1
|
Zheng K, Wang S, Deng M, Luo Y, Li W, Zeng L, Wang Y. Mechanisms and Therapeutic Strategies of Macrophage Polarization in Intervertebral Disc Degeneration. JOR Spine 2025; 8:e70065. [PMID: 40371270 PMCID: PMC12077540 DOI: 10.1002/jsp2.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a leading cause of low back pain (LBP), contributing significantly to global disability and productivity loss. Its pathogenesis involves complex processes, including inflammation, cellular senescence, angiogenesis, fibrosis, neural ingrowth, and sensitization. Emerging evidence highlights macrophages as central immune regulators infiltrating degenerated discs, with macrophage polarization implicated in IVDD progression. However, the mechanisms linking macrophage polarization to IVDD pathology remain poorly elucidated. Methods A comprehensive literature review was conducted by searching major databases (PubMed, Web of Science, and Scopus) for studies published in the last decade (2014-2024). Keywords included "intervertebral disc degeneration," "macrophage polarization," "inflammation," "senescence," and "therapeutic strategies." Relevant articles were selected, analyzed, and synthesized to evaluate the role of macrophage polarization in IVDD. Results Macrophage polarization dynamically influences IVDD through multiple pathways. Pro-inflammatory M1 macrophages exacerbate disc degeneration by amplifying inflammatory cytokines (e.g., TNF-α, IL-1β), promoting cellular senescence, and stimulating abnormal angiogenesis and neural ingrowth. In contrast, anti-inflammatory M2 macrophages may mitigate degeneration by suppressing inflammation and enhancing tissue repair. Therapeutic strategies targeting macrophage polarization include pharmacological agents (e.g., cytokines, small-molecule inhibitors), biologic therapies, gene editing, and physical interventions. Challenges persist, such as incomplete understanding of polarization triggers, lack of targeted delivery systems, and limited translational success in preclinical models. Conclusion Macrophage polarization is a pivotal regulator of IVDD pathology, offering promising therapeutic targets. Future research should focus on elucidating polarization mechanisms, optimizing spatiotemporal control of macrophage phenotypes, and developing personalized therapies. Addressing these challenges may advance innovative strategies to halt or reverse IVDD progression, ultimately improving clinical outcomes for LBP patients.
Collapse
Affiliation(s)
- Kaiyuan Zheng
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Siyu Wang
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Meng Deng
- Department of Clinical LaboratoryThe First People's Hospital of GuangyuanGuangyuanChina
| | - Yaomin Luo
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Wen Li
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Lianlin Zeng
- Department of Rehabilitation MedicineSuining Central HospitalSuiningChina
| | - Yinxu Wang
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| |
Collapse
|
2
|
Fei X, Li N, Xu X, Zhu Y. Macrophage biology in the pathogenesis of Helicobacter pylori infection. Crit Rev Microbiol 2025; 51:399-416. [PMID: 39086061 DOI: 10.1080/1040841x.2024.2366944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Infection with H. pylori induces chronic gastric inflammation, progressing to peptic ulcer and stomach adenocarcinoma. Macrophages function as innate immune cells and play a vital role in host immune defense against bacterial infection. However, the distinctive mechanism by which H. pylori evades phagocytosis allows it to colonize the stomach and further aggravate gastric preneoplastic pathology. H. pylori exacerbates gastric inflammation by promoting oxidative stress, resisting macrophage phagocytosis, and inducing M1 macrophage polarization. M2 macrophages facilitate the proliferation, invasion, and migration of gastric cancer cells. Various molecular mechanisms governing macrophage function in the pathogenesis of H. pylori infection have been identified. In this review, we summarize recent findings of macrophage interactions with H. pylori infection, with an emphasis on the regulatory mechanisms that determine the clinical outcome of bacterial infection.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Li L, Xiao Y, Wen W, Liu Q, Wei L, Liu P, Li M. The role of macrophages in polycystic ovary syndrome: A review. Medicine (Baltimore) 2025; 104:e42228. [PMID: 40295243 PMCID: PMC12040014 DOI: 10.1097/md.0000000000042228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder among fertile women, which is influenced by genetics and environment. A recent study revealed that PCOS patients were in a chronic inflammatory state, and they had abnormally activated macrophages. This paper introduces the relationship between PCOS and macrophages. The forkhead box protein O1 (FOXO-1), migration inhibitory factor, sympathetic conservation disorder, and vitamin D are believed to influence macrophages in PCOS. There is evidence that PCOS-associated abnormalities are associated with macrophages, including insulin resistance, obesity, hyperandrogenism (HA), hyperhomocysteinemia (HHcy), cardiometabolic disorder and gut microbiota dysbiosis. This review summarizes the research status of macrophages in PCOS. Macrophages might be a potential PCOS treatment candidate.
