTS TGF-β1 inhibited messenger RNA expression of several cholesterol metabolism regulatory genes, including rate-limiting enzymes of cholesterol biosynthesis in AML12 cells, mouse primary hepatocytes, and adenovirus-associated virus-TGF-β1-treated mice. Total cholesterol levels and lipid droplet accumulation in AML12 cells and liver tissue also were reduced upon TGF-β1 treatment. Smad2/3 phosphorylation after 2 hours of TGF-β1 treatment persisted after CE or CD and was mildly increased after CD, whereas TGF-β1-mediated AKT phosphorylation (30 min) was inhibited by CE. Furthermore, CE protected AML12 cells from several effects mediated by 72 hours of incubation with TGF-β1, including epithelial-mesenchymal transition, actin polymerization, and apoptosis. CD mimicked the outcome of long-term TGF-β1 administration, an effect that was blocked by an inhibitor of the type I TGF-β receptor. In addition, the supernatant of CE- or CD-treated AML12 cells inhibited or promoted, respectively, the activation of LX-2 hepatic stellate cells. CONCLUSIONS TGF-β1 inhibits cholesterol metabolism whereas cholesterol attenuates TGF-β1 downstream effects in hepatocytes.
Collapse
Affiliation(s)
- Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Link
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mei Han
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Internal Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Roohi Chaudhary
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ye Yao
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Seddik Hammad
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Dropmann
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Claudia Rubie
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Laura Kim Feiner
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias Glanemann
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias P A Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
22
|
Gîlcă-Blanariu GE, Budur DS, Mitrică DE, Gologan E, Timofte O, Bălan GG, Olteanu VA, Ștefănescu G. Advances in Noninvasive Biomarkers for Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:1115. [PMID: 37999211 PMCID: PMC10672868 DOI: 10.3390/metabo13111115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) currently represents one of the most common liver diseases worldwide. Early diagnosis and disease staging is crucial, since it is mainly asymptomatic, but can progress to nonalcoholic steatohepatitis (NASH) or cirrhosis or even lead to the development of hepatocellular carcinoma. Over time, efforts have been put into developing noninvasive diagnostic and staging methods in order to replace the use of a liver biopsy. The noninvasive methods used include imaging techniques that measure liver stiffness and biological markers, with a focus on serum biomarkers. Due to the impressive complexity of the NAFLD's pathophysiology, biomarkers are able to assay different processes involved, such as apoptosis, fibrogenesis, and inflammation, or even address the genetic background and "omics" technologies. This article reviews not only the currently validated noninvasive methods to investigate NAFLD but also the promising results regarding recently discovered biomarkers, including biomarker panels and the combination of the currently validated evaluation methods and serum markers.
Collapse
Affiliation(s)
- Georgiana-Emmanuela Gîlcă-Blanariu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Daniela Simona Budur
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Dana Elena Mitrică
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Elena Gologan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Oana Timofte
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gheorghe Gh Bălan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Vasile Andrei Olteanu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gabriela Ștefănescu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| |
Collapse
|
23
|
Cui J, Zhang J, Sun S, Fan W, Xi H, Xu X, Ji L, Zhang S, Wang D, Zhao W. Rapid and sensitive determination of free fatty acids based on in-source microdroplet-driven derivatization coupled with high-resolution mass spectrometry. Anal Chim Acta 2023; 1278:341717. [PMID: 37709460 DOI: 10.1016/j.aca.2023.341717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/16/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Accurate and sensitive measurements of free fatty acids (FFAs) in biological samples are valuable for diagnosing and prognosing diseases. In this study, an in-source microdroplet derivation strategy combined with high-resolution mass spectrometry was developed to analyze FFAs in lipid extracts of biological samples directly. FFAs were rapidly derivated with 2-picolylamine (PA) in the microdroplet which is derived by electrospray. With the proposed method, twelve typical FFAs were determined reliably with high sensitivity and acceptable linearities (R2 ≥ 0.94). The LODs and LOQs for the twelve FFAs were 9-76 pg mL-1 and 30-253 pg mL-1, respectively. The developed method was applied to analyze the alteration of FFAs in liver and kidney samples of rats induced by perfluorooctane sulfonate (PFOS) exposure. The good results demonstrate that the established analysis technique is dependable and has promising applications in detecting FFAs associated with complex biological samples.
Collapse
Affiliation(s)
- Jiaqi Cui
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianxun Zhang
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Shihao Sun
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Wu Fan
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Hui Xi
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Xiujuan Xu
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Lingbo Ji
- The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Shusheng Zhang
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China
| | - Dingzhong Wang
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Wuduo Zhao
- Flavor Research Center, Zhengzhou University, Zhengzhou, 450001, China; Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
24
|
Zhang J, Yang Y, Wang Z, Zhang X, Zhang Y, Lin J, Du Y, Wang S, Si D, Bao J, Tian X. Integration of Metabolomics, Lipidomics, and Proteomics Reveals the Metabolic Characterization of Nonalcoholic Steatohepatitis. J Proteome Res 2023; 22:2577-2592. [PMID: 37403919 DOI: 10.1021/acs.jproteome.3c00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Metabolic dysfunction is associated with nonalcoholic steatohepatitis (NASH) development. However, omics studies investigating metabolic changes in NASH patients are limited. In this study, metabolomics and lipidomics in plasma, as well as proteomics in the liver, were performed to characterize the metabolic profiles of NASH patients. Moreover, the accumulation of bile acids (BAs) in NASH patients prompted us to investigate the protective effect of cholestyramine on NASH. The liver expression of essential proteins involved in FA transport and lipid droplets was significantly elevated in patients with NASH. Furthermore, we observed a distinct lipidomic remodeling in patients with NASH. We also report a novel finding suggesting an increase in the expression of critical proteins responsible for glycolysis and the level of glycolytic output (pyruvic acid) in patients with NASH. Furthermore, the accumulation of branched chain amino acids, aromatic amino acids, purines, and BAs was observed in NASH patients. Similarly, a dramatic metabolic disorder was also observed in a NASH mouse model. Cholestyramine not only significantly alleviated liver steatosis and fibrosis but also reversed NASH-induced accumulation of BAs and steroid hormones. In conclusion, NASH patients were characterized by perturbations in FA uptake, lipid droplet formation, glycolysis, and accumulation of BAs and other metabolites.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yiqin Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Zipeng Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaofen Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingfan Zhang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiashuo Lin
- School of Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | | | - Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
25
|
Mocciaro G, Allison M, Jenkins B, Azzu V, Huang-Doran I, Herrera-Marcos LV, Hall Z, Murgia A, Susan D, Frontini M, Vidal-Puig A, Koulman A, Griffin JL, Vacca M. Non-alcoholic fatty liver disease is characterised by a reduced polyunsaturated fatty acid transport via free fatty acids and high-density lipoproteins (HDL). Mol Metab 2023; 73:101728. [PMID: 37084865 PMCID: PMC10176260 DOI: 10.1016/j.molmet.2023.101728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/25/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) develops due to impaired hepatic lipid fluxes and is a risk factor for chronic liver disease and atherosclerosis. Lipidomic studies consistently reported characteristic hepatic/VLDL "lipid signatures" in NAFLD; whole plasma traits are more debated. Surprisingly, the HDL lipid composition by mass spectrometry has not been characterised across the NAFLD spectrum, despite HDL being a possible source of hepatic lipids delivered from peripheral tissues alongside free fatty acids (FFA). This study characterises the HDL lipidomic signature in NAFLD, and its correlation with metabolic and liver disease markers. METHODS We used liquid chromatography-mass spectrometry to determine the whole serum and HDL lipidomic profile in 89 biopsy-proven NAFLD patients and 20 sex and age-matched controls. RESULTS In the whole serum of NAFLD versus controls, we report a depletion in polyunsaturated (PUFA) phospholipids (PL) and FFA; with PUFA PL being also lower in HDL, and negatively correlated with BMI, insulin resistance, triglycerides, and hepatocyte ballooning. In the HDL of the NAFLD group we also describe higher saturated ceramides, which positively correlate with insulin resistance and transaminases. CONCLUSION NAFLD features lower serum lipid species containing polyunsaturated fatty acids; the most affected lipid fractions are FFA and (HDL) phospholipids; our data suggest a possible defect in the transfer of PUFA from peripheral tissues to the liver in NAFLD. Mechanistic studies are required to explore the biological implications of our findings addressing if HDL composition can influence liver metabolism and damage, thus contributing to NAFLD pathophysiology.
