1
|
Koliaki C, Dalamaga M, Kakounis K, Liatis S. Metabolically Healthy Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Navigating the Controversies in Disease Development and Progression. Curr Obes Rep 2025; 14:46. [PMID: 40387999 DOI: 10.1007/s13679-025-00637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE OF REVIEW The natural course of metabolic dysfunction-associated steatotic liver disease (MASLD) in the population with metabolically healthy obesity (MHO) has not been adequately explored. In the present narrative review, we summarize the evidence regarding the association between MHO and MASLD prevalence, incidence and progression. RECENT FINDINGS Cross-sectional, population-based, cohort studies have shown an increased prevalence of hepatic steatosis and fibrosis in subjects with MHO compared with metabolically healthy non-obese individuals (MHNO). In large-scale longitudinal cohort studies among metabolically healthy subjects, increasing body mass index (BMI) has been found to be independently associated with an increased incidence of MASLD and progressive hepatic fibrosis over a mean follow-up period of 2.2-7.7 years. With regard to advanced MASLD, the prevalence of steatohepatitis and clinically significant liver fibrosis is lower in MHO compared with subjects with metabolically unhealthy obesity (MUO). The presence of MASLD has been proposed as a strong risk factor for metabolic health deterioration in MHO. Furthermore, subjects with MHO and MASLD display an elevated 10-year cardiovascular risk and a three-fold increased risk of incident diabetes compared with MHO without MASLD. MASLD may also predict the failure to convert from MUO to MHO after a weight loss intervention.
Collapse
Affiliation(s)
- Chrysi Koliaki
- First Propaedeutic Department of Internal Medicine and Diabetes Center, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, 11527, Greece.
| | - Maria Dalamaga
- Department of Biologic Chemistry, Medical School, National Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kakounis
- Department of Gastroenterology, Hippokration General Hospital of Athens, Athens, Greece
| | - Stavros Liatis
- First Propaedeutic Department of Internal Medicine and Diabetes Center, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, Athens, 11527, Greece
| |
Collapse
|
2
|
Shi XY, Liu YK, Chen Y, Jiang ZY, Ye MX, Wang J. The correlation of apolipoprotein B and apolipoprotein A1 with metabolic dysfunction-associated steatotic liver disease in children and adolescents with obesity. Pediatr Obes 2025:e70017. [PMID: 40329497 DOI: 10.1111/ijpo.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) has become a prevalent liver condition in children and teenagers with obesity. Unfortunately, there is no standardized treatment. OBJECTIVE To examine the connection between apolipoprotein B (apoB), apolipoprotein A1 (apoA1), and the apoB/apoA1 ratio with the occurrence of MASLD in this population. METHODS A retrospective study was made on children and adolescents with obesity in a children's hospital between the period 2020 and 2022. Anthropometric data, ultrasound results, and blood biochemistry were analysed to assess the connection between apoB, apoA1, and the presence of MASLD. RESULTS Of the 916 participants included, 313 were diagnosed with MASLD. The level of serum apoB reflected a substantial dose-response correlation with the odds of having MASLD. When apoB levels exceeded the 50th percentile, the risk increased significantly, and at the 95th percentile, the odds were 4.83 times higher than at the 50th percentile (95% CI: 2.02-11.56). The ratio of apoB/apoA1 at the 95th percentile was connected to a 2.41-fold higher prevalence compared to the 50th percentile (95% CI: 1.33-4.37). No significant correlation was found between the levels of apoA1 and MASLD prevalence. CONCLUSION Elevated levels of apoB and the apoB/apoA1 ratio have been strongly connected to increased MASLD prevalence in children and adolescents with obesity; hence, signifying their potential usefulness as biomarkers for early detection and intervention.
Collapse
Affiliation(s)
- Xiao-Yan Shi
- Children's Health Management Center, Children's Hospital of Soochow University, Suzhou, China
| | - Ya-Kun Liu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, China
| | - Yan Chen
- Department of Children Health Care, Children's Hospital of Soochow University, Suzhou, China
| | - Zhi-Ying Jiang
- Department of Children Health Care, Children's Hospital of Soochow University, Suzhou, China
| | - Meng-Xuan Ye
- Department of Children Health Care, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Pediatric Research Institute of Soochow University, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Mai X, Li M, Jin X, Huang S, Xu M, Yan B, Wei Y, Long X, Wu Y, Mo Z. Identification of a Risk-Prediction Model for Hypertension Patients Concomitant with Nonalcoholic Fatty Liver Disease. Healthcare (Basel) 2025; 13:969. [PMID: 40361747 PMCID: PMC12071756 DOI: 10.3390/healthcare13090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Objective: Our study aims to develop a personalized nomogram model for predicting the risk of nonalcoholic fatty liver disease (NAFLD) in hypertension (HTN) patients and further validate its effectiveness. Methods: A total of 1250 hypertensive (HTN) patients from Guangxi, China, were divided into a training group (875 patients, 70%) and a validation set (375 patients, 30%). LASSO regression, in combination with univariate and multivariate logistic regression analyses, was used to identify predictive factors associated with nonalcoholic fatty liver disease (NAFLD) in HTN patients within the training set. Subsequently, the performance of an NAFLD nomogram prediction model was evaluated in the separate validation group, including assessments of differentiation ability, calibration performance, and clinical applicability. This was carried out using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Results: The risk-prediction model for the HTN patients concomitant with NAFLD included oral antidiabetic drugs (OADs) (OR = 2.553, 95% CI: 1.368-4.763), antihypertensives (AHs) (OR = 7.303, 95% CI: 4.168-12.794), body mass index (BMI) (OR = 1.145, 95% CI: 1.084-1.209), blood urea nitrogen (BUN) (OR = 0.924, 95% CI: 0.860-0.992), triglycerides (TGs) (OR = 1.474, 95% CI: 1.201-1.809), aspartate aminotransferase (AST) (OR = 1.061, 95% CI: 1.018-1.105), and AST/ALT ratio (AAR) (OR = 0.249, 95% CI: 0.121-0.514) as significant predictors. The AUC of the NAFLD risk-prediction model in the training set and the validation set were 0.816 (95% CI: 0.785-0.847) and 0.794 (95% CI: 0.746-0.842), respectively. The Hosmer-Lemeshow test showed that the model has a good goodness-of-fit (p-values were 0.612 and 0.221). DCA suggested the net benefit of using a nomogram to predict the risk of HTN patients concomitant with NAFLD is higher. These results suggested that the model showed moderate predictive ability and good calibration. Conclusions: BMI, OADs, AHs, BUN, TGs, AST, and AAR were independent influencing factors of HTN combined with NAFLD, and the risk prediction model constructed based on this could help to identify the high-risk group of HTN combined with NAFLD at an early stage and guide the development of interventions. Larger cohorts with multiethnic populations are essential to verify our findings.
Collapse
Affiliation(s)
- Xiaoyou Mai
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (X.M.); (Y.W.); (X.L.)
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (M.L.); (X.J.); (S.H.); (M.X.); (B.Y.); (Y.W.)
| | - Mingli Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (M.L.); (X.J.); (S.H.); (M.X.); (B.Y.); (Y.W.)
| | - Xihui Jin
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (M.L.); (X.J.); (S.H.); (M.X.); (B.Y.); (Y.W.)
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (M.L.); (X.J.); (S.H.); (M.X.); (B.Y.); (Y.W.)
| | - Mingjie Xu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (M.L.); (X.J.); (S.H.); (M.X.); (B.Y.); (Y.W.)
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
| | - Boteng Yan
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (M.L.); (X.J.); (S.H.); (M.X.); (B.Y.); (Y.W.)
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
| | - Yushuang Wei
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (X.M.); (Y.W.); (X.L.)
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (M.L.); (X.J.); (S.H.); (M.X.); (B.Y.); (Y.W.)
| | - Xinyang Long
- School of Public Health, Guangxi Medical University, Nanning 530021, China; (X.M.); (Y.W.); (X.L.)
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (M.L.); (X.J.); (S.H.); (M.X.); (B.Y.); (Y.W.)
| | - Yongxian Wu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (M.L.); (X.J.); (S.H.); (M.X.); (B.Y.); (Y.W.)
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (M.L.); (X.J.); (S.H.); (M.X.); (B.Y.); (Y.W.)
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
4
|
Mayengbam S, Raman M, Parnell JA, Eksteen B, Lambert JE, Eller LK, Nicolucci AC, Aktary ML, Reimer RA. Effects of combined prebiotic fiber supplementation and weight loss counseling in adults with metabolic dysfunction-associated steatotic liver disease: a randomized controlled trial. Eur J Nutr 2025; 64:144. [PMID: 40172664 DOI: 10.1007/s00394-025-03660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE Our aim was to examine the effects of combined prebiotic fiber supplementation and weight loss counseling on liver fat, body composition, subjective appetite, serum metabolomics, and intestinal microbiota in adults with MASLD. METHODS In a double blind, placebo-controlled trial, adult participants aged 18-70 years old with MASLD were randomized to receive prebiotic (oligofructose-enriched inulin, 16 g/day; n = 22) or isocaloric placebo (maltodextrin; n = 20) for 24 weeks alongside weight loss counseling from a registered dietitian. Primary outcomes were change in intrahepatic fat % (IHF%) and hepatic injury from baseline to 24 weeks. Secondary outcomes included body composition, subjective appetite, serum lipids and cytokines, fecal microbiota, and serum metabolomics. RESULTS At baseline, participants had IHF of 14.4 ± 8.4%. The change in IHF from baseline to 24 weeks did not differ between prebiotic and placebo. Prebiotic participants had a greater decrease (p = 0.029) in percent trunk fat compared to placebo. Compared to placebo, prebiotic significantly decreased desire to eat and hunger ratings over the course of the intervention. Fecal microbiota analysis showed a significant increase in Bifidobacterium abundance with prebiotic. A pathway analysis based on untargeted serum metabolomics revealed a downregulation of taurine and hypotaurine metabolism in the placebo group which was conserved in the prebiotic group. CONCLUSION Adding prebiotic fiber supplementation to weight loss counseling for adults with MASLD enhanced reductions in trunk fat and had a beneficial effect on subjective appetite compared to placebo. Improvements in fecal microbial profile and taurine metabolism revealed specific beneficial effects of prebiotics in the management of MASLD. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov/study/NCT02568605.
Collapse
Affiliation(s)
- Shyamchand Mayengbam
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Jill A Parnell
- Department of Health and Physical Education, Mount Royal University, Calgary, AB, Canada
| | | | - Jennifer E Lambert
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Lindsay K Eller
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Alissa C Nicolucci
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Michelle L Aktary
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Uchinuma H, Matsushita M, Tanahashi M, Suganami H, Utsunomiya K, Kaku K, Tsuchiya K. Post-hoc analysis of the tofogliflozin post-marketing surveillance study (J-STEP/LT): Tofogliflozin improves liver function in type 2 diabetes patients regardless of BMI. J Diabetes Investig 2025; 16:615-628. [PMID: 39823131 PMCID: PMC11970296 DOI: 10.1111/jdi.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
AIMS/INTRODUCTION Patients with type 2 diabetes are at high risk of developing steatotic liver disease (SLD). Weight loss has proven effective in treating metabolic dysfunction-associated steatotic liver disease (MASLD) in obese patients with type 2 diabetes, with sodium-glucose cotransporter 2 (SGLT2) inhibitors showing promising results. However, lean MASLD is more prevalent in Japan, necessitating alternative approaches to body weight reduction. MATERIALS AND METHODS We used the J-STEP/LT dataset including up to 3-year treatment data to analyze the effects of the SGLT2 inhibitor tofogliflozin on liver function and treatment safety and conducted a subgroup analysis based on body mass index (BMI; kg/m2, <20, 20-<23, 23-<25, 25-<30, and ≥30). RESULTS This study included 4,208 participants. Tofogliflozin significantly reduced alanine aminotransferase (ALT) levels in participants with baseline ALT levels >30 U/L across all BMI groups, with median changes of -12, -16, -13, -15, and -15 U/L, respectively (P = 0.9291 for trends). However, median changes in body weight with tofogliflozin were -2.00, -2.75, -2.00, -3.00, and -3.80 kg, respectively (P < 0.0001 for trends), with no significant weight loss observed in the BMI <20 group. ALT levels were also significantly decreased in participants who did not lose weight. Safety assessments according to BMI and age categories revealed no clear differences in the frequency of adverse events. CONCLUSIONS Tofogliflozin reduced ALT levels without substantial body weight reduction among lean participants. These findings suggest that SGLT2 inhibitors may be a viable treatment option for non-obese patients with type 2 diabetes and SLD.