Collapse
Affiliation(s)
- Li Li
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Yubo Xiao
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Wenwei Wen
- Department of Orthopedics, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Qi Liu
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Le Wei
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Pinyue Liu
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Ming Li
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
4
|
Araya-Sapag MJ, Lara-Barba E, García-Guerrero C, Herrera-Luna Y, Flores-Elías Y, Bustamante-Barrientos FA, Albornoz GG, Contreras-Fuentes C, Yantén-Fuentes L, Luque-Campos N, Vega-Letter AM, Toledo J, Luz-Crawford P. New mesenchymal stem/stromal cell-based strategies for osteoarthritis treatment: targeting macrophage-mediated inflammation to restore joint homeostasis. J Mol Med (Berl) 2025:10.1007/s00109-025-02547-8. [PMID: 40272537 DOI: 10.1007/s00109-025-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are pivotal in osteoarthritis (OA) pathogenesis, as their dysregulated polarization can contribute to chronic inflammatory processes. This review explores the molecular and metabolic mechanisms that influence macrophage polarization and identifies potential strategies for OA treatment. Currently, non-surgical treatments for OA focus only on symptom management, and their efficacy is limited; thus, mesenchymal stem/stromal cells (MSCs) have gained attention for their anti-inflammatory and immunomodulatory capabilities. Emerging evidence suggests that small extracellular vesicles (sEVs) derived from MSCs can modulate macrophage function, thus offering potential therapeutic benefits in OA. Additionally, the transfer of mitochondria from MSCs to macrophages has shown promise in enhancing mitochondrial functionality and steering macrophages toward an anti-inflammatory M2-like phenotype. While further research is needed to confirm these findings, MSC-based strategies, including the use of sEVs and mitochondrial transfer, hold great promise for the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Araya-Sapag
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García-Guerrero
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yesenia Flores-Elías
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Guillermo G Albornoz
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Consuelo Contreras-Fuentes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Liliana Yantén-Fuentes
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
5
|
Wu Z, Miao C, Zhang H. METTL3-mediated m6A modification in sepsis: current evidence and future perspectives. Epigenomics 2025:1-13. [PMID: 40251974 DOI: 10.1080/17501911.2025.2494983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/15/2025] [Indexed: 04/21/2025] Open
Abstract
Sepsis, a severe systemic inflammatory condition triggered by infection, is associated with high morbidity and mortality worldwide. While medical diagnosis and treatment have advanced in recent years, a specific therapy remains unavailable. Recently, significant progress has been made in studying the epigenetic RNA modification N6-methyladenosine (m6A) and its core methyltransferase METTL3. The role of m6A in sepsis has also been increasingly elucidated. This review aims to explore the pathological mechanisms of sepsis and its relationship with m6A, focusing on the role of the key m6A writer, METTL3, in sepsis.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Zhu G, Xie Y, Li L, Li R, Sun Y, Zhou T, Cun Y. Single-cell RNA sequencing reveals important role of monocytes and macrophages during mucopolysaccharidosis treatment. Sci Rep 2025; 15:12364. [PMID: 40210734 PMCID: PMC11986106 DOI: 10.1038/s41598-025-97330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Mucopolysaccharidosis (MPS) encompasses a heterogeneous group of lysosomal storage diseases resulting from mutations in genes encoding lysosomal enzymes responsible for the degradation of mucopolysaccharides, also known as glycosaminoglycans (GAGs). Current therapeutic strategies for MPS include hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT), and symptomatic therapy. This study investigated