Collapse
Affiliation(s)
- Gabriele Mocciaro
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; Roger Williams Institute of Hepatology, Foundation for Liver Research, London, SE5 9NT, United Kingdom
| | - Michael Allison
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Benjamin Jenkins
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Vian Azzu
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom; Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Isabel Huang-Doran
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Luis Vicente Herrera-Marcos
- Department of Biochemistry and Molecular and Cellular Biology, Veterinary Faculty, University of Zaragoza, Zaragoza, 50013, Spain
| | - Zoe Hall
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Antonio Murgia
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom
| | - Davies Susan
- Addenbrooke's Hospital, Cambridge Biomedical Research Centre, Department of Medicine, United Kingdom
| | - Mattia Frontini
- Faculty of Health and Life Sciences, Clinical and Biomedical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Antonio Vidal-Puig
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom
| | - Albert Koulman
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom.
| | - Julian L Griffin
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; The Rowett Institute, Foresterhill Campus, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom.
| | - Michele Vacca
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, United Kingdom; Roger Williams Institute of Hepatology, Foundation for Liver Research, London, SE5 9NT, United Kingdom; Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, CB2 0QQ, United Kingdom; Aldo Moro University of Bari, Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", Bari, 70124, Italy.
| |
Collapse
|
26
|
Martín-Masot R, Jiménez-Muñoz M, Herrador-López M, Navas-López VM, Obis E, Jové M, Pamplona R, Nestares T. Metabolomic Profiling in Children with Celiac Disease: Beyond the Gluten-Free Diet. Nutrients 2023; 15:2871. [PMID: 37447198 DOI: 10.3390/nu15132871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Celiac disease (CD) is included in the group of complex or multifactorial diseases, i.e., those caused by the interaction of genetic and environmental factors. Despite a growing understanding of the pathophysiological mechanisms of the disease, diagnosis is still often delayed and there are no effective biomarkers for early diagnosis. The only current treatment, a gluten-free diet (GFD), can alleviate symptoms and restore intestinal villi, but its cellular effects remain poorly understood. To gain a comprehensive understanding of CD's progression, it is crucial to advance knowledge across various scientific disciplines and explore what transpires after disease onset. Metabolomics studies hold particular significance in unravelling the complexities of multifactorial and multisystemic disorders, where environmental factors play a significant role in disease manifestation and progression. By analyzing metabolites, we can gain insights into the reasons behind CD's occurrence, as well as better comprehend the impact of treatment initiation on patients. In this review, we present a collection of articles that showcase the latest breakthroughs in the field of metabolomics in pediatric CD, with the aim of trying to identify CD biomarkers for both early diagnosis and treatment monitoring. These advancements shed light on the potential of metabolomic analysis in enhancing our understanding of the disease and improving diagnostic and therapeutic strategies. More studies need to be designed to cover metabolic profiles in subjects at risk of developing the disease, as well as those analyzing biomarkers for follow-up treatment with a GFD.
Collapse
Affiliation(s)
- Rafael Martín-Masot
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
- Institute of Nutrition and Food Technology "José MataixVerdú" (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18071 Granada, Spain
| | - María Jiménez-Muñoz
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
| | - Marta Herrador-López
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
| | - Víctor Manuel Navas-López
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
| | - Elia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198 Lleida, Spain
| | - Teresa Nestares
- Institute of Nutrition and Food Technology "José MataixVerdú" (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18071 Granada, Spain
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
27
|
Wu G, Cheng H, Guo H, Li Z, Li D, Xie Z. Tea polyphenol EGCG ameliorates obesity-related complications by regulating lipidomic pathway in leptin receptor knockout rats. J Nutr Biochem 2023; 118:109349. [PMID: 37085056 DOI: 10.1016/j.jnutbio.2023.109349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Tea polyphenol EGCG has been widely recognized for antiobesity effects. However, the molecular mechanism of lipidomic pathway related to lipid-lowering effect of EGCG is still not well understood. The aim of this study was to investigate the effects and mechanism of EGCG activated hepatic lipidomic pathways on ameliorating obesity-related complications by using newly developed leptin receptor knockout (Lepr KO) rats. Results showed that EGCG supplementation (100 mg/kg body weight) significantly decreased total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels both in the serum and liver, and significantly improved glucose intolerance. In addition, EGCG alleviated fatty liver development and restored the normal liver function in Lepr KO rats. Liver lipidomic analysis revealed that EGCG dramatically changes overall composition of lipid classes. Notably, EGCG significantly decreased an array of triglycerides (TGs) and diglycerides (DGs) levels. While EGCG increased 31 glycerophospholipid species and 1 sphingolipid species levels, such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylserines (PSs) and phosphatidylinositols (PIs) levels in the liver of Lepr KO rats. Moreover, 14 diversely regulated lipid species were identified as potential lipid biomarkers. Mechanistic analysis revealed that EGCG significantly activated the SIRT6/AMPK/SREBP1/FAS pathway to decrease DGs and TGs levels and upregulated glycerophospholipids synthesis pathways to increase glycerophospholipid level in the liver of Lepr KO rats. These findings suggested that the regulation of glycerolipids and glycerophospholipid homeostasis might be the key pathways for EGCG in ameliorating obesity-related complications in Lepr KO rats.