Collapse
Affiliation(s)
- Hiroyuki Uchinuma
- Department of Diabetes and EndocrinologyUniversity of Yamanashi HospitalYamanashiJapan
| | | | | | | | | | - Kohei Kaku
- Division of Diabetes, Metabolism and EndocrinologyKawasaki Medical SchoolOkayamaJapan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and EndocrinologyUniversity of Yamanashi HospitalYamanashiJapan
| |
Collapse
|
6
|
Park Y, Ko KS, Rhee BD. Non-Alcoholic Fatty Liver Disease (NAFLD) Management in the Community. Int J Mol Sci 2025; 26:2758. [PMID: 40141404 PMCID: PMC11943420 DOI: 10.3390/ijms26062758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has frequently been associated with obesity, type 2 diabetes (T2D), and dyslipidemia, all of which are shared by increased insulin resistance. It has become the most common liver disorder in Korea as well as in developed countries and is therefore associated with an increased health burden of morbidity and mortality. It has an association with T2D, and T2D increases the risk of cirrhosis and related complications. NAFLD encompasses a disease continuum from simple steatosis to non-alcoholic steatohepatitis which is characterized by faster fibrosis progression. Although its liver-related complication is estimated to be, at most, 10%, it will be a leading cause of cirrhosis and hepatocellular carcinoma soon in Korea. Although the main causes of death in people with NAFLD are cardiovascular disease and extra-hepatic malignancy, advanced liver fibrosis is a key prognostic marker for liver-related outcomes and can be assessed with combinations of non-invasive tests in the community. A number of components of metabolic syndrome involved could be another important prognostic information of NAFLD assessed easily in the routine care of the community. There is a few approved therapies for NAFLD, although several drugs, including antioxidants, attract practitioners' attention. Because of the modest effect of the present therapeutics, let alone complex pathophysiology and substantial heterogeneity of disease phenotypes, combination treatment is a viable option for many patients with NAFLD in the Korean community. Comprehensive approach taking healthy lifestyle and weight reduction into account remain a mainstay to the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Internal Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, 1342 Dongil-ro, Nowon-gu, Seoul 01757, Republic of Korea; (K.S.K.); (B.D.R.)
| | | | | |
Collapse
|
7
|
Zeng H, Fang L, Yang Z, Zhao X, Chen H, Xing P, Niu Z, Li Z, Li Z, Zhao J, Liu W, Jing C, You H, Cao G. Prognostic and predictive effects of new steatotic liver disease nomenclatures: a large population-based study. MedComm (Beijing) 2025; 6:e70087. [PMID: 39949980 PMCID: PMC11822458 DOI: 10.1002/mco2.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
We aimed to compare the association of metabolic dysfunction-associated fatty liver disease (MAFLD), metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), metabolic dysfunction and ALD (MetALD), and MASLD with viral hepatitis (MASLD-Viral) with risks of cirrhosis, liver cancer, and mortality. The data of 464,556 adults from the UK Biobank (UKB), 13,526 adults from the National Health and Nutrition Examination Survey (NHANES), and 2554 adults from BeijngFH Health Cohort Study (FHCS) were included. Adjusted hazard ratios (aHR) and odds ratios were calculated using Cox and Logistic regression models, respectively. Compared with non-SLD, the risk of liver cancer increased from MetALD (aHR 1.70 [95% CI 1.37, 2.09]), MASLD (1.91 [1.66, 2.21]), MAFLD (2.01 [1.76, 2.29]), ALD (3.16 [2.54, 3.93]), to MASLD-Viral (22.0 [10.8, 44.4]) in a stepwise manner in the UKB; the risk of all-cause mortality increased from MetALD, MASLD, MAFLD, ALD, to MASLD-Viral in the NHANES. The odds ratio of liver fibrosis increased from MASLD, MAFLD, to MASLD-Viral in the FHCS. In patients with diabetes, metformin plus other drugs were associated with higher risks of cirrhosis, liver cancer, and all-cause mortality in MASLD or MAFLD. Prevention rather than antiglycemic treatment is important for patients with diabetic MASLD or MAFLD.
Collapse
Affiliation(s)
- Huixian Zeng
- Department of EpidemiologySchool of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory of Biological DefenseMinistry of EducationSecond Military Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionSecond Military Medical UniversityShanghaiChina
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
- Jiading District Center for Disease Control and PreventionShanghaiChina
| | - Letian Fang
- Key Laboratory of Biological DefenseMinistry of EducationSecond Military Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionSecond Military Medical UniversityShanghaiChina
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
| | - Zhiyu Yang
- Department of EpidemiologySchool of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory of Biological DefenseMinistry of EducationSecond Military Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionSecond Military Medical UniversityShanghaiChina
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
- Department of Vitral StatisticsShanghai Municipal Center for Disease Control and PreventionShanghaiChina
| | - Xinyu Zhao
- Clinical Epidemiology & EBM UnitBeijing Friendship HospitalCapital Medical UniversityNational Clinical Research Center for Digestive DiseasesBeijingChina
| | - Hongsen Chen
- Key Laboratory of Biological DefenseMinistry of EducationSecond Military Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionSecond Military Medical UniversityShanghaiChina
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
| | - Puyi Xing
- Department of EpidemiologySchool of MedicineJinan UniversityGuangzhouGuangdongChina
- Key Laboratory of Biological DefenseMinistry of EducationSecond Military Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionSecond Military Medical UniversityShanghaiChina
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
| | - Zheyun Niu
- Shanghai East HospitalKey Laboratory of ArrhythmiasMinistry of EducationTongji University School of MedicineTongji UniversityShanghaiChina
| | - Zheng Li
- Key Laboratory of Biological DefenseMinistry of EducationSecond Military Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionSecond Military Medical UniversityShanghaiChina
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
| | - Zishuai Li
- Key Laboratory of Biological DefenseMinistry of EducationSecond Military Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionSecond Military Medical UniversityShanghaiChina
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
| | - Jiayi Zhao
- Key Laboratory of Biological DefenseMinistry of EducationSecond Military Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionSecond Military Medical UniversityShanghaiChina
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
| | - Wenbin Liu
- Key Laboratory of Biological DefenseMinistry of EducationSecond Military Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionSecond Military Medical UniversityShanghaiChina
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
| | - Chunxia Jing
- Department of EpidemiologySchool of MedicineJinan UniversityGuangzhouGuangdongChina
| | - Hong You
- Liver Research CenterBeijing Friendship HospitalCapital Medical UniversityState Key Lab of Digestive HealthNational Clinical Research Center of Digestive DiseasesBeijingChina
| | - Guangwen Cao
- Key Laboratory of Biological DefenseMinistry of EducationSecond Military Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionSecond Military Medical UniversityShanghaiChina
- Department of EpidemiologySecond Military Medical UniversityShanghaiChina
| |
Collapse
|
8
|
Crişan D, Avram L, Morariu-Barb A, Grapa C, Hirişcau I, Crăciun R, Donca V, Nemeş A. Sarcopenia in MASLD-Eat to Beat Steatosis, Move to Prove Strength. Nutrients 2025; 17:178. [PMID: 39796612 PMCID: PMC11722590 DOI: 10.3390/nu17010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The connections between sarcopenia and various chronic conditions, including type 2 diabetes (T2DM), metabolic syndrome (MetS), and liver disease have been highlighted recently. There is also a high occurrence of sarcopenia in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, who are often disregarded. Both experimental and clinical findings suggest a complex, bidirectional relationship between MASLD and sarcopenia. While vitamin D, testosterone, and specific drug therapies show promise in mitigating sarcopenia, consensus on effective treatments is lacking. Recent focus on lifestyle interventions emphasizes dietary therapy and exercise for sarcopenic obesity in MASLD. Challenges arise as weight loss, a primary MASLD treatment, may lead to muscle mass reduction. The therapeutic approach to sarcopenia in morbidly obese MASLD patients also includes bariatric surgery (BS). BS induces weight loss and stabilizes metabolic imbalances, but its impact on sarcopenia is nuanced, underscoring the need for further research. Our aim is to provide a comprehensive review of the interplay between sarcopenia and MASLD and offer insight into the most recent therapeutic challenges and discoveries, as sarcopenia is often overlooked or unrecognized and poses significant challenges for managing these patients.
Collapse
Affiliation(s)
- Dana Crişan
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Lucreţia Avram
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Andreea Morariu-Barb
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Cristiana Grapa
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Ioana Hirişcau
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
| | - Rareş Crăciun
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Valer Donca
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Andrada Nemeş
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.C.); (L.A.); (I.H.); (R.C.); (V.D.); (A.N.)
- Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Hamed AM, Elbahy DA, Ahmed ARH, Thabet SA, Refaei RA, Ragab I, Elmahdy SM, Osman AS, Abouelella AMA. Comparison of the efficacy of curcumin and its nano formulation on dexamethasone-induced hepatic steatosis, dyslipidemia, and hyperglycemia in Wistar rats. Heliyon 2024; 10:e41043. [PMID: 39759349 PMCID: PMC11696662 DOI: 10.1016/j.heliyon.2024.e41043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Background and objective Insulin resistance is a primary feature of type 2 diabetes. This study compared the effects of curcumin and its nanoformulation on insulin resistance, fasting blood sugar, liver function, GLUT4, lipid profile, and oxidative stress in the liver and pancreas in a diabetic model. Methods Thirty male Wistar rats were divided into five groups: a control group, a diabetic group, a diabetic group treated with metformin (40 mg/kg), a diabetic group treated with curcumin (100 mg/kg), and a diabetic group treated with curcumin NPs (100 mg/kg). Diabetes was induced by injecting dexamethasone daily for 14 days. Treatment with curcumin and curcumin NPs was administered by gavage for 14 days. Body weight and fasting blood sugar levels were measured on days 1, 14, and 28. Results The metformin, curcumin, and curcumin NPs groups showed significantly greater body weight gain than the untreated diabetic group (P < 0.001). In diabetic rats treated with curcumin and curcumin NPs, insulin resistance decreased by approximately 40 %, while fasting blood sugar levels dropped by 35-40 % (P < 0.001). The levels of liver enzymes (AST, ALT), cholesterol, triglycerides, LDL, and the oxidative stress marker MDA in liver and pancreatic tissues were reduced by 30-50 %. Additionally, beneficial markers such as albumin, HDL, antioxidants (GSH, SOD), and GLUT4 levels were increased by 25-45 % (P < 0.001). Nano-curcumin consistently showed greater improvements than curcumin, especially in reducing oxidative stress and supporting liver and pancreatic health. Conclusion This study demonstrates that curcumin NPs has a superior effect on reducing oxidative stress and improving metabolic parameters in diabetes compared to curcumin. by enhancing the bioavailability and stability of curcumin, the nanoformulation showed stronger therapeutic potential for managing high blood sugar, cholesterol issues, and liver health, positioning curcumin NPs as a promising alternative to conventional treatments for diabetes and its complications.
Collapse
Affiliation(s)
- Amany M. Hamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Dalia A. Elbahy
- Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed RH. Ahmed
- Department of Pathology, faculty of medicine, Sohag University, Sohag, Egypt
| | - Shymaa A. Thabet
- Central Research Center, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Islam Ragab
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | | | - Ahmed S. Osman
- Department of Biochemistry, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Azza MA. Abouelella
- Department of Clinical Pharmacology, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
10
|
Kaylan KB, Paul S. NAFLD No More: A Review of Current Guidelines in the Diagnosis and Evaluation of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Curr Diab Rep 2024; 25:5. [PMID: 39535566 DOI: 10.1007/s11892-024-01558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW Provide a concise update on metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), as well as a practical approach to screening and initial evaluation. RECENT FINDINGS Nomenclature changes have placed a greater focus on cardiometabolic risk factors in the definition of MASLD. Screening for MASLD is by stepwise noninvasive serum and imaging tests which can identify patients at risk for advanced fibrosis and liver-related complications. MASLD has been increasing in prevalence and disease burden but is underrecognized in primary care and endocrinology clinics. Multiple society guidelines, synthesized here, provide a framework for the initial approach in the diagnosis and evaluation of MASLD. Recent advances in pharmacologic treatment underline the importance of screening for patients who are at risk for advanced fibrosis as they are most likely to benefit from new drug classes, such as the liver-directed thyroid receptor agonist resmiterom.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Medicine, Chicago, IL, USA
| | - Sonali Paul
- Section of Gastroenterology, Hepatology, and Nutrition, Center for Liver Diseases, The University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
11
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
12
|
Bae J, Han E, Lee HW, Park CY, Chung CH, Lee DH, Cho EH, Rhee EJ, Yu JH, Park JH, Bae JC, Park JH, Choi KM, Kim KS, Seo MH, Lee M, Kim NH, Kim SH, Lee WY, Lee WJ, Choi YK, Lee YH, Hwang YC, Lyu YS, Lee BW, Cha BS. Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association. Diabetes Metab J 2024; 48:1015-1028. [PMID: 39610131 PMCID: PMC11621661 DOI: 10.4093/dmj.2024.0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist's perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
Collapse
Affiliation(s)
- Jaehyun Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Eugene Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Choon Hee Chung
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hyun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
| | - Ji-Cheol Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jung Hwan Park
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyung-Soo Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Mi Hae Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Gumi Hospital, Soonchunhyang University College of Medicine, Gumi, Korea
| | - Minyoung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Nan-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - So Hun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yong-ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - You-Cheol Hwang
- Division of Endocrinology and Metabolism, Department of Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Young Sang Lyu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Korea
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bong-Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - on Behalf of the Fatty Liver Research Group of the Korean Diabetes Association
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Gumi Hospital, Soonchunhyang University College of Medicine, Gumi, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
- Division of Endocrinology and Metabolism, Department of Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Korea
| |
Collapse
|
13
|
Mehtani R, Rathi S. Recurrence of Primary Disease After Adult Liver Transplant - Risk Factors, Early Diagnosis, Management, and Prevention. J Clin Exp Hepatol 2024; 14:101432. [PMID: 38975605 PMCID: PMC11222954 DOI: 10.1016/j.jceh.2024.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/14/2024] [Indexed: 07/09/2024] Open
Abstract
Liver transplantation offers a new lease of life to patients with end-stage liver disease and hepatocellular carcinoma. However, the implantation of an exogenous allograft and the accompanying immunosuppression bring their own challenges. Moreover, the persistence of risk factors for the initial liver insult place the new graft at a higher risk of damage. With the increasing number of liver transplants along with the improvement in survival posttransplant, the recurrence of primary disease in liver grafts has become more common. Pre-2015, the most common disease to recur after transplant was hepatitis C. However, directly acting antivirals have nearly eliminated this problem. The greatest challenge of disease recurrence we now face are those of nonalcoholic steatohepatitis, alcohol-related liver disease, and primary sclerosing cholangitis. We focus on the epidemiology and pathophysiology of the recurrence of primary disease after transplant. We also discuss means of early identification, risk stratification, prevention, and management of recurrent primary disease after liver transplantation.