dynamic changes in MPS type II (MPS-II) through genomic and single-cell sequencing in a patient undergoing ERT. Analysis of peripheral blood mononuclear cells (PBMCs) from one MPS-II patient of 10 year old at different disease stages through scRNA-seq identified various immune cell types, including natural killer (NK) cells, NKT cells, CD4 + and CD8 + T cells, CD14 + and CD16 + monocytes, and B cells. Monocytes and macrophages were significantly reduced during the severe stage of MPS-II but increased during the recovery stage following ERT. Notably, monocyte subtype mono3 was exclusively expressed in the severe stage, while mono1_2, a subtype of mono1, was absent during the severe stage and exhibited distinct biological functions. These findings suggest that monocytes and macrophages play critical roles in the pathogenesis of MPS-II and in the response to ERT. Pseudotime, Gene Ontology, and cell-communication analyses revealed unique functions for the different cellular subtypes. Notably, key molecules mediating cellular interactions during ERT in MPS-II included CXCR3, PF4, APP, and C5AR1 in macrophages, RPS19 in T cells, HLA-DPB1 in B cells, ADRB2 in NK cells, and IL1B, C5AR1, RPS19, and TNFSF13B in monocytes. Overall, integrative analysis delineated the expression dynamics of various cell types and identified mutations in MPS-II, providing a comprehensive atlas of transcriptional programs, cellular characterizations, and genomic variation profiles in MPS-II. This dataset, along with advanced integrative analysis, represents a valuable resource for the discovery of drug targets and the improvement of therapeutic strategies for MPS-II.
Collapse
Affiliation(s)
- Gaohui Zhu
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yue Xie
- Pediatric Research Institute, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Li Li
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Rong Li
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yihong Sun
- Pediatric Research Institute, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ting Zhou
- Department of Endocrinology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Yupeng Cun
- Pediatric Research Institute, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
7
|
Feng X, Luo Z, Zhang W, Wan R, Chen Y, Li F, He Y, Lin Z, Hui JH, Conde J, Chen S, Zhao Z, Wang X. Zn‐DHM Nanozymes Enhance Muscle Regeneration Through ROS Scavenging and Macrophage Polarization in Volumetric Muscle Loss Revealed by Single‐Cell Profiling. ADVANCED FUNCTIONAL MATERIALS 2025. [DOI: 10.1002/adfm.202506476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Indexed: 04/23/2025]
Abstract
Abstract
Volumetric muscle loss (VML) is a severe condition in which the loss of skeletal muscle surpasses the body's intrinsic repair capabilities, leading to irreversible functional deficits and potential disability, with persistent inflammation and impaired myogenic differentiation. To address these challenges, a novel zinc‐dihydromyricetin (Zn‐DHM) nanozyme with superoxide dismutase (SOD)‐like activity is developed, designed to neutralize excessive reactive oxygen species (ROS) and restore oxidative balance. Zn‐DHM mitigates oxidative stress and promotes polarization of macrophages from the proinflammatory M1 phenotype to the anti‐inflammatory M2 phenotype, thereby reducing chronic inflammation and creating a conducive environment for muscle repair. Further, Zn‐DHM significantly enhances the myogenic differentiation of C2C12 cells, accelerating wound healing processes. These studies confirm the biosafety and low toxicity of Zn‐DHM. As per a murine tibialis anterior VML model, Zn‐DHM effectively suppresses inflammation and markedly improves skeletal muscle repair outcomes. Single‐cell RNA sequencing reveals that Zn‐DHM treatment increases the expression of M2 macrophage markers and enhances the proliferation and differentiation capacity of muscle stem cells (MuSCs). In addition, intercellular communication analysis reveals interactions between MuSCs and macrophages in the Zn‐DHM treatment group, suggesting that these interactions may drive tissue regeneration through the activation of the GAS and Notch signaling pathways.