Collapse
Affiliation(s)
- Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Huijun Cheng
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Huimin Guo
- Center for Biotechnology, Anhui Agricultural University, Anhui 230036, PR China
| | - Zhuang Li
- Center for Biotechnology, Anhui Agricultural University, Anhui 230036, PR China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
28
|
Wu P, Wang Y, Ye Y, Yang X, Huang Y, Ye Y, Lai Y, Ouyang J, Wu L, Xu J, Yuan J, Hu Y, Wang YX, Liu G, Chen D, Pan A, Pan XF. Liver biomarkers, lipid metabolites, and risk of gestational diabetes mellitus in a prospective study among Chinese pregnant women. BMC Med 2023; 21:150. [PMID: 37069659 PMCID: PMC10111672 DOI: 10.1186/s12916-023-02818-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/06/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Liver plays an important role in maintaining glucose homeostasis. We aimed to examine the associations of liver enzymes and hepatic steatosis index (HSI, a reliable biomarker for non-alcoholic fatty liver disease) in early pregnancy with subsequent GDM risk, as well as the potential mediation effects of lipid metabolites on the association between HSI and GDM. METHODS In a birth cohort, liver enzymes were measured in early pregnancy (6-15 gestational weeks, mean 10) among 6,860 Chinese women. Multivariable logistic regression was performed to examine the association between liver biomarkers and risk of GDM. Pearson partial correlation and least absolute shrinkage and selection operator (LASSO) regression were conducted to identify lipid metabolites that were significantly associated with HSI in a subset of 948 women. Mediation analyses were performed to estimate the mediating roles of lipid metabolites on the association of HSI with GDM. RESULTS Liver enzymes and HSI were associated with higher risks of GDM after adjustment for potential confounders, with ORs ranging from 1.42 to 2.24 for extreme-quartile comparisons (false discovery rate-adjusted P-trend ≤0.005). On the natural log scale, each SD increment of alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, and HSI was associated with a 1.15-fold (95% CI: 1.05, 1.26), 1.10-fold (1.01, 1.20), 1.21-fold (1.10, 1.32), 1.15-fold (1.04, 1.27), and 1.33-fold (1.18, 1.51) increased risk of GDM, respectively. Pearson partial correlation and LASSO regression identified 15 specific lipid metabolites in relation to HSI. Up to 52.6% of the association between HSI and GDM risk was attributed to the indirect effect of the HSI-related lipid score composed of lipid metabolites predominantly from phospholipids (e.g., lysophosphatidylcholine and ceramides) and triacylglycerol. CONCLUSIONS Elevated liver enzymes and HSI in early pregnancy, even within a normal range, were associated with higher risks of GDM among Chinese pregnant women. The association of HSI with GDM was largely mediated by altered lipid metabolism.
Collapse
Affiliation(s)
- Ping Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Ye
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xue Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yixiang Ye
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuwei Lai
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jing Ouyang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Linjing Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jianguo Xu
- Department of Clinical Laboratories, Shuangliu Maternal and Child Health Hospital, Chengdu, 610200, Sichuan, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu, 610200, Sichuan, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology & Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi-Xin Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 511436, Guangdong, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Obstetrics and Gynecology, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
29
|
Kvasnička A, Najdekr L, Dobešová D, Piskláková B, Ivanovová E, Friedecký D. Clinical lipidomics in the era of the big data. Clin Chem Lab Med 2023; 61:587-598. [PMID: 36592414 DOI: 10.1515/cclm-2022-1105] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023]
Abstract
Lipidomics as a branch of metabolomics provides unique information on the complex lipid profile in biological materials. In clinically focused studies, hundreds of lipids together with available clinical information proved to be an effective tool in the discovery of biomarkers and understanding of pathobiochemistry. However, despite the introduction of lipidomics nearly twenty years ago, only dozens of big data studies using clinical lipidomics have been published to date. In this review, we discuss the lipidomics workflow, statistical tools, and the challenges of standartisation. The consequent summary divided into major clinical areas of cardiovascular disease, cancer, diabetes mellitus, neurodegenerative and liver diseases is demonstrating the importance of clinical lipidomics. In these publications, the potential of lipidomics for prediction, diagnosis or finding new targets for the treatment of selected diseases can be seen. The first of these results have already been implemented in clinical practice in the field of cardiovascular diseases, while in other areas we can expect the application of the results summarized in this review in the near future.
Collapse
Affiliation(s)
- Aleš Kvasnička
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Lukáš Najdekr
- Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czechia
| | - Dana Dobešová
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Barbora Piskláková
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Eliška Ivanovová
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
30
|
Elingaard-Larsen LO, Villumsen SO, Justesen L, Thuesen ACB, Kim M, Ali M, Danielsen ER, Legido-Quigley C, van Hall G, Hansen T, Ahluwalia TS, Vaag AA, Brøns C. Circulating Metabolomic and Lipidomic Signatures Identify a Type 2 Diabetes Risk Profile in Low-Birth-Weight Men with Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:nu15071590. [PMID: 37049431 PMCID: PMC10096690 DOI: 10.3390/nu15071590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
The extent to which increased liver fat content influences differences in circulating metabolites and/or lipids between low-birth-weight (LBW) individuals, at increased risk of type 2 diabetes (T2D), and normal-birth-weight (NBW) controls is unknown. The objective of the study was to perform untargeted serum metabolomics and lipidomics analyses in 26 healthy, non-obese early-middle-aged LBW men, including five men with screen-detected and previously unrecognized non-alcoholic fatty liver disease (NAFLD), compared with 22 age- and BMI-matched NBW men (controls). While four metabolites (out of 65) and fifteen lipids (out of 279) differentiated the 26 LBW men from the 22 NBW controls (p ≤ 0.05), subgroup analyses of the LBW men with and without NAFLD revealed more pronounced differences, with 11 metabolites and 56 lipids differentiating (p ≤ 0.05) the groups. The differences in the LBW men with NAFLD included increased levels of ornithine and tyrosine (PFDR ≤ 0.1), as well as of triglycerides and phosphatidylcholines with shorter carbon-chain lengths and fewer double bonds. Pathway and network analyses demonstrated downregulation of transfer RNA (tRNA) charging, altered urea cycling, insulin resistance, and an increased risk of T2D in the LBW men with NAFLD. Our findings highlight the importance of increased liver fat in the pathogenesis of T2D in LBW individuals.
Collapse
|
31
|
Kim HY, Kim DJ, Lee HA, Cho JY, Kim W. Baseline Tyrosine Level Is Associated with Dynamic Changes in FAST Score in NAFLD Patients under Lifestyle Modification. Metabolites 2023; 13:metabo13030444. [PMID: 36984884 PMCID: PMC10058052 DOI: 10.3390/metabo13030444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Noninvasive risk stratification is a challenging issue in the management of patients with nonalcoholic fatty liver disease (NAFLD). This study aimed to identify multiomics-based predictors of NAFLD progression, as assessed by changes in serial FibroScan-aspartate aminotransferase (FAST) scores during lifestyle modification. A total of 266 patients with available metabolomics and genotyping data were included. The follow-up sub-cohort included patients with paired laboratory and transient elastography results (n = 160). The baseline median FAST score was 0.37. The PNPLA3 rs738409 genotype was significantly associated with a FAST score > 0.35. Circulating metabolomics significantly associated with a FAST score > 0.35 included SM C24:0 (odds ratio [OR] = 0.642; 95% confidence interval [CI], 0.463-0.891), PC ae C40:6 (OR = 0.477; 95% CI, 0.340-0.669), lysoPC a C18:2 (OR = 0.570; 95% CI, 0.417-0.779), and tyrosine (OR = 2.743; 95% CI, 1.875-4.014). A combination of these metabolites and PNPLA3 genotype yielded a c-index = 0.948 for predicting a FAST score > 0.35. In the follow-up sub-cohort (median follow-up = 23.7 months), 47/76 patients (61.8%) with a baseline FAST score > 0.35 had a follow-up FAST score ≤ 0.35. An improved FAST score at follow-up was significantly associated with age, serum alanine aminotransferase, and tyrosine. In conclusion, baseline risk stratification in NAFLD patients may be assisted using a multiomics-based model. Particularly, patients with increased tyrosine may benefit from an earlier switch to pharmacologic approaches.