Collapse
Affiliation(s)
- Rohit Mehtani
- Department of Hepatology, Amrita Institute of Medical Sciences and Research, Faridabad, Haryana, India
| | - Sahaj Rathi
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Arun Kumar D, Kumar S, Rajagopal R, Ramesh R, M M. Non-invasive Assessment of Liver Fibrosis Using Shear Wave Elastography in Patients With Type 2 Diabetes Mellitus Having Non-alcoholic Fatty Liver Disease. Cureus 2024; 16:e72471. [PMID: 39600758 PMCID: PMC11590170 DOI: 10.7759/cureus.72471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) frequently coexist due to overlapping risk factors such as metabolic syndrome and obesity. T2DM exacerbates the progression of NAFLD, increasing the risk of cirrhosis and hepatocellular carcinoma. Thus, early detection of liver fibrosis is crucial to prevent severe liver disease. A 2D shear wave elastography (2D SWE) has emerged as a reliable non-invasive method for assessing liver stiffness, potentially reducing the need for liver biopsies and facilitating prompt treatment interventions. Methods This cross-sectional study, conducted over 18 months, included 100 T2DM and NAFLD patients from the Medicine and Diabetes Outpatient Department at SRM Medical College Hospital and Research Centre, Chengalpattu, India. Participants underwent gray-scale ultrasound to classify fatty liver (Grades I, II, and III) and 2D SWE to evaluate liver stiffness. Additional data on fasting and postprandial blood glucose, glycosylated hemoglobin (HbA1c), lipid profiles, liver function tests, and body mass index (BMI) were collected. Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 21 (Released 2012; IBM Corp., Armonk, New York, United States). Results The mean age of participants was 47.9 years, with 61% being male. Fatty liver Grades I, II, and III were present in 47%, 41%, and 12% of patients, respectively. SWE results showed that 30% had stiffness values <5 kPa, 53% had values between 5.1-9 kPa, 16% had values between 9.1-13 kPa, and 1% had values >13 kPa. Liver size increased significantly with fatty liver grade (p=0.029). HbA1c levels and blood glucose levels were significantly correlated with fatty liver grades (p<0.0001). Triglyceride levels were higher with increasing fatty liver grades (p<0.0001). A significant correlation was found between gamma-glutamyl transferase (GGT) levels and SWE values (p=0.04). In the lipid profile, significant correlations were noted between SWE values and triglycerides (p=0.005), cholesterol (p=0.026), and very-low-density lipoprotein (VLDL) (p=0.131). Higher levels of HbA1c, fasting blood sugar, and postprandial blood sugar were also significantly correlated with SWE values (p<0.0001). Increasing grades of hepatic steatosis significantly correlated with SWE values (p<0.0001). BMI positively correlated with SWE values (r=0.321, p=0.001). Conclusion This study highlights the prevalence of advanced liver stiffness in patients with T2DM and NAFLD, which correlates significantly with higher grades of fatty liver, elevated HbA1c, blood sugar levels, and abnormal lipid profiles. SWE is a valuable tool for assessing liver stiffness and guiding the management of NAFLD in patients with T2DM.
Collapse
Affiliation(s)
- Deepthi Arun Kumar
- Radiodiagnosis, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Senthil Kumar
- Radiodiagnosis, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Revathi Rajagopal
- Radiodiagnosis, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Ragitha Ramesh
- Radiodiagnosis, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Manoj M
- Radiodiagnosis, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| |
Collapse
|
15
|
Papadimitriou K, Mousiolis AC, Mintziori G, Tarenidou C, Polyzos SA, Goulis DG. Hypogonadism and nonalcoholic fatty liver disease. Endocrine 2024; 86:28-47. [PMID: 38771482 DOI: 10.1007/s12020-024-03878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently proposed to be renamed to metabolic dysfunction-associated steatotic liver disease (MASLD), is a major global public health concern, affecting approximately 25-30% of the adult population and possibly leading to cirrhosis, hepatocellular carcinoma, and liver transplantation. The liver is involved in the actions of sex steroids via their hepatic metabolism and production of the sex hormone-binding globulin (SHBG). Liver disease, including NAFLD, is associated with reproductive dysfunction in men and women, and the prevalence of NAFLD in patients with hypogonadism is considerable. A wide spectrum of possible pathophysiological mechanisms linking NAFLD and male/female hypogonadism has been investigated. As therapies targeting NAFLD may impact hypogonadism in men and women, and vice versa, treatments of the latter may affect NAFLD, and an insight into their pathophysiological pathways is imperative. This paper aims to elucidate the complex association between NAFLD and hypogonadism in men and women and discuss the therapeutic options and their impact on both conditions.
Collapse
Affiliation(s)
- Kasiani Papadimitriou
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Athanasios C Mousiolis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gesthimani Mintziori
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Bali AD, Rosenzveig A, Frishman WH, Aronow WS. Nonalcoholic Fatty Liver Disease and Cardiovascular Disease: Causation or Association. Cardiol Rev 2024; 32:453-462. [PMID: 36825899 DOI: 10.1097/crd.0000000000000537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a disease process that is gaining increasing recognition. The global prevalence of NAFLD is increasing in parallel with growing rates of risk factors for NAFLD such as hypertension, obesity, diabetes, and metabolic syndrome. NAFLD has been referred to as a risk factor for cardiovascular disease (CVD). As CVD is the leading cause of morbidity and mortality worldwide, there are constant efforts to describe and alleviate its risk factors. Although there is conflicting data supporting NAFLD as a causative or associative factor for CVD, NAFLD has been shown to be associated with structural, electrical, and atherosclerotic disease processes of the heart. Shared risk factors and pathophysiologic mechanisms between NAFLD and CVD warrant further explication. Pathologic mechanisms such as endothelial dysfunction, oxidative stress, insulin resistance, genetic underpinnings, and gut microbiota dysregulation have been described in both CVD and NAFLD. The mainstay of treatment for NAFLD is lifestyle intervention including physical exercise and hypocaloric intake in addition to bariatric surgery. Investigations into various therapeutic targets to alleviate hepatic steatosis and fibrosis by way of maintaining the balance between lipid synthesis and breakdown. A major obstacle preventing the success of many pharmacologic approaches has been the effects of these medications on CVD risk. The future of pharmacologic treatment of NAFLD is promising as effective medications with limited CVD harm are being investigated.
Collapse
Affiliation(s)
- Atul D Bali
- From the Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | | | - William H Frishman
- From the Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- From the Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
17
|
Low ZS, Chua D, Cheng HS, Tee R, Tan WR, Ball C, Sahib NBE, Ng SS, Qu J, Liu Y, Hong H, Cai C, Rao NCL, Wee A, Muthiah MD, Bichler Z, Mickelson B, Kong MS, Tay VS, Yan Z, Chen J, Ng AS, Yip YS, Vos MIG, Tan NA, Lim DL, Lim DXE, Chittezhath M, Yaligar J, Verma SK, Poptani H, Guan XL, Velan SS, Ali Y, Li L, Tan NS, Wahli W. The LIDPAD Mouse Model Captures the Multisystem Interactions and Extrahepatic Complications in MASLD. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404326. [PMID: 38952069 PMCID: PMC11425234 DOI: 10.1002/advs.202404326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Indexed: 07/03/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents an impending global health challenge. Current management strategies often face setbacks, emphasizing the need for preclinical models that faithfully mimic the human disease and its comorbidities. The liver disease progression aggravation diet (LIDPAD), a diet-induced murine model, extensively characterized under thermoneutral conditions and refined diets is introduced to ensure reproducibility and minimize species differences. LIDPAD recapitulates key phenotypic, genetic, and metabolic hallmarks of human MASLD, including multiorgan communications, and disease progression within 4 to 16 weeks. These findings reveal gut-liver dysregulation as an early event and compensatory pancreatic islet hyperplasia, underscoring the gut-pancreas axis in MASLD pathogenesis. A robust computational pipeline is also detailed for transcriptomic-guided disease staging, validated against multiple harmonized human hepatic transcriptomic datasets, thereby enabling comparative studies between human and mouse models. This approach underscores the remarkable similarity of the LIDPAD model to human MASLD. The LIDPAD model fidelity to human MASLD is further confirmed by its responsiveness to dietary interventions, with improvements in metabolic profiles, liver histopathology, hepatic transcriptomes, and gut microbial diversity. These results, alongside the closely aligned changing disease-associated molecular signatures between the human MASLD and LIDPAD model, affirm the model's relevance and potential for driving therapeutic development.
Collapse
Affiliation(s)
- Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Rachel Tee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Christopher Ball
- Metabolic Imaging Group, Institute of Bioengineering and Bioimaging, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, Singapore, 138667, Singapore
| | - Norliza Binte Esmail Sahib
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Ser Sue Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Jing Qu
- Department of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yingzi Liu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Haiyu Hong
- Department of Otolaryngology Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Mei Hua East Road, Zhuhai, 519000, China
| | - Chaonong Cai
- Department of Otolaryngology Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, 52 Mei Hua East Road, Zhuhai, 519000, China
| | | | - Aileen Wee
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Mark Dhinesh Muthiah
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, 119074, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, 119074, Singapore
| | - Zoë Bichler
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | | | - Mei Suen Kong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Vanessa Shiyun Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Zhuang Yan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Jiapeng Chen
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Marcus Ivan Gerard Vos
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Nicole Ashley Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Dao Liang Lim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Debbie Xiu En Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Manesh Chittezhath
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Jadegoud Yaligar
- Metabolic Imaging Group, Institute of Bioengineering and Bioimaging, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, Singapore, 138667, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Sanjay Kumar Verma
- Metabolic Imaging Group, Institute of Bioengineering and Bioimaging, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, Singapore, 138667, Singapore
| | - Harish Poptani
- Centre for Preclinical Imaging, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Sambasivam Sendhil Velan
- Metabolic Imaging Group, Institute of Bioengineering and Bioimaging, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, Singapore, 138667, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, 119074, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, 30 Medical Drive, Singapore, 117609, Singapore
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
- Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore, 168751, Singapore
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Toxalim (Research Centre in Food Toxicology), 180 Chemin de Tournefeuille, Toulouse, 1331, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, Lausanne, 1015, Switzerland
| |
Collapse
|
18
|
Karnawat K, Parthasarathy R, Sakhrie M, Karthik H, Krishna KV, Balachander GM. Building in vitro models for mechanistic understanding of liver regeneration in chronic liver diseases. J Mater Chem B 2024; 12:7669-7691. [PMID: 38973693 DOI: 10.1039/d4tb00738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The liver has excellent regeneration potential and attains complete functional recovery from partial hepatectomy. The regenerative mechanisms malfunction in chronic liver diseases (CLDs), which fuels disease progression. CLDs account for 2 million deaths per year worldwide. Pathophysiological studies with clinical correlation have shown evidence of deviation of normal regenerative mechanisms and its contribution to fueling fibrosis and disease progression. However, we lack realistic in vitro models that can allow experimental manipulation for mechanistic understanding of liver regeneration in CLDs and testing of candidate drugs. In this review, we aim to provide the framework for building appropriate organotypic models for dissecting regenerative responses in CLDs, with the focus on non-alcoholic steatohepatitis (NASH). By drawing parallels with development and hepatectomy, we explain the selection of critical components such as cells, signaling, and, substrate-driven biophysical cues to build an appropriate CLD model. We highlight the organoid-based organotypic models available for NASH disease modeling, including organ-on-a-chip and 3D bioprinted models. With the focus on bioprinting as a fabrication method, we prescribe building in vitro CLD models and testing schemes for exploring the regenerative responses in the bioprinted model.
Collapse
Affiliation(s)
- Khushi Karnawat
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Rithika Parthasarathy
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Mesevilhou Sakhrie
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Harikeshav Karthik
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Konatala Vibhuvan Krishna
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| |
Collapse
|
19
|
Henin G, Loumaye A, Deldicque L, Leclercq IA, Lanthier N. Unlocking liver health: Can tackling myosteatosis spark remission in metabolic dysfunction-associated steatotic liver disease? Liver Int 2024; 44:1781-1796. [PMID: 38623714 DOI: 10.1111/liv.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Myosteatosis is highly prevalent in metabolic dysfunction-associated steatotic liver disease (MASLD) and could reciprocally impact liver function. Decreasing muscle fat could be indirectly hepatoprotective in MASLD. We conducted a review to identify interventions reducing myosteatosis and their impact on liver function. Non-pharmacological interventions included diet (caloric restriction or lipid enrichment), bariatric surgery and physical activity. Caloric restriction in humans achieving a mean weight loss of 3% only reduces muscle fat. Lipid-enriched diet increases liver fat in human with no impact on muscle fat, except sphingomyelin-enriched diet which reduces both lipid contents exclusively in pre-clinical studies. Bariatric surgery, hybrid training (resistance exercise and electric stimulation) or whole-body vibration in human decrease both liver and muscle fat. Physical activity impacts both phenotypes by reducing local and systemic inflammation, enhancing insulin sensitivity and modulating the expression of key mediators of the muscle-liver-adipose tissue axis. The combination of diet and physical activity acts synergistically in liver, muscle and white adipose tissue, and further decrease muscle and liver fat. Several pharmacological interventions (patchouli alcohol, KBP-089, 2,4-dinitrophenol methyl ether, adipoRon and atglistatin) and food supplementation (vitamin D or resveratrol) improve liver and muscle phenotypes in pre-clinical studies by increasing fatty acid oxidation and anti-inflammatory properties. These interventions are effective in reducing myosteatosis in MASLD while addressing the liver disease itself. This review supports that disturbances in inter-organ crosstalk are key pathophysiological mechanisms involved in MASLD and myosteatosis pathogenesis. Focusing on the skeletal muscle might offer new therapeutic strategies to treat MASLD by modulating the interactions between liver and muscles.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d'Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
20
|
Stachowska E, Gudan A, Mańkowska-Wierzbicka D, Liebe R, Krawczyk M. Dysbiosis and nutrition in steatotic liver disease: addressing the unrecognized small intestinal bacterial overgrowth (SIBO) challenge. Intern Emerg Med 2024; 19:1229-1234. [PMID: 38499938 DOI: 10.1007/s11739-024-03533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024]
Abstract
Steatotic liver disease (SLD) is characterized by hepatic fat accumulation, potentially causing major consequences such as liver decompensation. Currently, we lack medications for the treatment of SLD. Therapeutic recommendations for patients include a hypocaloric diet, weight loss, and physical activity. In particular, the Mediterranean diet is frequently recommended. However, this diet might exacerbate intestinal problems in a subset of patients with coexisting small intestinal bacterial overgrowth (SIBO). Previous studies have reported that SIBO is more predominant in patients with fatty liver than in healthy individuals. Both our research and the findings of others have highlighted a challenge related to nutritional therapy in patients with fatty liver who also suffer from SIBO inasmuch as SIBO induces several phenomena (like bloating or abdominal pain) that can adversely affect patients' quality of life and might be exacerbated by the Mediterranean diet. This may lower their adherence to the intervention. As a solution, we suggest introducing additional diagnostics (e.g., breath test) in patients with SLD who complain of SIBO-like symptoms. The next step is to modify their diets temporarily starting with several weeks of "elimination and sanitation." This would involve restricting products rich in fermentable sugars and polyols, while simultaneously treating the bacterial overgrowth. In summary, while the hypocaloric Mediterranean diet is beneficial for patients with fatty liver, those with coexisting SIBO may experience exacerbated symptoms. It is vital to consider additional diagnostics and dietary modifications for this subset of patients to address both liver and intestinal health concurrently.