Collapse
Affiliation(s)
- Xinting Feng
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
- Department of Orthopaedic Surgery Yong Loo Lin School of Medicine National University of Singapore Singapore 119228 Singapore
| | - Wei Zhang
- School of Biomedical Engineering Anhui Medical University Hefei 230032 China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Yisheng Chen
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Fangqi Li
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Yanwei He
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Zhiheng Lin
- Department of Gynecology Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai 200032 China
| | - James Hoipo Hui
- Department of Orthopaedic Surgery Yong Loo Lin School of Medicine National University of Singapore Singapore 119228 Singapore
| | - João Conde
- Comprehensive Health Research Centre (CHRC) NOVA Medical School Faculdade de Ciências Médicas NMS FCM Universidade NOVA de Lisboa Lisboa 1169‐056 Portugal
| | - Shiyi Chen
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200011 China
| | - Xianwen Wang
- School of Biomedical Engineering Anhui Medical University Hefei 230032 China
| |
Collapse
|
8
|
Li Y, Niu J, Sun Z, Liu J. FTO-mediated m6A Methylation of KCNAB2 Inhibits Tumor Property of Non-Small Cell Lung Cancer Cells and M2 Macrophage Polarization by Inactivating the PI3K/AKT Pathway. J Biochem Mol Toxicol 2025; 39:e70232. [PMID: 40114527 DOI: 10.1002/jbt.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/11/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Potassium voltage-gated channel subfamily A regulatory beta subunit 2 (KCNAB2) is a potassium voltage-gated channel subfamily A member that plays a role in non-small cell lung cancer (NSCLC). However, its functional impact and mechanism in NSCLC are not fully understood. Here, we analyzed its effects on NSCLC cell behaviors and the underlying mechanism.mRNA expression levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR),(qRT-PCR), while protein expression was quantified by western blotting blot analysis or immunohistochemistry assay. NSCLC cell proliferation, migration, invasion, macrophage polarization, and apoptosis were evaluated through cell-based assays including cell counting kit-8 (CCK-8)(CCK-8) assay, flow cytometry, Tunel assay, wound-healing assay, and transwell invasion assay. The role of FTO alpha-ketoglutarate dependent dioxygenase (FTO)-mediated(FTO)-mediated m6A methylation in the regulation of KCNAB2 expression and their impacts on NSCLC cell behavior and M2 macrophage polarization were assessed through m6A RNA immunoprecipitation assay and rescue experiments. Xenograft mouse model assay was used to determine the effect of KCNAB2 on tumor formation in vivo.in vivo.KCNAB2 expression was downregulated and FTO expression was upregulated in NSCLC tissues and cells when compared with controls. Moreover, the expression of KCNAB2 was found to be lower in stage III NSCLC patients compared to those at stages I and II, and it was also lower in patients with positive lymph node metastasis compared to those with negative lymph node metastasis. Overexpression of KCNAB2 inhibited NSCLC cell proliferation, migration, invasion, and M2 macrophage polarization, while inducing cell apoptosis. These effects were mediated, at least partially, by inactivating the phosphoinositide 3-kinase (PI3K)/AKT(PI3K)/AKT pathway. Moreover, ectopic expression of KCNAB2 delayed tumor formation in vivo. FTOin vivo. FTO was found to mediate m6A methylation of KCNAB2, and knockdown of FTO resulted in the upregulation of KCNAB2 expression, leading to inhibition of NSCLC cell behavior and M2 macrophage polarization.KCNAB2 overexpression inhibited NSCLC cell behavior and M2 macrophage polarization by inactivating the PI3KPI3K/AKT/AKT pathway. Furthermore, FTOFTO-mediated-mediated m6A methylation was involved in the regulation of KCNAB2 expression in NSCLC. These results enhance our understanding of the role of KCNAB2 in NSCLC and suggest its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yanguang Li
- Department of thoracic surgery, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Jieting Niu