Collapse
Affiliation(s)
- Hwi Young Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Da Jung Kim
- Metabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Hye Ah Lee
- Clinical Trial Center, Ewha Womans University Medical Center, Seoul 07985, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government Boramae Medical Center, Seoul 07061, Republic of Korea
| |
Collapse
|
32
|
Identification of Gut Microbial Lysine and Histidine Degradation and CYP-Dependent Metabolites as Biomarkers of Fatty Liver Disease. mBio 2023; 14:e0266322. [PMID: 36715540 PMCID: PMC9973343 DOI: 10.1128/mbio.02663-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Numerous studies have described specific metabolites as biomarkers of severe liver diseases, but very few have measured gut microbiota (GM)-produced metabolites in fatty liver disease. We aimed at finding GM signatures and metabolite markers in plasma and feces related to high liver fat content. Based on imaging, we divided study participants into low (<5%, LF, n = 25) and high (>5%, HF, n = 39) liver fat groups. Fecal (LF n = 14, HF n = 25) and plasma (LF n = 11, HF n = 7) metabolomes of subsets of participants were studied using liquid chromatography/high resolution mass spectrometry. The GM were analyzed using 16S rRNA gene sequencing. Additionally, blood clinical variables and diet were studied. Dyslipidemia, higher liver enzymes and insulin resistance characterized the HF group. No major differences in diet were found between the groups. In the GM, the HF group had lower abundance of Bacteroides and Prevotellaceae NK3B31 group than the LF group after adjusting for metformin use or obesity. In feces, the HF group had higher levels of lysine and histidine degradation products, while 6-hydroxybetatestosterone (metabolized by CYP3A4) was low. Higher plasma levels of caffeine and its metabolites in the HF group indicate that the activity of hepatic CYP1A2 was lower than in the LF group. Our results suggest, that low fecal Prevotellaceae NK3B31 and Bacteroides abundance, and increased lysine and histidine degradation may serve as GM biomarkers of high liver fat. Altered plasma caffeine metabolites and lowered testosterone metabolism may specify decreased CYP activities, and their potential utility, as biomarkers of fatty liver disease. IMPORTANCE Because the high prevalence of nonalcoholic fatty liver disease sets diagnostic challenges to health care, identification of new biomarkers of the disease that in the future could have potential utility as diagnostic biomarkers of high liver fat content is important. Our results show that increased amino acid degradation products in the feces may be such biomarkers. In the blood, molecules that indicate defective hepatic metabolic enzyme activities were identified in individuals with high liver fat content.
Collapse
|
33
|
Concise review of lipidomics in nonalcoholic fatty liver disease. DIABETES & METABOLISM 2023; 49:101432. [PMID: 36781065 DOI: 10.1016/j.diabet.2023.101432] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses simple liver steatosis, nonalcoholic steatohepatitis (NASH), and liver fibrosis that can progress to cirrhosis. NAFLD has become the principal cause of chronic liver disease in many parts of the world. Lipidomic studies, by allowing to determine concentrations of lipid classes and fatty acid composition of different lipid species, have been of great interest to help understand NAFLD pathophysiology and potentially identify novel biomarkers for diagnosis and prognosis. Indeed, lipidomic data give information on qualitative lipid abnormalities associated with NAFLD. The aim of our article was to create a comprehensive and more synthetic review of main results from lipidomic studies in NAFLD. Literature was searched for all human lipidomic studies evaluating plasma samples of individuals with NAFLD. Results were regrouped by the degree of liver damage, either simple steatosis, NASH or liver fibrosis, and presented by lipid categories. Overall, we summarized the main lipidomic abnormalities associated with NAFLD as follows: modification of free fatty acid distribution, increase in ceramides, reduced phosphatidylcholine / phosphatidylethanolamine ratio, and increase in eicosanoids. These lipid abnormalities are likely to promote NASH and liver fibrosis by inducing mitochondrial dysfunction, apoptosis, inflammation, oxidation, and endoplasmic reticulum stress. Although these lipidomic abnormalities are consistently reported in many studies, further research is needed to clarify whether they may be predictive for liver steatosis, NASH or liver fibrosis.
Collapse
|
34
|
Barboza TK, Susta L, zur Linden A, Gardhouse S, Beaufrère H. Association of plasma metabolites and diagnostic imaging findings with hepatic lipidosis in bearded dragons (Pogona vitticeps) and effects of gemfibrozil therapy. PLoS One 2023; 18:e0274060. [PMID: 36735707 PMCID: PMC9897564 DOI: 10.1371/journal.pone.0274060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/21/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES To evaluate the association between plasma metabolites, biochemical analytes, diagnostic imaging findings, and the histologic diagnosis of hepatic lipidosis in bearded dragons. To assess the effects of gemfibrozil therapy on hepatic lipid accumulation and associated diagnostic tests. ANIMALS Fourteen bearded dragons (Pogona vitticeps) with varying severity of hepatic lipid accumulation (with and without hepatic lipidosis) were included. PROCEDURES Animals underwent coelomic ultrasound, computed tomography (CT) scans, and coelioscopic hepatic biopsies. Clinical pathology tests included lipidologic tests, hepatic biomarkers, and mass spectrometry-based metabolomics. Animals were medicated with gemfibrozil 6mg/kg orally once a day for 2 months in a randomized blinded clinical trial prior to repeating previous diagnostic testing. RESULTS Hounsfield units on CT were negatively associated with increased hepatic vacuolation, while ultrasound and gross evaluation of the liver were not reliable. Beta-hydroxybutyric-acid (BHBA) concentrations were significantly associated with hepatic lipidosis. Metabolomics and lipidomics data found BHBA and succinic acid to be potential biomarkers for diagnosing hepatic lipidosis in bearded dragons. Succinic acid concentrations were significantly lower in the gemfibrozil treatment group. There was a tendency for improvement in the biomarkers and reduced hepatic fat in bearded dragons with hepatic lipidosis when treated with gemfibrozil, though the improvement was not statistically significant. CONCLUSIONS These findings provide information on the antemortem assessment of hepatic lipidosis in bearded dragons and paves the way for further research in diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Trinita K. Barboza
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Alex zur Linden
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sara Gardhouse
- Health Sciences Center, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Hugues Beaufrère
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
35
|
Zhang F, Zhang Q, Liu X, Gao M, Li X, Wang Y, Chang Y, Zhang X, Huo Z, Zhang L, Shan J, Zhu B, Yao W. Human serum lipidomics analysis revealed glyphosate may lead to lipid metabolism disorders and health risks. ENVIRONMENT INTERNATIONAL 2023; 171:107682. [PMID: 36495677 DOI: 10.1016/j.envint.2022.107682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate-based herbicides (GBH) are one of the most widely used pesticides worldwide. Industrial workers in glyphosate-based herbicides manufacture are the populations who experience long-term exposure to high glyphosate levels. The impacts of glyphosate on human health are the important public health problem of great concern. Up to date, the potential adverse effects of glyphosate on humans or other mammals have been reported in multiple studies. However, limited research is available on lipid alternations related to human exposure to glyphosate. In fact, the perturbations in some lipid metabolisms have been found in industrial workers in previous work. This study aims to explore the serum lipidomic characterization and to understand the underlying mechanisms of health risks associated with glyphosate exposure. A nontargeted lipidomics study was conducted to investigate the 391 serum samples from the general population and chemical factory workers. It was demonstrated that glyphosate caused significant perturbations of 115 differentially expressed lipids. The main manifestations were the elevation of circulating diacylglycerols (DG), cholesteryl esters (CE), ceramides (Cer), sphingomyelins (SM), lysophosphatidylethanolamines (LPE) and phosphatidylcholines (PC), and the decrease of ysophosphatidylcholines (LPC), triacylglycerols (TG), fatty acids (FA) and phosphatidylethanolamines (PE). A total of 88 lipids were further screened as potential lipid biomarkers associated closely with glyphosate using partial correlation analysis, and five of which (including PC 16:0/18:2; O, PC 18:0/18:2; O, PC 18:0/20:4; O, PC O-40:9 and CE 18:3) showed excellent superior performance (AUC = 1) to evaluate and monitor health risks due to glyphosate exposure. The present work discovered glyphosate-induced potential health risks, including chronic hepatic and renal dysfunction, atherosclerosis, cardiovascular disease and neurodegenerative diseases from a lipidomic perspective, and could inform the identification of early indicators and interpretation of biological mechanisms to detect health risks of the glyphosate-exposed populations as early as possible.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China; Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Qiulan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xin Liu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Mengting Gao
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Yifei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Yueyue Chang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xuemeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Zongli Huo
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Baoli Zhu
- Department of Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China.