Collapse
Affiliation(s)
- Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24, 71-460, Szczecin, Poland.
| | - Anna Gudan
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego 24, 71-460, Szczecin, Poland
| | - Dorota Mańkowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
- Laboratory of Metabolic Liver Diseases, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Liu X, Chang Y, Jia F, Li Y, Wang Y, Cui J. Association of Life's Essential 8 with metabolic dysfunction-associated steatotic liver disease (MASLD), a cross-sectional study from the NHANES 2003-2018. Sci Rep 2024; 14:17188. [PMID: 39060338 PMCID: PMC11282211 DOI: 10.1038/s41598-024-67728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
There is limited research on the relationship between Life's Essential 8 (LE8) score and metabolic dysfunction-associated steatotic liver disease (MASLD). Our aim is to investigate the relationship between overall lifestyle assessed by LE-8 score and MASLD in a nationally representative sample. We employed the LE8 score to comprehensively evaluate cardiovascular health, the assessment of MASLD primarily utilized the Fatty Liver Index. The weighted logistic regression models, restrictive cubic splines (RCS), subgroup analyses and the weighted quantile sum (WQS) regression were used to evaluate the relationship between the cardiovascular health and MASLD. Logistic regression models revealed that higher LE8 scores were associated with lower odds of having MASLD. The RCS revealed a significant nonlinear dose-response relationship between LE8 scores and MASLD. The WQS regression model indicated that blood glucose contributed the most to the risk of MASLD. The subgroup analysis indicates that there are significant differences in this association across age, educational level, and poverty income ratio. Our study suggests that an inverse correlation between LE8 and the risk of MASLD. Our findings underscore the utility of the LE8 algorithm in MASLD risk assessment and provide support for MASLD prevention through the promotion of healthy lifestyles.
Collapse
Affiliation(s)
- Xiangliang Liu
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, China
| | - Yu Chang
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, China
| | - Feng Jia
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, China
| | - Yuguang Li
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, China
| | - Yao Wang
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, China.
| |
Collapse
|
22
|
Mou Z, Gong T, Wu Y, Liu J, Yu J, Mao L. The efficacy and safety of Dachaihu decoction in the treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1397900. [PMID: 39015790 PMCID: PMC11249752 DOI: 10.3389/fmed.2024.1397900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD), also known as metabolic associated fatty liver disease (MAFLD), is a common liver condition characterized by excessive fat accumulation in the liver which is not caused by alcohol. The main causes of NAFLD are obesity and insulin resistance. Dachaihu decoction (DCHD), a classic formula in traditional Chinese medicine, has been proved to treat NAFLD by targeting different aspects of pathogenesis and is being progressively used in the treatment of NAFLD. DCHD is commonly applied in a modified form to treat the NAFLD. In light of this, it is imperative to conduct a systematic review and meta-analysis to assess the effectiveness and safety of DCHD in the management of NAFLD. There is a need for a systematic review and meta-analysis to assess the effectiveness and safety of modified DCHD in treating NAFLD. Objective The objective of this meta-analysis was to systematically assess the clinical effectiveness and safety of DCHD in treating NAFLD. Methods This meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Including seven databases, both Chinese and English databases were searched for relevant studies. The quality of included studies was carefully assessed using the bias risk assessment tool in the Cochrane Handbook. Eligible articles were the source of extracted data which was meta-analyzed by using Review Manager 5.4 and Stata 17.0. Results A total of 10 studies containing 825 patients were included. Compared with conventional treatments, combined treatment could clearly improve the liver function of NAFLD patients, which could reduce the levels of ALT (MD = -7.69 U/L, 95% CI: -11.88 to -3.51, p < 0.001), AST (MD = -9.58 U/L, 95% CI: -12.84 to -6.33, p < 0.01), and it also had a certain impact on regulating lipid metabolism, which could reduce the levels of TC (MD = -0.85 mmol/L, 95% CI: -1.22 to 0.48, p < 0.01), TG (MD = -0.45 mmol/L, 95% CI: -0.64 to 0.21, p < 0.01). Adverse event showed that DCHD was relatively safe. Due to the inclusion of less than 10 trials in each group, it was not possible to conduct a thorough analysis of publication bias. Conclusion According to the meta-analysis, in the treatment of the NAFLD, it is clear that the combination of DCHD was advantages over conventional treatment alone in improving liver function, regulating lipid metabolism. Additionally, DCHD demonstrates a relatively safe profile. Nevertheless, due to limitations in the quality and quantity of the studies incorporated, the effectiveness and safety of DCHD remain inconclusive. Consequently, further high-quality research is imperative to furnish more substantial evidence supporting the widespread clinical application of DCHD. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023397353, CRD42023397353.
Collapse
Affiliation(s)
- Zhiqing Mou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Tao Gong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanzuo Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Liu
- Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Lichan Mao
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
23
|
Castelnuovo G, Perez-Diaz-del-Campo N, Rosso C, Armandi A, Caviglia GP, Bugianesi E. A Healthful Plant-Based Diet as an Alternative Dietary Approach in the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:2027. [PMID: 38999775 PMCID: PMC11243448 DOI: 10.3390/nu16132027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Plant-based diets (PBDs) are gaining attention as a sustainable and health-conscious alternative for managing various chronic conditions, including metabolic dysfunction-associated steatotic liver disease (MASLD). In the absence of pharmacological treatments, exploring the potential of lifestyle modifications to improve biochemical and pathological outcomes becomes crucial. The adoption of PBDs has demonstrated beneficial effects such as weight control, increased metabolic health and improved coexisting diseases. Nonetheless, challenges persist, including adherence difficulties, ensuring nutritional adequacy, and addressing potential deficiencies. The aim of this review is to provide a comprehensive overview of the impact of PBDs on MASLD, emphasizing the need for tailored dietary interventions with professional support to optimize their effectiveness in preventing and treating metabolic diseases.
Collapse
Affiliation(s)
- Gabriele Castelnuovo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.C.); (N.P.-D.-d.-C.); (C.R.); (A.A.); (G.P.C.)
| | - Nuria Perez-Diaz-del-Campo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.C.); (N.P.-D.-d.-C.); (C.R.); (A.A.); (G.P.C.)
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.C.); (N.P.-D.-d.-C.); (C.R.); (A.A.); (G.P.C.)
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.C.); (N.P.-D.-d.-C.); (C.R.); (A.A.); (G.P.C.)
| | - Gian Paolo Caviglia
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.C.); (N.P.-D.-d.-C.); (C.R.); (A.A.); (G.P.C.)
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.C.); (N.P.-D.-d.-C.); (C.R.); (A.A.); (G.P.C.)
- Gastroenterology Unit, Città della Salute e della Scienza—Molinette Hospital, 10126 Turin, Italy
| |
Collapse
|
24
|
Lara-Romero C, Romero-Gómez M. Treatment Options and Continuity of Care in Metabolic-associated Fatty Liver Disease: A Multidisciplinary Approach. Eur Cardiol 2024; 19:e06. [PMID: 38983581 PMCID: PMC11231815 DOI: 10.15420/ecr.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 07/11/2024] Open
Abstract
The terms non-alcoholic fatty liver disease and non-alcoholic steatohepatitis have some limitations as they use exclusionary confounder terms and the use of potentially stigmatising language. Recently, a study with content experts and patients has been set to change this nomenclature. The term chosen to replace non-alcoholic fatty liver disease was metabolic dysfunction-associated steatotic liver disease (MASLD), which avoids stigmatising and helps improve awareness and patient identification. MASLD is the most common cause of chronic liver disease with an increasing prevalence, accounting for 25% of the global population. It is considered the hepatic manifestation of the metabolic syndrome with lifestyle playing a fundamental role in its physiopathology. Diet change and physical activity are the cornerstones of treatment, encompassing weight loss and healthier behaviours and a holistic approach. In Europe, there is no approved drug for MASLD to date and there is a substantial unmet medical need for effective treatments for patients with MASLD. This review not only provides an update on advances in evidence for nutrition and physical activity interventions but also explores the different therapeutic options that are being investigated and whose development focuses on the restitution of metabolic derangements and halting inflammatory and fibrogenic pathways.
Collapse
Affiliation(s)
- Carmen Lara-Romero
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| | - Manuel Romero-Gómez
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| |
Collapse
|
25
|
Liu Z, Jin P, Liu Y, Zhang Z, Wu X, Weng M, Cao S, Wang Y, Zeng C, Yang R, Liu C, Sun P, Tian C, Li N, Zeng Q. A comprehensive approach to lifestyle intervention based on a calorie-restricted diet ameliorates liver fat in overweight/obese patients with NAFLD: a multicenter randomized controlled trial in China. Nutr J 2024; 23:64. [PMID: 38872173 PMCID: PMC11170812 DOI: 10.1186/s12937-024-00968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a globally increasing health epidemic. Lifestyle intervention is recommended as the main therapy for NAFLD. However, the optimal approach is still unclear. This study aimed to evaluate the effects of a comprehensive approach of intensive lifestyle intervention (ILI) concerning enhanced control of calorie-restricted diet (CRD), exercise, and personalized nutrition counseling on liver steatosis and extrahepatic metabolic status in Chinese overweight and obese patients with NAFLD. METHODS This study was a multicenter randomized controlled trial (RCT) conducted across seven hospitals in China. It involved 226 participants with a body mass index (BMI) above 25. These participants were randomly assigned to two groups: the ILI group, which followed a low carbohydrate, high protein CRD combined with exercise and intensive counseling from a dietitian, and a control group, which adhered to a balanced CRD along with exercise and standard counseling. The main measure of the study was the change in the fat attenuation parameter (FAP) from the start of the study to week 12, analyzed within the per-protocol set. Secondary measures included changes in BMI, liver stiffness measurement (LSM), and the improvement of various metabolic indexes. Additionally, predetermined subgroup analyses of the FAP were conducted based on variables like gender, age, BMI, ethnicity, hyperlipidemia, and hypertension. RESULTS A total of 167 participants completed the whole study. Compared to the control group, ILI participants achieved a significant reduction in FAP (LS mean difference, 16.07 [95% CI: 8.90-23.25] dB/m) and BMI (LS mean difference, 1.46 [95% CI: 1.09-1.82] kg/m2) but not in LSM improvement (LS mean difference, 0.20 [95% CI: -0.19-0.59] kPa). The ILI also substantially improved other secondary outcomes (including ALT, AST, GGT, body fat mass, muscle mass and skeletal muscle mass, triglyceride, fasting blood glucose, fasting insulin, HbA1c, HOMA-IR, HOMA-β, blood pressure, and homocysteine). Further subgroup analyses showed that ILI, rather than control intervention, led to more significant FAP reduction, especially in patients with concurrent hypertension (p < 0.001). CONCLUSION In this RCT, a 12-week intensive lifestyle intervention program led to significant improvements in liver steatosis and other metabolic indicators in overweight and obese Chinese patients suffering from nonalcoholic fatty liver disease. Further research is required to confirm the long-term advantages and practicality of this approach. TRIAL REGISTRATION This clinical trial was registered on ClinicalTrials.gov (registration number: NCT03972631) in June 2019.