- Department of geriatric internal medicine, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Zhiguang Sun
- Department of thoracic surgery, Cangzhou Hospital of Integrated TCM-WM, Cangzhou City, Hebei Province, China
| | - Junfeng Liu
- Department 3 of thoracic, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
9
|
Chen Y, Wang Q, Li M, Fang Y, Bi X, Wu J, Han Q, Zhu H, Shen Z, Wang X. Nell-1 inhibits lipopolysaccharide-activated macrophages into M1 phenotype through the modulation of NF-κB pathway. J Mol Histol 2025; 56:108. [PMID: 40095095 DOI: 10.1007/s10735-025-10385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Nel-like molecule-1 (Nell-1), as a novel osteo-inductive molecule with great potential for clinical applications, has various functions including promoting chondrogenesis, suppressing osteoclastic activity, promoting osteogenesis, suppressing inflammation and promoting vascularization. Its anti-inflammatory potential has been widely studied. However, its anti-inflammatory potential in macrophage and possible underlying molecular mechanisms are poorly understood. Therefore, the present study aims to evaluate the anti-inflammatory potential and the regulation to macrophage polarization of Nell-1 in human myeloid cell line (THP-1) derived macrophages. M1-related markers and M2-related markers were studied in THP-1 derived macrophages. The suppressive potential of Nell-1 on lipopolysaccharide (LPS)-induced translocation of nuclear factor-kappa B (NF-κB) in THP-1 macrophage was studied. Results showed that Nell-1 significantly reduced M1 macrophage-related surface marker cluster of differentiation 86 (CD86) and inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) and reversed the LPS-induced M1 polarization of macrophages by upregulating the M2-specific markers of vascular endothelial growth factor (VEGF), arginase-1(Arg-1), and cluster of differentiation 206 (CD206) in vitro. In addition, the possible mechanism of the anti-inflammatory effects of Nell-1 is via regulating NF-κB pathway. Hence, Nell-1 is a potential suppressor of inflammation and is involved in the regulation of macrophage polarization. Nell-1 may be a potential candidate for treating inflammatory diseases and promoting tissue regeneration.
Collapse
Affiliation(s)
- Yue Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Qiang Wang
- Jinan Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Stomatological Hospital, Jinan, 250001, Shandong Province, China
| | - Mengyue Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yixuan Fang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiuting Bi
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jiameng Wu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Qi Han
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Hongfan Zhu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Zhien Shen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaoying Wang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Hooda V, Sharma A. Interactions of NK Cells and Macrophages: From Infections to Cancer Therapeutics. Immunology 2025; 174:287-295. [PMID: 39739619 DOI: 10.1111/imm.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025] Open
Abstract
The interaction between immune cells brings a consequence either on their role and functioning or the functioning of the other immune cells, modulating the whole mechanistic pathway. The interaction between natural killer (NK) cells and macrophages is one such interaction which is relatively less explored amongst diseased conditions. Their significance comes from their innate nature and secretion of large proportions of cytokines and chemokines which results in influencing adaptive immune responses. Their interplay can lead to several functional outcomes such as NK cell activation/inhibition, increased cytotoxicity and IFNγ release by NK cells, inhibition of macrophage function, etc. This paper delves into the interaction amongst NK cells and macrophages via different receptor-ligands and cytokines, particularly emphasising microbial infections and tumours. The review has the potential to uncover new insights and approaches that could lead to the development of innovative therapeutic tools and targets.