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
36
|
Daniel N, Le Barz M, Mitchell PL, Varin TV, Julien IB, Farabos D, Pilon G, Gauthier J, Garofalo C, Kang JX, Trottier J, Barbier O, Roy D, Chassaing B, Levy E, Raymond F, Lamaziere A, Flamand N, Silvestri C, Jobin C, Di Marzo V, Marette A. Comparing Transgenic Production to Supplementation of ω-3 PUFA Reveals Distinct But Overlapping Mechanisms Underlying Protection Against Metabolic and Hepatic Disorders. FUNCTION 2022; 4:zqac069. [PMID: 36778746 PMCID: PMC9909367 DOI: 10.1093/function/zqac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
We compared endogenous ω-3 PUFA production to supplementation for improving obesity-related metabolic dysfunction. Fat-1 transgenic mice, who endogenously convert exogenous ω-6 to ω-3 PUFA, and wild-type littermates were fed a high-fat diet and a daily dose of either ω-3 or ω-6 PUFA-rich oil for 12 wk. The endogenous ω-3 PUFA production improved glucose intolerance and insulin resistance but not hepatic steatosis. Conversely, ω-3 PUFA supplementation fully prevented hepatic steatosis but failed to improve insulin resistance. Both models increased hepatic levels of ω-3 PUFA-containing 2-monoacylglycerol and N-acylethanolamine congeners, and reduced levels of ω-6 PUFA-derived endocannabinoids with ω-3 PUFA supplementation being more efficacious. Reduced hepatic lipid accumulation associated with the endocannabinoidome metabolites EPEA and DHEA, which was causally demonstrated by lower lipid accumulation in oleic acid-treated hepatic cells treated with these metabolites. While both models induced a significant fecal enrichment of the beneficial Allobaculum genus, mice supplemented with ω-3 PUFA displayed additional changes in the gut microbiota functions with a significant reduction of fecal levels of the proinflammatory molecules lipopolysaccharide and flagellin. Multiple-factor analysis identify that the metabolic improvements induced by ω-3 PUFAs were accompanied by a reduced production of the proinflammatory cytokine TNFα, and that ω-3 PUFA supplementation had a stronger effect on improving the hepatic fatty acid profile than endogenous ω-3 PUFA. While endogenous ω-3 PUFA production preferably improves glucose tolerance and insulin resistance, ω-3 PUFA intake appears to be required to elicit selective changes in hepatic endocannabinoidome signaling that are essential to alleviate high-fat diet-induced hepatic steatosis.
Collapse
Affiliation(s)
| | | | - Patricia L Mitchell
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Thibault V Varin
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Isabelle Bourdeau Julien
- Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Dominique Farabos
- Saint Antoine Research Center, Sorbonne University INSERM UMR 938; Assistance Publique - Hôpitaux de Paris, Clinical Metabolomics department, Hôpital Saint Antoine, Paris, 75571, France
| | - Geneviève Pilon
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Josée Gauthier
- Department of Medicine, Department of Infectious Diseases and Immunology, and Department of Anatomy and Cell Physiology, University of Florida, Gainesville FL, 32608, USA
| | - Carole Garofalo
- Department of Nutrition, University of Montreal, Montreal QC H3T 1A8, Canada and Research Centre, Sainte-Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Quebec Research Centre, and Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Quebec Research Centre, and Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
| | - Denis Roy
- Faculty of Agricultural and Food Sciences, School of Nutrition, Laval University, Quebec, QC G1V 0A6, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Benoit Chassaing
- INSERM U1016, Mucosal Microbiota in Chronic Inflammatory Diseases’ Team, CNRS UMR 8104, University of Paris, Paris, 75014, France
| | - Emile Levy
- Department of Nutrition, University of Montreal, Montreal QC H3T 1A8, Canada and Research Centre, Sainte-Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Frédéric Raymond
- Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Antonin Lamaziere
- Saint Antoine Research Center, Sorbonne University INSERM UMR 938; Assistance Publique - Hôpitaux de Paris, Clinical Metabolomics department, Hôpital Saint Antoine, Paris, 75571, France
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Cristoforo Silvestri
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Christian Jobin
- Department of Medicine, Department of Infectious Diseases and Immunology, and Department of Anatomy and Cell Physiology, University of Florida, Gainesville FL, 32608, USA
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada,Joint International Research Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition between Laval University and Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Campania, 80078, Italy
| | | |
Collapse
|
37
|
Sen P, Govaere O, Sinioja T, McGlinchey A, Geng D, Ratziu V, Bugianesi E, Schattenberg JM, Vidal-Puig A, Allison M, Cockell S, Daly AK, Hyötyläinen T, Anstee QM, Orešič M. Quantitative modeling of human liver reveals dysregulation of glycosphingolipid pathways in nonalcoholic fatty liver disease. iScience 2022; 25:104949. [PMID: 36065182 PMCID: PMC9440293 DOI: 10.1016/j.isci.2022.104949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/21/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease that is associated with multiple metabolic disturbances, yet the metabolic pathways underlying its progression are poorly understood. Here, we studied metabolic pathways of the human liver across the full histological spectrum of NAFLD. We analyzed whole liver tissue transcriptomics and serum metabolomics data obtained from a large, prospectively enrolled cohort of 206 histologically characterized patients derived from the European NAFLD Registry and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. We identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, we derived GEMs and identified metabolic signatures of three common NAFLD-associated gene variants (PNPLA3, TM6SF2, and HSD17B13). The study demonstrates dysregulated liver metabolic pathways which may contribute to the progression of NAFLD.