Collapse
Affiliation(s)
- Zhong Liu
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Piaopiao Jin
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuping Liu
- Department of Health Management, Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Zhimian Zhang
- Health Management Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiangming Wu
- Zhejiang Nutriease Health Technology Company Limited, Hangzhou, 311121, China
| | - Min Weng
- Department of Nutrition, The First Affiliated Hospital, Kunming Medical University, Kunming, 650034, China
| | - Suyan Cao
- Health Management Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Wang
- Health Management Center, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rui Yang
- Healthcare Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenbing Liu
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ping Sun
- Department of Health Management, Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Cuihuan Tian
- Health Management Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Nan Li
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiang Zeng
- Health Management Institute, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
26
|
Niu J, Al-Yaman W, Pinyopornpanish K, Park JS, Salazar M, Xiao H, Bena J, Lyu R, Flocco G, Junna SR, Adhami T, Sims OT, Wakim-Fleming J. The Long-Term Effect of Weight Loss on the Prevention of Progression to Cirrhosis among Patients with Obesity and MASH-Related F3 Liver Fibrosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:708. [PMID: 38928954 PMCID: PMC11203621 DOI: 10.3390/ijerph21060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
This multi-center retrospective study examined the effect of weight loss on the prevention of progression to cirrhosis in a sample exclusively composed of patients with obesity and MASH-related F3 liver fibrosis. Adult patients with obesity and biopsy-confirmed MASH-related F3 liver fibrosis (n = 101) from two liver transplant centers in the US were included in the study. A higher proportion of patients who did not progress to cirrhosis achieved >5% weight loss at follow-up (59% vs. 30%, p = 0.045). In multivariable analysis, patients with >5% weight loss at follow-up had a lower hazard of developing cirrhosis compared to patients with no weight loss or weight gain (HR: 0.29, 95%, CI: 0.08-0.96); whereas, diabetes (HR: 3.24, 95%, CI: 1.21-8.67) and higher LDL levels (HR: 1.02, 95%, CI: 1.01-1.04) were associated with higher hazards of progression to cirrhosis. Weight loss >5% has the potential to prevent disease progression to cirrhosis in patients with obesity and MASH-related F3 liver fibrosis. The realization of this benefit requires weight loss maintenance longer than one year. Larger prospective studies are needed to determine how weight loss impacts other patient-centered outcomes such as mortality, hepatic decompensation, and hepatocellular carcinoma in patients with obesity and MASH-related F3 liver fibrosis.
Collapse
Affiliation(s)
- Jiafei Niu
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (J.N.); (W.A.-Y.); (K.P.); (J.S.P.); (M.S.); (G.F.); (S.R.J.); (T.A.); (J.W.-F.)
| | - Wael Al-Yaman
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (J.N.); (W.A.-Y.); (K.P.); (J.S.P.); (M.S.); (G.F.); (S.R.J.); (T.A.); (J.W.-F.)
- Department of Gastroenterology, St. Joseph Mercy Ann Arbor Hospital, Ypsiilanti, MI 48197, USA
| | - Kanokwan Pinyopornpanish
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (J.N.); (W.A.-Y.); (K.P.); (J.S.P.); (M.S.); (G.F.); (S.R.J.); (T.A.); (J.W.-F.)
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ji Seok Park
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (J.N.); (W.A.-Y.); (K.P.); (J.S.P.); (M.S.); (G.F.); (S.R.J.); (T.A.); (J.W.-F.)
| | - Miguel Salazar
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (J.N.); (W.A.-Y.); (K.P.); (J.S.P.); (M.S.); (G.F.); (S.R.J.); (T.A.); (J.W.-F.)
| | - Huijun Xiao
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (H.X.); (J.B.); (R.L.)
| | - James Bena
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (H.X.); (J.B.); (R.L.)
| | - Ruishen Lyu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (H.X.); (J.B.); (R.L.)
| | - Gianina Flocco
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (J.N.); (W.A.-Y.); (K.P.); (J.S.P.); (M.S.); (G.F.); (S.R.J.); (T.A.); (J.W.-F.)
| | - Shilpa R. Junna
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (J.N.); (W.A.-Y.); (K.P.); (J.S.P.); (M.S.); (G.F.); (S.R.J.); (T.A.); (J.W.-F.)
| | - Talal Adhami
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (J.N.); (W.A.-Y.); (K.P.); (J.S.P.); (M.S.); (G.F.); (S.R.J.); (T.A.); (J.W.-F.)
| | - Omar T. Sims
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (J.N.); (W.A.-Y.); (K.P.); (J.S.P.); (M.S.); (G.F.); (S.R.J.); (T.A.); (J.W.-F.)
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (H.X.); (J.B.); (R.L.)
| | - Jamile Wakim-Fleming
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH 44106, USA; (J.N.); (W.A.-Y.); (K.P.); (J.S.P.); (M.S.); (G.F.); (S.R.J.); (T.A.); (J.W.-F.)
| |
Collapse
|
27
|
Shi R, Li X, Sun K, Liu F, Kang B, Wang Y, Wang Y, Zhu B, Zhao X, Liu Z, Wang X. Association between severity of nonalcoholic fatty liver disease and major adverse cardiovascular events in patients assessed by coronary computed tomography angiography. BMC Cardiovasc Disord 2024; 24:267. [PMID: 38773388 PMCID: PMC11107064 DOI: 10.1186/s12872-024-03880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The effect of nonalcoholic fatty liver disease (NAFLD) on major adverse cardiovascular events (MACEs) can be influenced by the degree of coronary artery stenosis. However, the association between the severity of NAFLD and MACEs in patients who underwent coronary computed tomography angiography (CCTA) is unclear. METHODS A total of 341 NAFLD patients who underwent CCTA were enrolled. The severity of NAFLD was divided into mild NAFLD and moderate-severe NAFLD by abdominal CT results. The degree of coronary artery stenosis was evaluated by using Coronary Artery Disease Reporting and Data System (CAD-RADS) category. Cox regression analysis and Kaplan-Meier analysis were used to assess poor prognosis. RESULTS During the follow-up period, 45 of 341 NAFLD patients (13.20%) who underwent CCTA occurred MACEs. The severity of NAFLD (hazard ratio [HR] = 2.95[1.54-5.66]; p = 0.001) and CAD-RADS categories 3-5 (HR = 16.31[6.34-41.92]; p < 0.001) were independent risk factors for MACEs. The Kaplan-Meier analysis showed that moderate to severe NAFLD patients had a worsen prognosis than mild NAFLD patients (log-rank p < 0.001). Moreover, the combined receiver operating characteristic curve of the severity of NAFLD and CAD-RADS category showed a good predicting performance for the risk of MACEs, with an area under the curve of 0.849 (95% CI = 0.786-0.911). CONCLUSION The severity of NAFLD was independent risk factor for MACEs in patients with obstructive CAD, having CAD-RADS 3-5 categories on CCTA.
Collapse
Affiliation(s)
- Rongchao Shi
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xuemei Li
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Gastroenterology, Heze Municipal Hospital, Heze, Shandong Province, China
| | - Kui Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Fangyuan Liu
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bing Kang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Yilin Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ying Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Baosen Zhu
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Zhiqiang Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China.
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China.
| |
Collapse
|
28
|
Kvist AAS, Sharma A, Sommer C, Qvigstad E, Gulseth HL, Sollid ST, Nermoen I, Sattar N, Gill J, Tannæs TM, Birkeland KI, Lee-Ødegård S. Adipose Tissue Insulin Resistance in South Asian and Nordic Women after Gestational Diabetes Mellitus. Metabolites 2024; 14:288. [PMID: 38786765 PMCID: PMC11123011 DOI: 10.3390/metabo14050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
South Asians (SAs) have a higher risk of developing type 2 diabetes (T2D) than white Europeans, especially following gestational diabetes mellitus (GDM). Despite similar blood glucose levels post-GDM, SAs exhibit more insulin resistance (IR) than Nordics, though the underlying mechanisms are unclear. This study aimed to assess markers of adipose tissue (AT) IR and liver fat in SA and Nordic women post-GDM. A total of 179 SA and 108 Nordic women in Norway underwent oral glucose tolerance tests 1-3 years post-GDM. We measured metabolic markers and calculated the AT IR index and non-alcoholic fatty liver disease liver fat (NAFLD-LFS) scores. Results showed that normoglycaemic SAs had less non-esterified fatty acid (NEFA) suppression during the test, resembling prediabetes/T2D responses, and higher levels of plasma fetuin-A, CRP, and IL-6 but lower adiponectin, indicating AT inflammation. Furthermore, normoglycaemic SAs had higher NAFLD-LFS scores, lower insulin clearance, and higher peripheral insulin than Nordics, indicating increased AT IR, inflammation, and liver fat in SAs. Higher liver fat markers significantly contributed to the ethnic disparities in glucose metabolism, suggesting a key area for intervention to reduce T2D risk post-GDM in SAs.
Collapse
Affiliation(s)
- Ahalya Anita Suntharalingam Kvist
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Archana Sharma
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Stina Therese Sollid
- Department of Medicine, Drammen Hospital, Vestre Viken Health Trust, 3004 Drammen, Norway
| | - Ingrid Nermoen
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK
| | - Jason Gill
- School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK
| | - Tone Møller Tannæs
- EpiGen, Medical Division, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kåre Inge Birkeland
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Sindre Lee-Ødegård
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
29
|
Gato S, García-Fernández V, Gil-Gómez A, Rojas Á, Montero-Vallejo R, Muñoz-Hernández R, Romero-Gómez M. Navigating the Link Between Non-alcoholic Fatty Liver Disease/Non-alcoholic Steatohepatitis and Cardiometabolic Syndrome. Eur Cardiol 2024; 19:e03. [PMID: 38807856 PMCID: PMC11131154 DOI: 10.15420/ecr.2023.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/27/2023] [Indexed: 05/30/2024] Open
Abstract
The global prevalence of non-alcoholic fatty liver disease (NAFLD) is nearly 25% and is increasing rapidly. The spectrum of liver damage in NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis, characterised by the presence of lobular inflammation and hepatocyte ballooning degeneration, with or without fibrosis, which can further develop into cirrhosis and hepatocellular carcinoma. Not only is NAFLD a progressive liver disease, but numerous pieces of evidence also point to extrahepatic consequences. Accumulating evidence suggests that patients with NAFLD are also at increased risk of cardiovascular disease (CVD); in fact, CVDs are the most common cause of mortality in patients with NAFLD. Obesity, type 2 diabetes and higher levels of LDL are common risk factors in both NAFLD and CVD; however, how NAFLD affects the development and progression of CVD remains elusive. In this review, we comprehensively summarise current data on the key extrahepatic manifestations of NAFLD, emphasising the possible link between NAFLD and CVD, including the role of proprotein convertase substilisin/kenin type 9, extracellular vesicles, microbiota, and genetic factors.
Collapse
Affiliation(s)
- Sheila Gato
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Vanessa García-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
| | - Antonio Gil-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Ángela Rojas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Rocío Montero-Vallejo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
| | - Rocío Muñoz-Hernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
- Departamento de Fisiología, Facultad de Biología, Universidad de SevillaSeville, Spain
| | - Manuel Romero-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Madrid, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen del RocíoSeville, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de SevillaSeville, Spain
| |
Collapse
|
30
|
Li H, Wang M, Chen P, Zhu M, Chen L. A high-dose of ursodeoxycholic acid treatment alleviates liver inflammation by remodeling gut microbiota and bile acid profile in a mouse model of non-alcoholic steatohepatitis. Biomed Pharmacother 2024; 174:116617. [PMID: 38643542 DOI: 10.1016/j.biopha.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Ursodeoxycholic acid (UDCA) is a hydrophilic bile acid commonly used for treating cholestatic liver disease. However, its efficacy on non-alcoholic steatohepatitis (NASH) was controversial. This study aimed to investigate the impact of a high dosage of UDCA on a mouse model of NASH. Forty 6-week-old mice were fed a high-fat high-cholesterol (HFHC) diet for 12 weeks to establish a mouse model of NASH, and then divided into four groups: two groups transitioned to a normal diet, and the other two groups maintained the HFHC diet. Each group was administered a daily dosage of 300 mg/kg of UDCA or saline for a period of 8 weeks. The 16 s ribosomal RNA genes extracted from mice fecal pellets were sequenced using next-generation sequencing techniques. Serum bile acid profiles were quantified using liquid chromatography electrospray ionization tandem mass spectrometry method. The results showed that UDCA treatment ameliorated liver inflammation, without affecting liver fibrosis. UDCA treatment reduced the relative abundance of the genera Bacteroides, Parabacteroides, and Intestinimonas, whereas increased the relative abundance of the genera norank_f_Muribaculaceae and Parasutterella in the HFHC-maintaining groups. The serum levels of total bile acids and total primary bile acids increased, whereas those of endogenous primary bile acids decreased after UDCA treatment. Correlation analysis showed that primary bile acids were negatively correlated with the genera norank_f_Christensenellaceae and unclassified_f_Ruminococcaceae. In conclusion, a high dosage of UDCA can alleviate liver inflammation, probably by modifying the composition of gut microbiota and serum bile acid profiles in NASH mice.
Collapse
Affiliation(s)
- Hu Li
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201821, China; Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People`s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200235, China
| | - Mingjie Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201821, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201821, China
| | - Mingyu Zhu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201821, China
| | - Li Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201821, China.
| |
Collapse
|
31
|
Vidal-Cevallos P, Sorroza-Martínez AP, Chávez-Tapia NC, Uribe M, Montalvo-Javé EE, Nuño-Lámbarri N. The Relationship between Pathogenesis and Possible Treatments for the MASLD-Cirrhosis Spectrum. Int J Mol Sci 2024; 25:4397. [PMID: 38673981 PMCID: PMC11050641 DOI: 10.3390/ijms25084397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a term that entails a broad spectrum of conditions that vary in severity. Its development is influenced by multiple factors such as environment, microbiome, comorbidities, and genetic factors. MASLD is closely related to metabolic syndrome as it is caused by an alteration in the metabolism of fatty acids due to the accumulation of lipids because of an imbalance between its absorption and elimination in the liver. Its progression to fibrosis is due to a constant flow of fatty acids through the mitochondria and the inability of the liver to slow down this metabolic load, which generates oxidative stress and lipid peroxidation, triggering cell death. The development and progression of MASLD are closely related to unhealthy lifestyle habits, and nutritional epigenetic and genetic mechanisms have also been implicated. Currently, lifestyle modification is the first-line treatment for MASLD and nonalcoholic steatohepatitis; weight loss of ≥10% produces resolution of steatohepatitis and fibrosis regression. In many patients, body weight reduction cannot be achieved; therefore, pharmacological treatment should be offered in particular populations.