Collapse
Affiliation(s)
- Vishakha Hooda
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
11
|
Riaz SM, Hanevik K, Sviland L, Mustafa T. Characterization of Early Lesions of Human Post-Primary Tuberculosis and Its Progression to Necrosis Using Archival Material of the Pre-Antibiotic Era. Pathogens 2025; 14:224. [PMID: 40137709 PMCID: PMC11944378 DOI: 10.3390/pathogens14030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Primary and post-primary TB are distinct entities. Primary TB occurs when the patient is infected with Mycobacterium tuberculosis (MTB) for the first time without prior immunity, and post-primary TB occurs when the patient has developed immunity against the primary infection. Post-primary TB occurs only in humans. It accounts for 80% of all clinical cases and nearly 100% of transmissions of infection. Early lesions of post-primary TB are reversible, and studying it using modern immunological tools holds the key to developing preventive or treatment strategies. Human lung tissue from untreated TB patients was acquired from pathology archives stored at the Gades Institute of Pathology, Haukeland University Hospital, Bergen, Norway, from 1931 to 1947. Manual immunohistochemistry was performed for macrophage (CD68, CD64 and CD163), T cells (CD3 and CD8), matrix metalloproteinases (MMP-9), and markers for programmed death-pathway PD/PDL-1. Digital quantification was performed using Qupath software. In early lesions of post-primary TB, macrophages showed mixed-phenotype M1 and M2, expressed PDL-1, and were compartmentalized in the alveolar space. T-cells expressed PD-1 and were compartmentalized in the interstitial wall surrounding early lesions. MTB antigens and MMP-9 were also found in early lesions. As the lesion progressed towards necrosis, macrophages showed predominant M1 morphology, and expressions of PDL-1, PD-1, CD8+ cells, and MTB antigens increased. In the early lesions of post-primary TB, the compartmentalization of macrophages in the alveoli and T cells in the interstitium was shown. The PDL-PD1 pathway probably facilitated the mycobacterial growth by evading host immunity.
Collapse
Affiliation(s)
- Syeda Mariam Riaz
- Centre for International Health, Department of Global Public Health and Primary Care, Faculty of Medicine and Dentistry, University of Bergen, 5020 Bergen, Norway;
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, 5020 Bergen, Norway;
- National Center for Tropical Infectious Diseases, Medical Department, Haukeland University Hospital, 5020 Bergen, Norway
| | - Lisbet Sviland
- Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, 5020 Bergen, Norway;
- Department of Pathology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, Faculty of Medicine and Dentistry, University of Bergen, 5020 Bergen, Norway;
- Department of Thoracic Medicine, Haukeland University Hospital, 5020 Bergen, Norway
| |
Collapse
|
12
|
Wu C, Tong Y, Huang J, Wang S, Kobori H, Zhang Z, Suzuki K. Atrophic C2C12 Myotubes Activate Inflammatory Response of Macrophages In Vitro. Cells 2025; 14:317. [PMID: 40072046 PMCID: PMC11899532 DOI: 10.3390/cells14050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Skeletal muscle wasting is commonly observed in aging, immobility, and chronic diseases. In pathological conditions, the impairment of skeletal muscle and immune system often occurs simultaneously. Recent studies have highlighted the initiative role of skeletal muscle in interactions with immune cells. However, the impact of skeletal muscle wasting on macrophage inflammatory responses remains poorly understood. METHODS To investigate the effect of atrophic myotubes on the inflammatory response of macrophages, we established two in vitro models to induce myotube atrophy: one induced by D-galactose and the other by starvation. Conditioned medium (CM) from normal and atrophic myotubes were collected and administered to bone marrow-derived macrophages (BMDMs) from mice. Subsequently, lipopolysaccharide (LPS) stimulation was applied, and the expression of inflammatory cytokines was measured via RT-qPCR. RESULTS Both D-galactose and starvation treatments reduced myotube diameter and upregulated muscle atrophy-related gene expression. CM from both atrophic myotubes models augmented the gene expression of pro-inflammatory factors in BMDMs following LPS stimulation, including Il6, Il1b, and Nfkb1. Notably, CM from starvation-induced atrophic myotubes also enhanced Il12b, Tnf, and Nos2 expression in BMDMs after stimulation, a response not observed in D-galactose-induced atrophic myotubes. CONCLUSIONS These findings suggest that CM from atrophic myotubes enhanced the expression of LPS-induced pro-inflammatory mediators in macrophages.