Collapse
Affiliation(s)
- Partho Sen
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tim Sinioja
- Department of Chemistry, Örebro University, 70281 Örebro, Sweden
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
| | - Dawei Geng
- Department of Chemistry, Örebro University, 70281 Örebro, Sweden
| | - Vlad Ratziu
- Assistance Publique-Hôpitaux de Paris, hôpital Beaujon, University Paris-Diderot, Paris, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jörn M. Schattenberg
- Metabolic Liver Research Programm, Department of Medicine, University Hospital Mainz, Mainz, Germany
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Michael Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University NHS Foundation Trust, UK
| | - Simon Cockell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ann K. Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Matej Orešič
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
38
|
Kechagias S, Ekstedt M, Simonsson C, Nasr P. Non-invasive diagnosis and staging of non-alcoholic fatty liver disease. Hormones (Athens) 2022; 21:349-368. [PMID: 35661987 PMCID: PMC9464753 DOI: 10.1007/s42000-022-00377-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be the hepatic manifestation of the metabolic syndrome and is characterized by ectopic accumulation of triglycerides in the cytoplasm of hepatocytes, i.e., steatosis. NAFLD has become the most common chronic liver disease, with an estimated global prevalence of 25%. Although the majority of NAFLD patients will never experience liver-related complications, the progressive potential of NAFLD is indisputable, with 5-10% of subjects progressing to cirrhosis, end-stage liver disease, or hepatocellular carcinoma. NAFLD patients with advanced fibrosis are at the highest risk of developing cardiovascular and cirrhosis-related complications. Liver biopsy has hitherto been considered the reference method for evaluation of hepatic steatosis and fibrosis stage. Given the limitations of biopsy for widescale screening, non-invasive tests (NITs) for assessment of steatosis and fibrosis stage, including serum-based algorithms and ultrasound- and magnetic resonance-based methods, will play an increasing role in the management of NAFLD patients. This comprehensive review presents the advantages and limitations of NITs for identification of steatosis and advanced fibrosis in NAFLD. The clinical implications of using NITs to identify and manage NAFLD patients are also discussed.
Collapse
Affiliation(s)
- Stergios Kechagias
- Department of Gastroenterology and Hepatology, University Hospital, Linköping, Sweden.
- Department of Health, Medical and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Mattias Ekstedt
- Department of Gastroenterology and Hepatology, University Hospital, Linköping, Sweden
- Department of Health, Medical and Caring Sciences, Linköping University, Linköping, Sweden
| | - Christian Simonsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Patrik Nasr
- Department of Gastroenterology and Hepatology, University Hospital, Linköping, Sweden
- Department of Health, Medical and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
39
|
Wu ZE, Kruger MC, Cooper GJS, Sequeira IR, McGill AT, Poppitt SD, Fraser K. Dissecting the relationship between plasma and tissue metabolome in a cohort of women with obesity: Analysis of subcutaneous and visceral adipose, muscle, and liver. FASEB J 2022; 36:e22371. [PMID: 35704337 DOI: 10.1096/fj.202101812r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Untargeted metabolomics of blood samples has become widely applied to study metabolic alterations underpinning disease and to identify biomarkers. However, understanding the relevance of a blood metabolite marker can be challenging if it is unknown whether it reflects the concentration in relevant tissues. To explore this field, metabolomic and lipidomic profiles of plasma, four sites of adipose tissues (ATs) from peripheral or central depot, two sites of muscle tissue, and liver tissue from a group of nondiabetic women with obesity who were scheduled to undergo bariatric surgery (n = 21) or other upper GI surgery (n = 5), were measured by liquid chromatography coupled with mass spectrometry. Relationships between plasma and tissue profiles were examined using Pearson correlation analysis subject to Benjamini-Hochberg correction. Plasma metabolites and lipids showed the highest number of significantly positive correlations with their corresponding concentrations in liver tissue, including lipid species of ceramide, mono- and di-hexosylceramide, sphingomyelin, phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine, dimethyl phosphatidylethanolamine, ether-linked PC, ether-linked PE, free fatty acid, cholesteryl ester, diacylglycerol and triacylglycerol, and polar metabolites linked to several metabolic functions and gut microbial metabolism. Plasma also showed significantly positive correlations with muscle for several phospholipid species and polar metabolites linked to metabolic functions and gut microbial metabolism, and with AT for several triacylglycerol species. In conclusion, plasma metabolomic and lipidomic profiles were reflective more of the liver profile than any of the muscle or AT sites examined in the present study. Our findings highlighted the importance of taking into consideration the metabolomic relationship of various tissues with plasma when postulating plasma metabolites marker to underlying mechanisms occurring in a specific tissue.
Collapse
Affiliation(s)
- Zhanxuan E Wu
- Food Chemistry and Structure, AgResearch Limited, Palmerston North, New Zealand.,School of Health Sciences, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Marlena C Kruger
- School of Health Sciences, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand.,Centre for Advanced Discovery and Experimental Therapeutics, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Ivana R Sequeira
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anne-Thea McGill
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sally D Poppitt
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand.,Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karl Fraser
- Food Chemistry and Structure, AgResearch Limited, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
40
|
Association of Metabolomic Change and Treatment Response in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10061216. [PMID: 35740238 PMCID: PMC9220113 DOI: 10.3390/biomedicines10061216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease, yet cost-effective and non-invasive diagnostic tools to monitor the severity of the disease are lacking. We aimed to investigate the metabolomic changes in NAFLD associated with therapeutic responses. It was conducted in 63 patients with NAFLD who received either ezetimibe plus rosuvastatin or rosuvastatin monotherapy. The treatment response was determined by MRI performed at baseline and week 24. The metabolites were measured at baseline and week 12. In the combination group, a relative decrease in xanthine was associated with a good response to liver fat decrease, while a relative increase in choline was associated with a good response to liver stiffness. In the monotherapy group, the relative decreases in triglyceride (TG) 20:5_36:2, TG 18:1_38:6, acetylcarnitine (C2), fatty acid (FA) 18:2, FA 18:1, and docosahexaenoic acid were associated with a decrease in liver fat, while hexosylceramide (d18:2/16:0) and hippuric acid were associated with a decrease in liver stiffness. Models using the metabolite changes showed an AUC of >0.75 in receiver operating curve analysis for predicting an improvement in liver fat and stiffness. This approach revealed the physiological impact of drugs, suggesting the mechanism underlying the development of this disease.
Collapse
|
41
|
Lv W, Zeng Z, Zhang Y, Wang Q, Wang L, Zhang Z, Shi X, Zhao X, Xu G. Comprehensive metabolite quantitative assay based on alternate metabolomics and lipidomics analyses. Anal Chim Acta 2022; 1215:339979. [DOI: 10.1016/j.aca.2022.339979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
|
42
|
Subramanian P, Gargani S, Palladini A, Chatzimike M, Grzybek M, Peitzsch M, Papanastasiou AD, Pyrina I, Ntafis V, Gercken B, Lesche M, Petzold A, Sinha A, Nati M, Thangapandi VR, Kourtzelis I, Andreadou M, Witt A, Dahl A, Burkhardt R, Haase R, Domingues AMDJ, Henry I, Zamboni N, Mirtschink P, Chung KJ, Hampe J, Coskun Ü, Kontoyiannis DL, Chavakis T. The RNA binding protein human antigen R is a gatekeeper of liver homeostasis. Hepatology 2022; 75:881-897. [PMID: 34519101 DOI: 10.1002/hep.32153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD is initiated by steatosis and can progress through fibrosis and cirrhosis to HCC. The RNA binding protein human antigen R (HuR) controls RNAs at the posttranscriptional level; hepatocyte HuR has been implicated in the regulation of diet-induced hepatic steatosis. The present study aimed to understand the role of hepatocyte HuR in NAFLD development and progression to fibrosis and HCC. APPROACH AND RESULTS Hepatocyte-specific, HuR-deficient mice and control HuR-sufficient mice were fed either a normal diet or an NAFLD-inducing diet. Hepatic lipid accumulation, inflammation, fibrosis, and HCC development were studied by histology, flow cytometry, quantitative PCR, and RNA sequencing. The liver lipidome was characterized by lipidomics analysis, and the HuR-RNA interactions in the liver were mapped by RNA immunoprecipitation sequencing. Hepatocyte-specific, HuR-deficient mice displayed spontaneous hepatic steatosis and fibrosis predisposition compared to control HuR-sufficient mice. On an NAFLD-inducing diet, hepatocyte-specific HuR deficiency resulted in exacerbated inflammation, fibrosis, and HCC-like tumor development. A multi-omic approach, including lipidomics, transcriptomics, and RNA immunoprecipitation sequencing revealed that HuR orchestrates a protective network of hepatic-metabolic and lipid homeostasis-maintaining pathways. Consistently, HuR-deficient livers accumulated, already at steady state, a triglyceride signature resembling that of NAFLD livers. Moreover, up-regulation of secreted phosphoprotein 1 expression mediated, at least partially, fibrosis development in hepatocyte-specific HuR deficiency on an NAFLD-inducing diet, as shown by experiments using antibody blockade of osteopontin. CONCLUSIONS HuR is a gatekeeper of liver homeostasis, preventing NAFLD-related fibrosis and HCC, suggesting that the HuR-dependent network could be exploited therapeutically.