Collapse
Affiliation(s)
- Paulina Vidal-Cevallos
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | | | - Norberto C. Chávez-Tapia
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | - Eduardo E. Montalvo-Javé
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
- Hepatopancreatobiliary Clinic, Department of Surgery, Hospital General de Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
| |
Collapse
|
32
|
Ono H, Atsukawa M, Tsubota A, Arai T, Suzuki K, Higashi T, Kitamura M, Shioda‐Koyano K, Kawano T, Yoshida Y, Okubo T, Hayama K, Itokawa N, Kondo C, Nagao M, Iwabu M, Iwakiri K. Impact of pemafibrate in patients with metabolic dysfunction-associated steatotic liver disease complicated by dyslipidemia: A single-arm prospective study. JGH Open 2024; 8:e13057. [PMID: 38572327 PMCID: PMC10986296 DOI: 10.1002/jgh3.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Background and Aim This study aimed to clarify the efficacy and safety of 48-week pemafibrate treatment in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) complicated by dyslipidemia. Methods A total of 110 patients diagnosed with MASLD complicated by dyslipidemia received pemafibrate at a dose of 0.1 mg twice daily for 48 weeks. Results The participants were 54 males and 37 females, with a median age of 63 (52-71) years. Besides improvement in lipid profile, significant reductions from baseline to 48 weeks of treatment were found in liver-related enzymes, such as aspartate aminotransferase, alanine aminotransferase (ALT), gamma-glutamyl transpeptidase, and alkaline phosphatase (P < 0.001 for all). A significant decrease in the homeostasis model assessment-insulin resistance (HOMA-IR) was observed in patients with insulin resistance (HOMA-IR ≥ 2.5) (4.34 at baseline to 3.89 at Week 48, P < 0.05). Moreover, changes in ALT were weakly correlated with those in HOMA-IR (r = 0.34; p < 0.05). Regarding noninvasive liver fibrosis tests, platelets, Wisteria floribunda agglutinin-positive Mac-2-binding protein, type IV collagen 7s, and the non-alcoholic fatty liver disease fibrosis score significantly decreased from baseline to Week 48. Most adverse events were Grades 1-2, and no drug-related Grade 3 or higher adverse events were observed. Conclusion This study demonstrated that 48-week pemafibrate administration improved liver-related enzymes and surrogate marker of liver fibrosis in patients with MASLD. The improvement of insulin resistance by pemafibrate may contribute to the favorable effect on MASLD complicated by dyslipidemia.
Collapse
Affiliation(s)
- Hiroki Ono
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Masanori Atsukawa
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Akihito Tsubota
- Project Research Units (PRU) Research Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Taeang Arai
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Kenta Suzuki
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Tetsuyuki Higashi
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Michika Kitamura
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | | | - Tadamichi Kawano
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Yuji Yoshida
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Tomomi Okubo
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Korenobu Hayama
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Norio Itokawa
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Chisa Kondo
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Mototsugu Nagao
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Masato Iwabu
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Katsuhiko Iwakiri
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| |
Collapse
|
33
|
Kalaitzakis ZE, Giahnakis E, Koutroubakis IE, Mouzas IA, Kalaitzakis E. Bariatric Nutritional Intervention in Obese Patients with Compensated Liver Cirrhosis: A Four-Year Prospective Study. Dig Dis Sci 2024; 69:1467-1478. [PMID: 38411795 PMCID: PMC11026188 DOI: 10.1007/s10620-023-08223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/29/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Obesity and liver cirrhosis represent significant health challenges, often leading to various complications. AIMS This prospective study aimed to investigate the impact of a four-year bariatric intervention, focusing on adherence to the Mediterranean Diet, on anthropometric, hematologic, and biochemical parameters in obese patients with compensated liver cirrhosis. Additionally, the study evaluated the concurrent contribution of weight loss to these health indicators. METHODS The study involved 62 patients with compensated liver cirrhosis (mean age 65.87 ± 6 years) and 44 healthy controls (mean age 59.11 ± 8 years), all with a BMI > 30 kg/m2. Both groups underwent a weight loss intervention based on the Mediterranean diet, with a four-year follow-up. Anthropometric, biochemical and hematologic parameters were evaluated at several time points during the study and their statistical significance was assessed. RESULTS Anthropometric parameters, including weight, BMI, waist and hip circumference, percentage of fat mass, and handgrip strength, exhibited significant improvements (p < 0.05), particularly within the first year of the intervention. Liver function tests and lipid profiles of the patients also showed significant enhancements (p < 0.05). Hematological and biochemical indices, such as hematocrit and ferritin, experienced discreet improvements in the patient cohort (p < 0.05). CONCLUSIONS This study highlights the potential of a structured bariatric intervention rooted in the Mediterranean diet to positively influence the health of obese patients with compensated liver cirrhosis. The observed improvements in anthropometric, biochemical, and hematologic parameters, particularly within the first year of the intervention, suggest the importance of dietary modifications in managing the health of this patient population.
Collapse
Affiliation(s)
| | | | - Ioannis E Koutroubakis
- Department of Gastroenterology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Ioannis A Mouzas
- Department of Gastroenterology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Evangelos Kalaitzakis
- Department of Gastroenterology, University Hospital of Heraklion, Heraklion, Crete, Greece
| |
Collapse
|
34
|
Tang H, Kaplan DE, Mahmud N. The Impact of Weight Loss Programs on BMI Trajectory in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Veterans Health Administration Study. Am J Gastroenterol 2024; 119:00000434-990000000-01097. [PMID: 38534167 PMCID: PMC12036740 DOI: 10.14309/ajg.0000000000002785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Weight loss is the mainstay of management for patients with metabolic dysfunction-associated steatotic liver disease. We studied the impact of referral to MOVE!, a nationally-implemented behavioral weight loss program, on weight in MASLD patients. METHODS This retrospective cohort study included 102,294 MASLD patients from 125 Veterans Health Administration centers from 2008-2022. RESULTS Most patients lost no significant weight or gained weight. Increased engagement with MOVE! was associated with greater hazard of significant weight loss compared to no engagement. CONCLUSION A minority of patients experienced significant weight loss through 5 years using lifestyle interventions alone.
Collapse
Affiliation(s)
- Helen Tang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David E Kaplan
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Nadim Mahmud
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Perazza F, Leoni L, Colosimo S, Musio A, Bocedi G, D’Avino M, Agnelli G, Nicastri A, Rossetti C, Sacilotto F, Marchesini G, Petroni ML, Ravaioli F. Metformin and the Liver: Unlocking the Full Therapeutic Potential. Metabolites 2024; 14:186. [PMID: 38668314 PMCID: PMC11052067 DOI: 10.3390/metabo14040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a highly effective medication for managing type 2 diabetes mellitus. Recent studies have shown that it has significant therapeutic benefits in various organ systems, particularly the liver. Although the effects of metformin on metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis are still being debated, it has positive effects on cirrhosis and anti-tumoral properties, which can help prevent the development of hepatocellular carcinoma. Furthermore, it has been proven to improve insulin resistance and dyslipidaemia, commonly associated with liver diseases. While more studies are needed to fully determine the safety and effectiveness of metformin use in liver diseases, the results are highly promising. Indeed, metformin has a terrific potential for extending its full therapeutic properties beyond its traditional use in managing diabetes.
Collapse
Affiliation(s)
- Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Laura Leoni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Santo Colosimo
- Doctorate School of Nutrition Science, University of Milan, 20122 Milan, Italy;
| | | | - Giulia Bocedi
- U.O. Diabetologia, Ospedale C. Magati, Scandiano, 42019 Reggio Emilia, Italy;
| | - Michela D’Avino
- S.C. Endocrinologia Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy;
| | - Giulio Agnelli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Alba Nicastri
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Chiara Rossetti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federica Sacilotto
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Giulio Marchesini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
- Division of Hepatobiliary and Immunoallergic Diseases, Department of Internal Medicine, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
36
|
Harris SJ, Smith N, Hummer B, Schreibman IR, Faust AJ, Geyer NR, Chinchilli VM, Sciamanna C, Loomba R, Stine JG. Exercise training improves serum biomarkers of liver fibroinflammation in patients with metabolic dysfunction-associated steatohepatitis. Liver Int 2024; 44:532-540. [PMID: 38014619 PMCID: PMC10844956 DOI: 10.1111/liv.15769] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIMS Exercise training is recommended for all patients with metabolic dysfunction-associated steatotic liver disease and may reverse liver fibrosis. Whether exercise training improves liver fibrosis without body weight loss remains controversial. We further investigated this relationship using serum biomarkers of liver fibroinflammation in a post hoc analysis of an exercise trial where patients did not lose significant body weight. METHODS In the NASHFit trial, patients with metabolic dysfunction-associated steatohepatitis were randomized to receive either moderate-intensity aerobic exercise training or standard clinical care for 20 weeks. Mediterranean-informed dietary counselling was provided to each group. Change in serum biomarkers was measured and compared between the two groups. RESULTS Exercise training led to improvement in serum biomarkers of liver fibroinflammation, including (1) ≥17 IU/L reduction in alanine aminotransferase (ALT) in 53% of individuals in the exercise training group compared to 13% in the standard clinical care group (p < 0.001; mean reduction 24% vs. 10% respectively) and (2) improvement in CK18 (-61 vs. +71 ng/mL, p = 0.040). ALT improvement ≥17 IU/L was correlated with ≥30% relative reduction in magnetic resonance imaging-measured liver fat and PNPLA3 genotype. CONCLUSION Exercise training improves multiple serum biomarkers of liver fibroinflammation at clinically significant thresholds of response without body weight loss. This study provides further evidence that exercise training should be viewed as a weight-neutral intervention for which response to intervention can be readily monitored with widely available non-invasive biomarkers that can be applied at the population level.
Collapse
Affiliation(s)
- Sara J. Harris
- College of Medicine, The Pennsylvania State University,
Hershey PA
| | - Nataliya Smith
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
| | - Breianna Hummer
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
| | - Ian R. Schreibman
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
- Liver Center, Penn State Health- Milton S. Hershey Medical
Center, Hershey PA
| | - Alison J. Faust
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
- Liver Center, Penn State Health- Milton S. Hershey Medical
Center, Hershey PA
| | - Nathaniel R. Geyer
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
| | - Chris Sciamanna
- College of Medicine, The Pennsylvania State University,
Hershey PA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of
Medicine, University of California San Diego, San Diego CA
- NAFLD Research Center, University of California San Diego,
San Diego CA
| | - Jonathan G. Stine
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
- Liver Center, Penn State Health- Milton S. Hershey Medical
Center, Hershey PA
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
- Cancer Institute, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
| |
Collapse
|
37
|
Gupta U, Ruli T, Buttar D, Shoreibah M, Gray M. Metabolic dysfunction associated steatotic liver disease: Current practice, screening guidelines and management in the primary care setting. Am J Med Sci 2024; 367:77-88. [PMID: 37967750 DOI: 10.1016/j.amjms.2023.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/29/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Metabolic dysfunction associated steatotic liver disease, previously known as non-alcoholic fatty liver disease, is the most common cause of chronic liver disease in the United States with rapidly rising prevalence. There have been significant changes recently in the field with screening now recommended for patients at risk for significant liver fibrosis in primary care and endocrine settings, along with clear guidance for management of metabolic comorbidities and changes in nomenclature. This paper serves as a summary of recent guidance for the primary care physician focusing on identifying appropriate patients for screening, selecting suitable screening modalities, and determining when referral to specialty care is necessary. The hope is that providers will shift away from past practices of utilizing liver tests alone as a screening tool and shift towards fibrosis screening in patients at risk for significant fibrosis. This culture change will allow for earlier identification of patients at risk for end stage liver disease and serious liver related complications, and overall improved patient care.
Collapse
Affiliation(s)
- Udita Gupta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Thomas Ruli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Danyaal Buttar
- Department of Medicine, Campbell University School of Medicine, NC, USA
| | - Mohamed Shoreibah
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meagan Gray
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
38
|
Godoy-Matos AF, Valério CM, Silva Júnior WS, de Araujo-Neto JM, Bertoluci MC. 2024 UPDATE: the Brazilian Diabetes Society position on the management of metabolic dysfunction-associated steatotic liver disease (MASLD) in people with prediabetes or type 2 diabetes. Diabetol Metab Syndr 2024; 16:23. [PMID: 38238868 PMCID: PMC10797995 DOI: 10.1186/s13098-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease affecting 30% of the world's population and is often associated with metabolic disorders such as metabolic syndrome, type 2 diabetes (T2D), and cardiovascular disease. This review is an update of the Brazilian Diabetes Society (Sociedade Brasileira de Diabetes [SBD]) evidence-based guideline for the management of MASLD in clinical practice. METHODS The methodology was published previously and was defined by the internal institutional steering committee. The SBD Metabolic Syndrome and Prediabetes Department drafted the manuscript, selecting key clinical questions for a narrative review using MEDLINE via PubMed with the MeSH terms [diabetes] and [fatty liver]. The best available evidence was reviewed, including randomized clinical trials (RCTs), meta-analyses, and high-quality observational studies related to MASLD. RESULTS AND CONCLUSIONS The SBD Metabolic Syndrome and Prediabetes Department formulated 9 recommendations for the management of MASLD in people with prediabetes or T2D. Screening for the risk of advanced fibrosis associated with MASLD is recommended in all adults with prediabetes or T2D. Lifestyle modification (LSM) focusing on a reduction in body weight of at least 5% is recommended as the first choice for these patients. In situations where LSMs are insufficient to achieve weight loss, the use of anti-obesity medications is recommended for those with a body mass index (BMI) ≥ 27 kg/m2. Pioglitazone and glucagon-like peptide-1 receptor agonists (GLP-1RA) monotherapy are the first-line pharmacological treatments for steatohepatitis in people with T2D, and sodium-glucose cotransporter-2 (SGLT2) inhibitors may be considered in this context. The combination of these agents may be considered in the treatment of steatohepatitis and/or fibrosis, and bariatric surgery should be considered in patients with a BMI ≥ 35 kg/m2, in which the combination of LSM and pharmacotherapy has not been shown to be effective in improving MASLD.