Collapse
Affiliation(s)
- Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Sofia Gargani
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Margarita Chatzimike
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Michal Grzybek
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Anastasios D Papanastasiou
- Department of Biomedical SciencesUniversity of West AtticaAthensGreece.,Histopathology UnitBiomedical Sciences Research Center "Alexander Fleming"VariGreece
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Vasileios Ntafis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Mathias Lesche
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Andreas Petzold
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Veera Raghavan Thangapandi
- Department of Internal Medicine IUniversity Hospital and Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany.,National Center for Tumor DiseasesPartner Site Dresden, Dresden and German Cancer Research CenterHeidelbergGermany.,York Biomedical Research Institute, Hull York Medical SchoolUniversity of YorkYorkUK
| | - Margarita Andreadou
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Anke Witt
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Andreas Dahl
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Robert Haase
- Scientific Computing FacilityMax Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Ian Henry
- Scientific Computing FacilityMax Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Jochen Hampe
- Department of Internal Medicine IUniversity Hospital and Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Dimitris L Kontoyiannis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece.,Department of Genetics, Development & Molecular Biology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany.,Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany.,National Center for Tumor DiseasesPartner Site Dresden, Dresden and German Cancer Research CenterHeidelbergGermany
| |
Collapse
|
43
|
Pang Y, Kartsonaki C, Lv J, Millwood IY, Fairhurst-Hunter Z, Turnbull I, Bragg F, Hill MR, Yu C, Guo Y, Chen Y, Yang L, Clarke R, Walters RG, Wu M, Chen J, Li L, Chen Z, Holmes MV. Adiposity, metabolomic biomarkers, and risk of nonalcoholic fatty liver disease: a case-cohort study. Am J Clin Nutr 2022; 115:799-810. [PMID: 34902008 PMCID: PMC8895224 DOI: 10.1093/ajcn/nqab392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/06/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Globally, the burden of obesity and associated nonalcoholic fatty liver disease (NAFLD) are rising, but little is known about the role that circulating metabolomic biomarkers play in mediating their association. OBJECTIVES We aimed to examine the observational and genetic associations of adiposity with metabolomic biomarkers and the observational associations of metabolomic biomarkers with incident NAFLD. METHODS A case-subcohort study within the prospective China Kadoorie Biobank included 176 NAFLD cases and 180 subcohort individuals and measured 1208 metabolites in stored baseline plasma using a Metabolon assay. In the subcohort the observational and genetic associations of BMI with biomarkers were assessed using linear regression, with adjustment for multiple testing. Cox regression was used to estimate adjusted HRs for NAFLD associated with biomarkers. RESULTS In observational analyses, BMI (kg/m2; mean: 23.9 in the subcohort) was associated with 199 metabolites at a 5% false discovery rate. The effects of genetically elevated BMI with specific metabolites were directionally consistent with the observational associations. Overall, 35 metabolites were associated with NAFLD risk, of which 15 were also associated with BMI, including glutamate (HR per 1-SD higher metabolite: 1.95; 95% CI: 1.48, 2.56), cysteine-glutathione disulfide (0.44; 0.31, 0.62), diaclyglycerol (C32:1) (1.71; 1.24, 2.35), behenoyl dihydrosphingomyelin (C40:0) (1.92; 1.42, 2.59), butyrylcarnitine (C4) (1.91; 1.38, 2.35), 2-hydroxybehenate (1.81; 1.34, 2.45), and 4-cholesten-3-one (1.79; 1.27, 2.54). The discriminatory performance of known risk factors was increased when 28 metabolites were also considered simultaneously in the model (weighted C-statistic: 0.84 to 0.90; P < 0.001). CONCLUSIONS Among relatively lean Chinese adults, a range of metabolomic biomarkers are associated with NAFLD risk and these biomarkers may lie on the pathway between adiposity and NAFLD.
Collapse
Affiliation(s)
- Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Christiana Kartsonaki
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response (PKU-PHEPR), Peking University, Beijing, China
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Zammy Fairhurst-Hunter
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Iain Turnbull
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Fiona Bragg
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Michael R Hill
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response (PKU-PHEPR), Peking University, Beijing, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ling Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ming Wu
- Jiangsu Center for Disease Control and Prevention, Nanjing, China
| | - Junshi Chen
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response (PKU-PHEPR), Peking University, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Michael V Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, United Kingdom
| |
Collapse
|
44
|
Camastra S, Palumbo M, Santini F. Nutrients handling after bariatric surgery, the role of gastrointestinal adaptation. Eat Weight Disord 2022; 27:449-461. [PMID: 33895917 PMCID: PMC8933374 DOI: 10.1007/s40519-021-01194-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
Bariatric surgery determines a rearrangement of the gastrointestinal tract that influences nutrient handling and plays a role in the metabolic changes observed after surgery. Most of the changes depend on the accelerated gastric emptying observed in Roux-en-Y gastric bypass (RYGB) and, to a lesser extent, in sleeve gastrectomy (SG). The rapid delivery of meal into the jejunum, particularly after RYGB, contributes to the prompt appearance of glucose in peripheral circulation. Glucose increase is the principal determinant of GLP-1 increase with the consequent stimulation of insulin secretion, the latter balanced by a paradoxical glucagon increase that stimulates EGP to prevent hypoglycaemia. Protein digestion and amino acid absorption appear accelerated after RYGB but not after SG. After RYGB, the adaptation of the gut to the new condition participates to the metabolic change. The intestinal transit is delayed, the gut microbioma is changed, the epithelium becomes hypertrophic and increases the expression of glucose transporter and of the number of cell secreting hormones. These changes are not observed after SG. After RYGB-less after SG-bile acids (BA) increase, influencing glucose metabolism probably modulating FXR and TGR5 with an effect on insulin sensitivity. Muscle, hepatic and adipose tissue insulin sensitivity improve, and the gut reinforces the recovery of IS by enhancing glucose uptake and through the effect of the BA. The intestinal changes observed after RYGB result in a light malabsorption of lipid but not of carbohydrate and protein. In conclusion, functional and morphological adaptations of the gut after RYGB and SG activate inter-organs cross-talk that modulates the metabolic changes observed after surgery.Level of evidence Level V, narrative literature review.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy. .,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Maria Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Ferruccio Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
45
|
Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep 2022; 4:100479. [PMID: 35469167 PMCID: PMC9034302 DOI: 10.1016/j.jhepr.2022.100479] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.
Collapse
|
46
|
McGlinchey AJ, Govaere O, Geng D, Ratziu V, Allison M, Bousier J, Petta S, de Oliviera C, Bugianesi E, Schattenberg JM, Daly AK, Hyötyläinen T, Anstee QM, Orešič M. Metabolic signatures across the full spectrum of nonalcoholic fatty liver disease. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100477. [PMID: 35434590 PMCID: PMC9006858 DOI: 10.1016/j.jhepr.2022.100477] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/29/2022]
Affiliation(s)
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dawei Geng
- Department of Chemistry, Örebro University, Örebro, Sweden
| | - Vlad Ratziu
- Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, University Paris-Diderot, Paris, France
| | - Michael Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Jerome Bousier
- Hepato-Gastroenterology Department, Angers University Hospital, Angers, France
| | - Salvatore Petta
- Dipartimento Biomedico di Medicina Interna e Specialistica Di.Bi.M.I.S, University of Palermo, Palermo, Italy
| | | | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | | | - Ann K. Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
- Corresponding authors. Addresses: Translational and Clinical Research Institute, The Medical School, Newcastle University, 4th Floor, William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK. Tel.: + 44-0-191-208-7012
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- School of Medical Sciences, Örebro University, Örebro, Sweden. Tel.: +358-0-44-9726094.
| |
Collapse
|
47
|
Guerra S, Mocciaro G, Gastaldelli A. Adipose tissue insulin resistance and lipidome alterations as the characterizing factors of non-alcoholic steatohepatitis. Eur J Clin Invest 2022; 52:e13695. [PMID: 34695228 DOI: 10.1111/eci.13695] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prevalence of non-alcoholic fatty liver disease (NAFLD) is now 25% in the general population but increases to more than 55% in subjects with obesity and/or type 2 diabetes. Simple steatosis (NAFL) can develop into more severe forms, that is non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma leading to death. METHODS In this narrative review, we have discussed the current knowledge in the pathophysiology of fatty liver disease, including both metabolic and non-metabolic factors, insulin resistance, mitochondrial function, as well as the markers of liver damage, giving attention to the alterations in lipid metabolism and production of lipotoxic lipids. RESULTS Insulin resistance, particularly in the adipose tissue, is the main driver of NAFLD due to the excess release of fatty acids. Lipidome analyses have shown that several lipids, including DAGs and ceramides, and especially if they contain saturated lipids, act as bioactive compounds, toxic to the cells. Lipids can also affect mitochondrial function. Not only lipids, but also amino acid metabolism is impaired in NAFL/NASH, and some amino acids, as branched-chain and aromatic amino acids, glutamate, serine and glycine, have been linked to impaired metabolism, insulin resistance and severity of NAFLD and serine is a precursor of ceramides. CONCLUSIONS The measurement of lipotoxic species and adipose tissue dysfunction can help to identify individuals at risk of progression to NASH.
Collapse
Affiliation(s)
- Sara Guerra
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.,Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Gabriele Mocciaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.,Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
48
|
Stratifying individuals into non-alcoholic fatty liver disease risk levels using time series machine learning models. J Biomed Inform 2022; 126:103986. [PMID: 35007752 DOI: 10.1016/j.jbi.2022.103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the population worldwide, and its prevalence is anticipated to increase globally. While most NAFLD patients are asymptomatic, NAFLD may progress to fibrosis, cirrhosis, cardiovascular disease, and diabetes. Research reports, with daunting results, show the challenge that NAFLD's burden causes to global population health. The current process for identifying fibrosis risk levels is inefficient, expensive, does not cover all potential populations, and does not identify the risk in time. Instead of invasive liver biopsies, we implemented a non-invasive fibrosis assessment process calculated from clinical data (accessed via EMRs/EHRs). We stratified patients' risks for fibrosis from 2007 to 2017 by modeling the risk in 5579 individuals. The process involved time-series machine learning models (Hidden Markov Models and Group-Based Trajectory Models) profiled fibrosis risk by modeling patients' latent medical status resulted in three groups. The high-risk group had abnormal lab test values and a higher prevalence of chronic conditions. This study can help overcome the inefficient, traditional process of detecting fibrosis via biopsies (that are also medically unfeasible due to their invasive nature, the medical resources involved, and costs) at early stages. Thus longitudinal risk assessment may be used to make population-specific medical recommendations targeting early detection of high risk patients, to avoid the development of fibrosis disease and its complications as well as decrease healthcare costs.
Collapse
|
49
|
Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, Brosnan J, Anstee QM, Millet O, Ortiz P, Mato JM, Dufour JF, Orešič M. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol 2021; 18:835-856. [PMID: 34508238 DOI: 10.1038/s41575-021-00502-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and is often associated with aspects of metabolic syndrome. Despite its prevalence and the importance of early diagnosis, there is a lack of robustly validated biomarkers for diagnosis, prognosis and monitoring of disease progression in response to a given treatment. In this Review, we provide an overview of the contribution of metabolomics and lipidomics in clinical studies to identify biomarkers associated with NAFLD and nonalcoholic steatohepatitis (NASH). In addition, we highlight the key metabolic pathways in NAFLD and NASH that have been identified by metabolomics and lipidomics approaches and could potentially be used as biomarkers for non-invasive diagnostic tests. Overall, the studies demonstrated alterations in amino acid metabolism and several aspects of lipid metabolism including circulating fatty acids, triglycerides, phospholipids and bile acids. Although we report several studies that identified potential biomarkers, few have been validated.
Collapse
Affiliation(s)
- Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.
| | | | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Örebro, Sweden
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | | | | | - Quentin M Anstee
- Clinical & Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oscar Millet
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Pablo Ortiz
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | - Jose M Mato
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Jean-Francois Dufour
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, Bern, Switzerland.,Hepatology, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
50
|
Sinisalu L, Yeung LWY, Wang J, Pan Y, Dai J, Hyötyläinen T. Prenatal exposure to poly-/per-fluoroalkyl substances is associated with alteration of lipid profiles in cord-blood. Metabolomics 2021; 17:103. [PMID: 34816353 PMCID: PMC8610959 DOI: 10.1007/s11306-021-01853-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Poly-/per-fluoroalkyl substances (PFAS) are widespread environmental pollutants that may induce metabolic perturbations in humans, including particularly alterations in lipid profiles. Prenatal exposure to PFAS can cause lasting effects on offspring metabolic health, however, the underlying mechanisms are still unknown. OBJECTIVES The goal of the study was to investigate the impact of prenatal PFAS exposure on the lipid profiles in cord blood. METHODS Herein, we combined determination of bile acids (BAs) and molecular lipids by liquid chromatography with ultra-high-resolution mass spectrometry, and separately quantified cord blood concentrations of sixteen PFAS in a cohort of Chinese infants (104 subjects) in a cross-sectional study. We then evaluated associations between PFAS concentration and lipidome using partial correlation network analysis, debiased sparse partial correlation, linear regression analysis and correlation analysis. RESULTS PFAS levels showed significant associations with the lipid profiles; specifically, PFAS exposure was positively correlated with triacylgycerols (TG) and several bile acids. Importantly, exposure to perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) were associated with increased levels of TGs with saturated fatty acids while multiple classes of phospholipids were decreased. In addition, several free fatty acids showed significant positive correlations with PFOS. CONCLUSIONS Our results indicated that prenatal exposure to PFAS mediated metabolic changes, which may explain the associations reported between PFAS exposure and metabolic health later in life.
Collapse
Affiliation(s)
- Lisanna Sinisalu
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Leo W Y Yeung
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden.
| |
Collapse
|