Collapse
Affiliation(s)
- Amélio F Godoy-Matos
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Instituto Estadual de Diabetes e Endocrinologia do Rio de Janeiro (IEDE), Rio de Janeiro, RJ, Brazil
| | - Cynthia Melissa Valério
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Instituto Estadual de Diabetes e Endocrinologia do Rio de Janeiro (IEDE), Rio de Janeiro, RJ, Brazil
| | - Wellington S Silva Júnior
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil.
- Endocrinology Discipline, Department of Medicine I, Faculty of Medicine, Center of Biological Sciences, Universidade Federal do Maranhão (UFMA), Praça Gonçalves Dias, 21, Centro, São Luís, MA, CEP 65020-240, Brazil.
| | - João Marcello de Araujo-Neto
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcello Casaccia Bertoluci
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
39
|
Baek KW, Won JH, Xiang YY, Woo DK, Park Y, Kim JS. Exercise intensity impacts the improvement of metabolic dysfunction-associated steatotic liver disease via variations of monoacylglycerol O-acyltransferase 1 expression. Clin Res Hepatol Gastroenterol 2024; 48:102263. [PMID: 38061546 DOI: 10.1016/j.clinre.2023.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The involvement of monoacylglycerol O-acyltransferase 1 (MOGAT1) in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) has been recognized. While exercise is recommended for the improvement of obesity and MASLD, the impact of exercise intensity remains unclear. This study aimed to examine the influence of exercise intensity on MOGAT1 expression in high-fat diet (HFD)-induced obese mice with MASLD. METHOD Male C57BL/6 mice aged 6 weeks were subjected to either a regular or HFD with 60 % fat content for 8 weeks. The mice were categorized into 5 groups based on their diet and exercise intensity: normal diet group (ND), HFD group, low-intensity exercise with HFD group (HFD+LIE), moderate-intensity exercise with HFD group (HFD+MIE), and high-intensity exercise (HIE) with HFD group (HFD+HIE). The duration of running was adjusted to ensure uniform exercise load across groups (total distance = 900 m): HFD+LIE at 12 m/min for 75 min, HFD+MIE at 15 m/min for 60 min, and HFD+HIE at 18 m/min for 50 min. RESULTS Lipid droplet size and MASLD activity score were significantly lower in the HFD+HIE group compared to other exercise-intensity groups (p < 0.05). Among the 3 intensity exercise groups, the lowest MOGAT1 protein expression was found in the HFD+HIE group (p < 0.05). CONCLUSION This study reveals that high-intensity exercise has the potential to mitigate MASLD development, partly attributed to the downregulation of MOGAT1 expression.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea; Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong-Hwa Won
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Ying-Ying Xiang
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Dong Kyun Woo
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea; College of Pharmacy, Gyeongsang National University, Jinju, 52828, Korea
| | - Yoonjung Park
- Department of Health and Human Performance, University of Houston, Houston, 77204, USA
| | - Ji-Seok Kim
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea; Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea; Department of Health and Human Performance, University of Houston, Houston, 77204, USA.
| |
Collapse
|
40
|
Strzepka J, Schwartz BA, Ritz EM, Aloman C, Reau N. Patients With Autoimmune Hepatitis and Nonalcoholic Fatty Liver Disease: Characteristics, Treatment, and Outcomes. J Clin Gastroenterol 2024; 58:91-97. [PMID: 36729430 DOI: 10.1097/mcg.0000000000001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/12/2022] [Indexed: 02/03/2023]
Abstract
GOAL The objective of this study was to characterize an autoimmune hepatitis (AIH)/nonalcoholic fatty liver disease (NAFLD) overlap cohort, determine if they received standard of care treatment, and delineate their outcomes in comparison with patients with AIH or NAFLD alone. BACKGROUND AIH is a relatively rare and heterogeneously presenting liver disease of unknown etiology. NAFLD is a leading cause of liver disease worldwide. AIH treatment includes steroids, which have adverse metabolic effects that can worsen NAFLD. No treatment guidelines are available to mitigate this side on AIH/NAFLD overlap patients. Few studies to date have examined these patients' characteristics, management practices, and outcomes. MATERIALS AND METHODS A single-center, retrospective chart review study examining biopsy-proven AIH/NAFLD, AIH, and NAFLD patients. Characteristics, treatment, and 1- and 3-year outcomes (all-cause mortality, need for liver transplantation, or decompensated cirrhosis) were evaluated. RESULTS A total of 72 patients (36.1% AIH/NAFLD, 34.7% AIH, and 29.2% NAFLD) were included. AIH/NAFLD patients were found to be more often Hispanic/Latino, female, and with lower liver aminotransaminases, immunoglobulin G, and anti-smooth muscle antibody positivity. AIH/NAFLD patients were less likely to receive standard of care treatment. No significant differences in outcomes were seen between AIH/NAFLD and either AIH or NAFLD. CONCLUSIONS Our study demonstrated that AIH/NAFLD patients have unique characteristics and are less likely to receive standard of care treatment compared with patients with AIH alone. Despite this, no difference in outcomes (all-cause mortality, need for liver transplantation, or decompensated cirrhosis) was seen. Given NAFLD's rising prevalence, AIH/NAFLD cases will likely increase, and may benefit from alternative treatment guidelines to prevent worsening of NAFLD.
Collapse
Affiliation(s)
- Jessica Strzepka
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Benjamin A Schwartz
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Ethan M Ritz
- Bioinformatics and Biostatistics Core, Rush University Medical Center, Chicago, IL
| | - Costica Aloman
- Department of Hepatology, Rush University Medical Center, Chicago, IL; Department of Hepatology, Rush University Medical Center, Chicago, IL
| | - Nancy Reau
- Department of Hepatology, Rush University Medical Center, Chicago, IL; Department of Hepatology, Rush University Medical Center, Chicago, IL
| |
Collapse
|
41
|
Cheng PN, Chen WJ, Hou CJY, Lin CL, Chang ML, Wang CC, Chang WT, Wang CY, Lin CY, Hung CL, Peng CY, Yu ML, Chao TH, Huang JF, Huang YH, Chen CY, Chiang CE, Lin HC, Li YH, Lin TH, Kao JH, Wang TD, Liu PY, Wu YW, Liu CJ. Taiwan Association for the Study of the Liver-Taiwan Society of Cardiology Taiwan position statement for the management of metabolic dysfunction- associated fatty liver disease and cardiovascular diseases. Clin Mol Hepatol 2024; 30:16-36. [PMID: 37793641 PMCID: PMC10776290 DOI: 10.3350/cmh.2023.0315] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly common liver disease worldwide. MAFLD is diagnosed based on the presence of steatosis on images, histological findings, or serum marker levels as well as the presence of at least one of the three metabolic features: overweight/obesity, type 2 diabetes mellitus, and metabolic risk factors. MAFLD is not only a liver disease but also a factor contributing to or related to cardiovascular diseases (CVD), which is the major etiology responsible for morbidity and mortality in patients with MAFLD. Hence, understanding the association between MAFLD and CVD, surveillance and risk stratification of MAFLD in patients with CVD, and assessment of the current status of MAFLD management are urgent requirements for both hepatologists and cardiologists. This Taiwan position statement reviews the literature and provides suggestions regarding the epidemiology, etiology, risk factors, risk stratification, nonpharmacological interventions, and potential drug treatments of MAFLD, focusing on its association with CVD.
Collapse
Affiliation(s)
- Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Jone Chen
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan; Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Chih-Lin Lin
- Department of Gastroenterology, Renai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Ming-Ling Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Wang
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Ting Chang
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chao-Yung Wang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Lieh Hung
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Lung Yu
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiang Huang
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Taiwan
| | - Chi-Yi Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chern-En Chiang
- General Clinical Research Center, and Cardiovascular Center, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzung-Dau Wang
- Cardiovascular Center, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Medical College, New Taipei City, Taiwan
| | - Ping-Yen Liu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, and Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Chun-Jen Liu
- Hepatitis Research Center, Department of Internal Medicine and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
42
|
Heredia NI, John JC, Singh S, Hwang JP, Strong LL, Balakrishnan M, McNeill LH. Understanding Primary Care Physician Perspectives on the Diagnosis and Management of Non-Alcoholic Fatty Liver Disease: A Qualitative Study. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2024; 61:469580241241272. [PMID: 38529894 PMCID: PMC10967000 DOI: 10.1177/00469580241241272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
Primary care physicians (PCPs) are well suited to manage patients with non-alcoholic fatty liver disease (NAFLD), but the limited, existing research suggests inadequate knowledge about the natural history, diagnostic methods, and management of NAFLD. The purpose of this qualitative study is to further understand the knowledge and practices for the diagnosis and management of NAFLD among PCPs. We conducted in-depth interviews with PCPs in the Greater Houston area, addressing current clinical practices used for diagnosing and managing NAFLD, as well as the perceptions of the PCPs regarding the burden of NAFLD on patients. We recorded interviews, transcribed them, coded transcripts, and identified patterns and themes. The interviewed PCPs (n = 16) were from internal or family medicine, with a range of experience (1.5-30 years). We found variations in NAFLD diagnosis and management across practices and by insurance status. Patients with abnormal liver imaging who had insurance or were within a safety-net healthcare system were referred by PCPs to specialists. Uninsured patients with persistently elevated liver enzymes received lifestyle recommendations from PCPs without confirmatory imaging or specialist referral. The role of PCPs in NAFLD management varied, with some helping patients set dietary and physical activity goals while others provided only general recommendations and/or referred patients to a dietitian. The diagnosis and management of NAFLD vary widely among PCPs and may be impacted by patients' insurance status and clinic-specific practices. The increasing burden of NAFLD in the U.S. medical system highlights the need for more PCPs involvement in managing NAFLD.
Collapse
Affiliation(s)
- Natalia I. Heredia
- Department of Health Promotion & Behavioral Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston TX, USA
- Center for Health Equity, The University of Texas Health Science Center at Houston School of Public Health, Houston TX, USA
| | - Jemima C. John
- Center for Health Equity, The University of Texas Health Science Center at Houston School of Public Health, Houston TX, USA
- Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston TX, USA
| | - Sonia Singh
- The University of Texas Health Science Center at Houston, Houston TX, USA
| | - Jessica P. Hwang
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Larkin L. Strong
- Health Disparities Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maya Balakrishnan
- Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Lorna H. McNeill
- Health Disparities Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Keating SE, Sabag A, Hallsworth K, Hickman IJ, Macdonald GA, Stine JG, George J, Johnson NA. Exercise in the Management of Metabolic-Associated Fatty Liver Disease (MAFLD) in Adults: A Position Statement from Exercise and Sport Science Australia. Sports Med 2023; 53:2347-2371. [PMID: 37695493 PMCID: PMC10687186 DOI: 10.1007/s40279-023-01918-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most prevalent chronic liver disease worldwide, affecting 25% of people globally and up to 80% of people with obesity. MAFLD is characterised by fat accumulation in the liver (hepatic steatosis) with varying degrees of inflammation and fibrosis. MAFLD is strongly linked with cardiometabolic disease and lifestyle-related cancers, in addition to heightened liver-related morbidity and mortality. This position statement examines evidence for exercise in the management of MAFLD and describes the role of the exercise professional in the context of the multi-disciplinary care team. The purpose of these guidelines is to equip the exercise professional with a broad understanding of the pathophysiological underpinnings of MAFLD, how it is diagnosed and managed in clinical practice, and to provide evidence- and consensus-based recommendations for exercise therapy in MAFLD management. The majority of research evidence indicates that 150-240 min per week of at least moderate-intensity aerobic exercise can reduce hepatic steatosis by ~ 2-4% (absolute reduction), but as little as 135 min/week has been shown to be effective. While emerging evidence shows that high-intensity interval training (HIIT) approaches may provide comparable benefit on hepatic steatosis, there does not appear to be an intensity-dependent benefit, as long as the recommended exercise volume is achieved. This dose of exercise is likely to also reduce central adiposity, increase cardiorespiratory fitness and improve cardiometabolic health, irrespective of weight loss. Resistance training should be considered in addition to, and not instead of, aerobic exercise targets. The information in this statement is relevant and appropriate for people living with the condition historically termed non-alcoholic fatty liver disease (NAFLD), regardless of terminology.
Collapse
Affiliation(s)
- Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Room 534, Bd 26B, St Lucia, Brisbane, QLD, 4067, Australia.
| | - Angelo Sabag
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Kate Hallsworth
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ingrid J Hickman
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Public Health Sciences, The Pennsylvania State University- College of Medicine, Hershey, PA, USA
- Liver Center, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Nathan A Johnson
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
44
|
Jung C, Park S, Kim H. Association between hypoglycemic agent use and the risk of occurrence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. PLoS One 2023; 18:e0294423. [PMID: 37992029 PMCID: PMC10664876 DOI: 10.1371/journal.pone.0294423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing health concern with increasing prevalence and associated health impacts. Although no approved drugs are available for the NAFLD treatment, several hypoglycemic agents have been investigated as promising therapeutic agents. We aimed to compare the risk of occurrence of NAFLD with respect to the use of different hypoglycemic agents in patients with type 2 diabetes. This retrospective cohort study used data from the National Health Insurance Service-National Sample Cohort of South Korea. Participants newly diagnosed with type 2 diabetes (2003-2019) were included in this study. Two new user-active comparator cohorts were assembled: Cohort 1, new users of thiazolidinediones (TZD) and dipeptidyl peptidase-4 inhibitors (DPP-4i), and Cohort 2, new users of sodium-glucose cotransporter-2 inhibitors (SGLT-2i) and DPP-4i. The occurrence of NAFLD was defined based claims that include diagnostic codes. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazard models in 1:3 propensity score (PS)-matched cohorts. For 65,224 patients newly diagnosed with type 2 diabetes, the overall prevalence of NAFLD was 42.6%. The PS-matched Cohort 1 included 6,351 and 2,117 new users of DPP-4i and TZD, respectively. Compared to DPP-4i, TZD use was associated with the decreased risk of NAFLD (HR, 0.66; 95% CI: 0.55-0.78). Cohort 2 consisted of 6,783 and 2,261 new users of DPP-4i and SGLT-2i, respectively; SGLT-2i use was associated with a decreased risk of NAFLD (HR, 0.93; 95% CI: 0.80-1.08). This population-based cohort study supports the clinical implications of prioritizing TZD and SGLT-2i over DPP-4i in reducing the risk of occurrence of NAFLD in patients with type 2 diabetes. However, the findings lacked statistical significance, highlighting the need for further verification studies.
Collapse
Affiliation(s)
- Choungwon Jung
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Soyoung Park
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hyunah Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
- Drug Information Research Institute, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Awla NJ, Naqishbandi AM, Baqi Y. Preventive and Therapeutic Effects of Silybum marianum Seed Extract Rich in Silydianin and Silychristin in a Rat Model of Metabolic Syndrome. ACS Pharmacol Transl Sci 2023; 6:1715-1723. [PMID: 37974616 PMCID: PMC10644432 DOI: 10.1021/acsptsci.3c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Metabolic syndrome (MetS) has become an increasing global health problem, which leads to cardiovascular diseases and type 2 diabetes. Silybum marianum extracts have been reported to possess several biological activities. In this study, an ethyl acetate extract prepared from S. marianum seeds of the Iraqi Kurdistan region was analyzed to identify its chemical constituents. Subsequently, its potential for the prevention and treatment of MetS was studied in a rat model induced by a high-fat/high-fructose diet (HFD/F). Silydianin and silychristin were the most abundant flavonolignan constituents (39.4%) identified in the S. marianum extract (SMEE). HFD/F-induced rats treated with SMEE exhibited preventive effects including reduced serum triglyceride levels (TG), decreased glucose levels in an oral glucose tolerance test (p < 0.001), attenuated weight gain, and reduced blood pressure compared to the untreated control group. Therapeutic application of SMEE after inducing MetS led to lowering of TG (p < 0.001) and glucose levels, in addition to reducing weight gain and normalizing blood pressure (p < 0.005). Thus, S. marianum extract rich in silydianin and silychristin may be useful for preventing and attenuating MetS, and further research and clinical trials are warranted.
Collapse
Affiliation(s)
- Naza Jalal Awla
- Department
of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Alaadin M. Naqishbandi
- Department
of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Younis Baqi
- Department
of Chemistry, Faculty of Science, Sultan
Qaboos University, P.O. Box 36,
Postal Code 123 Muscat, Sultanate of Oman
| |
Collapse
|
46
|
van Dijk AM, de Vries M, El-Morabit F, Bac ST, Mundt MW, van der Schuit LE, Hirdes MMC, Kara M, de Bruijne J, van Meer S, Kaasjager HAH, de Valk HW, Vleggaar FP, van Erpecum KJ. Intra-gastric balloon with lifestyle modification: a promising therapeutic option for overweight and obese patients with metabolic dysfunction-associated steatotic liver disease. Intern Emerg Med 2023; 18:2271-2280. [PMID: 37700180 PMCID: PMC10635963 DOI: 10.1007/s11739-023-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Data on effects of intra-gastric balloon (IGB) on metabolic dysfunction-associated steatotic liver disease (MASLD) are scarce, in part with contradictory results, and mainly obtained in tertiary care patients with diabetes and other comorbidities. We here explore effects of IGB in patients with MASLD referred to a first-line obesity clinic. METHODS In this prospective cohort study, patients with at least significant fibrosis (≥ F2) and/or severe steatosis (S3) according to screening transient elastography (FibroScan®) were offered a second FibroScan® after 6 months lifestyle modification with or without IGB (based on patient preference). RESULTS 50 of 100 consecutively screened patients (generally non-diabetic) qualified for repeated evaluation and 29 (58%) of those had a second FibroScan®. At baseline, at least significant fibrosis was present in 28% and severe steatosis in 91%. IGB was placed in 19 patients (59%), whereas 10 patients (41%) preferred only lifestyle modification (no differences in baseline characteristics between both groups). After 6 months, liver stiffness decreased markedly in the IGB group (median: from 6.0 to 4.9 kPa, p = 0.005), but not in the lifestyle modification only group (median: from 5.5 to 6.9 kPa, p = 0.477). Steatosis improved in both groups, (controlled attenuation parameter values; IGB, mean ± SD: from 328 ± 34 to 272 ± 62 dB/m, p = 0.006: lifestyle modification only, mean ± SD: from 344 ± 33 to 305 ± 43 dB/m: p = 0.006). CONCLUSION Both steatosis and fibrosis improve markedly in overweight/obese patients with MASLD after 6 months IGB combined with lifestyle modification. Our results warrant further research into long-term effect of IGB in these patients.
Collapse
Affiliation(s)
- A M van Dijk
- Department of Dietetics, University Medical Center Utrecht, D01.314, Po Box 85500, Utrecht, 3508, GA, The Netherlands.
| | - M de Vries
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F El-Morabit
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - S T Bac
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M W Mundt
- Department of Gastroenterology and Hepatology, Bergman Clinics, Bilthoven, The Netherlands
- Flevoziekenhuis, Department of Gastroenterology and Hepatology, Almere, The Netherlands
| | - L E van der Schuit
- Department of Gastroenterology and Hepatology, Bergman Clinics, Bilthoven, The Netherlands
| | - M M C Hirdes
- Department of Gastroenterology and Hepatology, Bergman Clinics, Bilthoven, The Netherlands
| | - M Kara
- Department of Gastroenterology and Hepatology, Bergman Clinics, Bilthoven, The Netherlands
| | - J de Bruijne
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S van Meer
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H A H Kaasjager
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H W de Valk
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F P Vleggaar
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K J van Erpecum
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
47
|
Ding Y, Deng Q, Yang M, Niu H, Wang Z, Xia S. Clinical Classification of Obesity and Implications for Metabolic Dysfunction-Associated Fatty Liver Disease and Treatment. Diabetes Metab Syndr Obes 2023; 16:3303-3329. [PMID: 37905232 PMCID: PMC10613411 DOI: 10.2147/dmso.s431251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Obesity,and metabolic dysfunction-associated fatty liver disease (MAFLD) have reached epidemic proportions globally. Obesity and MAFLD frequently coexist and act synergistically to increase the risk of adverse clinical outcomes (both hepatic and extrahepatic). Type 2 diabetes mellitus (T2DM) is the most important risk factor for rapid progression of steatohepatitis and advanced fibrosis. Conversely, the later stages of MAFLD are associated with an increased risk of T2DM incident. According to the proposed criteria, MAFLD is diagnosed in patients with liver steatosis and in at least one in three: overweight or obese, T2DM, or signs of metabolic dysregulation if they are of normal weight. However, the clinical classification and correlation between obesity and MAFLD is more complex than expected. In addition, treatment for obesity and MAFLD are associated with a reduced risk of T2DM, suggesting that liver-based treatments could reduce the risk of developing T2DM. This review describes the clinical classification of obesity and MAFLD, discusses the clinical features of various types of obesity and MAFLD, emphasizes the role of visceral obesity and insulin resistance (IR) in the development of MAFLD,and summarizes the existing treatments for obesity and MAFLD that reduce the risk of developing T2DM.
Collapse
Affiliation(s)
- Yuping Ding
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Quanjun Deng
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Mei Yang
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Haiyan Niu
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Zuoyu Wang
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| | - Shihai Xia
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, People’s Republic of China
| |
Collapse
|
48
|
Yanai H, Adachi H, Hakoshima M, Iida S, Katsuyama H. Metabolic-Dysfunction-Associated Steatotic Liver Disease-Its Pathophysiology, Association with Atherosclerosis and Cardiovascular Disease, and Treatments. Int J Mol Sci 2023; 24:15473. [PMID: 37895151 PMCID: PMC10607514 DOI: 10.3390/ijms242015473] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease that affects more than a quarter of the global population and whose prevalence is increasing worldwide due to the pandemic of obesity. Obesity, impaired glucose metabolism, high blood pressure and atherogenic dyslipidemia are risk factors for MASLD. Therefore, insulin resistance may be closely associated with the development and progression of MASLD. Hepatic entry of increased fatty acids released from adipose tissue, increase in fatty acid synthesis and reduced fatty acid oxidation in the liver and hepatic overproduction of triglyceride-rich lipoproteins may induce the development of MASLD. Since insulin resistance also induces atherosclerosis, the leading cause for death in MASLD patients is cardiovascular disease. Considering that the development of cardiovascular diseases determines the prognosis of MASLD patients, the therapeutic interventions for MASLD should reduce body weight and improve coronary risk factors, in addition to an improving in liver function. Lifestyle modifications, such as improved diet and increased exercise, and surgical interventions, such as bariatric surgery and intragastric balloons, have shown to improve MASLD by reducing body weight. Sodium glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been shown to improve coronary risk factors and to suppress the occurrence of cardiovascular diseases. Both SGLT2i and GLP-1 have been reported to improve liver enzymes, hepatic steatosis and fibrosis. We recently reported that the selective peroxisome proliferator-activated receptor-alpha (PPARα) modulator pemafibrate improved liver function. PPARα agonists have multiple anti-atherogenic properties. Here, we consider the pathophysiology of MASLD and the mechanisms of action of such drugs and whether such drugs and the combination therapy of such drugs could be the treatments for MASLD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Japan; (H.A.); (M.H.); (S.I.); (H.K.)
| | | | | | | | | |
Collapse
|
49
|
Bołdys A, Bułdak Ł, Maligłówka M, Surma S, Okopień B. Potential Therapeutic Strategies in the Treatment of Metabolic-Associated Fatty Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1789. [PMID: 37893507 PMCID: PMC10608225 DOI: 10.3390/medicina59101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Metabolic-associated Fatty Liver Disease is one of the outstanding challenges in gastroenterology. The increasing incidence of the disease is undoubtedly connected with the ongoing obesity pandemic. The lack of specific symptoms in the early phases and the grave complications of the disease require an active approach to prompt diagnosis and treatment. Therapeutic lifestyle changes should be introduced in a great majority of patients; but, in many cases, the adherence is not satisfactory. There is a great need for an effective pharmacological therapy for Metabolic-Associated Fatty Liver Disease, especially before the onset of steatohepatitis. Currently, there are no specific recommendations on the selection of drugs to treat liver steatosis and prevent patients from progression toward more advanced stages (steatohepatitis, cirrhosis, and cancer). Therefore, in this Review, we provide data on the clinical efficacy of therapeutic interventions that might improve the course of Metabolic-Associated Fatty Liver Disease. These include the drugs used in the treatment of obesity and hyperlipidemias, as well as affecting the gut microbiota and endocrine system, and other experimental approaches, including functional foods. Finally, we provide advice on the selection of drugs for patients with concomitant Metabolic-Associated Fatty Liver Disease.
Collapse
Affiliation(s)
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | | | | | | |
Collapse
|
50
|
Dai JJ, Zhang YF, Zhang ZH. Global trends and hotspots of treatment for nonalcoholic fatty liver disease: A bibliometric and visualization analysis (2010-2023). World J Gastroenterol 2023; 29:5339-5360. [PMID: 37899789 PMCID: PMC10600806 DOI: 10.3748/wjg.v29.i37.5339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is chronic, with its progression leading to liver fibrosis and end-stage cirrhosis. Although NAFLD is increasingly common, no treatment guideline has been established. Many mechanistic studies and drug trials have been conducted for new drug development to treat NAFLD. An up-to-date overview on the knowledge structure of NAFLD through bibliometrics, focusing on research hotspots, is necessary to reveal the rational and timely directions of development in this field. AIM To research the latest literature and determine the current trends in treatment for NAFLD. METHODS Publications related to treatment for NAFLD were searched on the Web of Science Core Collection database, from 2010 to 2023. VOSviewers, CiteSpace, and R package "bibliometrix" were used to conduct this bibliometric analysis. The key information was extracted, and the results of the cluster analysis were based on network data for generating and investigating maps for country, institution, journal, and author. Historiography analysis, bursts and cluster analysis, co-occurrence analysis, and trend topic revealed the knowledge structure and research hotspots in this field. GraphPad Prism 9.5.1.733 and Microsoft Office Excel 2019 were used for data analysis and visualization. RESULTS In total, 10829 articles from 120 countries (led by China and the United States) and 8785 institutions were included. The number of publications related to treatment for NAFLD increased annually. While China produced the most publications, the United States was the most cited country, and the United Kingdom collaborated the most from an international standpoint. The University of California-San Diego, Shanghai Jiao Tong University, and Shanghai University of Traditional Chinese Medicine produced the most publications of all the research institutions. The International Journal of Molecular Sciences was the most frequent journal out of the 1523 total journals, and Hepatology was the most cited and co-cited journal. Sanyal AJ was the most cited author, the most co-cited author was Younossi ZM, and the most influential author was Loomba R. The most studied topics included the epidemiology and mechanism of NAFLD, the development of accurate diagnosis, the precise management of patients with NAFLD, and the associated metabolic comorbidities. The major cluster topics were "emerging drug," "glucagon-like peptide-1 receptor agonist," "metabolic dysfunction-associated fatty liver disease," "gut microbiota," and "glucose metabolism." CONCLUSION The bibliometric study identified recent research frontiers and hot directions, which can provide a valuable reference for scholars researching treatments for NAFLD.
Collapse
Affiliation(s)
- Jin-Jin Dai
- Department of Infectious Diseases, Suzhou Hospital of Anhui Medical University, Suzhou 234000, Anhui Province, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Ya-Fei Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Zhen-Hua Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|