Collapse
Affiliation(s)
- Cong Wu
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Jiapeng Huang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Shuo Wang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Haruki Kobori
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Ziwei Zhang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
13
|
Li Y, Ai S, Li Y, Ye W, Li R, Xu X, Liu Q. The role of natural products targeting macrophage polarization in sepsis-induced lung injury. Chin Med 2025; 20:19. [PMID: 39910395 PMCID: PMC11800549 DOI: 10.1186/s13020-025-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.
Collapse
Affiliation(s)
- Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Sinan Ai
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wangyu Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rui Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
14
|
Chi F, Cheng C, Liu K, Sun T, Zhang M, Hou Y, Bai G. Baicalein disrupts the KEAP1-NRF2 interaction to alleviate oxidative stress injury by inhibiting M1 macrophage polarization. Free Radic Biol Med 2025; 227:557-569. [PMID: 39694117 DOI: 10.1016/j.freeradbiomed.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Macrophages are key players in maintaining the balance of tissues and dealing with inflammation, carrying out vital functions specific to different tissues while safeguarding the body against infections. The intricate interplay between oxidative stress and macrophage polarization and how this contributes to pneumonia is not fully understood. Herein, a predominant accumulation of baicalein in lung macrophages of pathogen-infected mice was observed by an alkynyl-modified probe. Baicalein effectively reduces oxidative stress in vivo and in vitro by modulating the KEAP1-NRF2/ARE signaling pathway. Further investigation indicated that baicalein has inhibitory effects on M1 macrophage polarization and phagocytic capacity, reducing inflammatory cytokine expression. As a protein-protein interaction (PPI) inhibitor, baicalein disrupts the KEAP1-NRF2 interaction by competitively binding to the DGR/Kelch domain of KEAP1. This process helps NRF2 move to the nucleus, which activates the antioxidant transcriptional program, suppresses the production of reactive oxygen species (ROS), and mitigates oxidative stress damage. These findings suggest a different approach to developing treatments for oxidative stress that focuses on inhibiting the interaction between KEAP1-NRF2.
Collapse
Affiliation(s)
- Fuyun Chi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Tong Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
15
|
Lu Y, Osis G, Zmijewska AA, Traylor A, Thukral S, Wilson L, Barnes S, George JF, Agarwal A. Macrophage-Specific Lactate Dehydrogenase Expression Modulates Inflammatory Function In Vitro. KIDNEY360 2025; 6:197-207. [PMID: 39531318 PMCID: PMC11882262 DOI: 10.34067/kid.0000000630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Key Points Lactate dehydrogenase A deletion alters macrophage function. Lactate dehydrogenase A could serve as a potential therapeutic target in AKI. Background In AKI, macrophages play a major role in regulating inflammation. Classically activated macrophages (M1) undergo drastic metabolic reprogramming during their differentiation and upregulate the aerobic glycolysis pathway to fulfill their proinflammatory functions. NAD+ regeneration is crucial for the maintenance of glycolysis, and the most direct pathway by which this occurs is through the fermentation of pyruvate to lactate, catalyzed by lactate dehydrogenase A (LDHA). Our previous study determined that LDHA is predominantly expressed in the proximal segments of the nephron in the mouse kidney and increases with hypoxia. This study investigates the potential of LDHA as a therapeutic target for inflammation by exploring its role in macrophage function in vitro . Methods Bone marrow–derived macrophages (BMDMs) were isolated from myeloid-specific LDHA knockout mice derived from crossbreeding LysM-Cre transgenic mice and LDHA floxed mice. RNA sequencing and LC-MS/MS metabolomics analyses were used in this study to determine the effect of LDHA deletion on BMDMs after stimulation with IFN-γ . Results LDHA deletion in IFN-γ BMDMs resulted in a significant alteration of the macrophage activation and functional pathways and change in glycolytic, cytokine, and chemokine gene expression. Metabolite concentrations associated with proinflammatory macrophage profiles were diminished, whereas anti-inflammatory–associated ones were increased in LDHA knockout BMDMs. Glutamate and amino sugar metabolic pathways were significantly affected by the LDHA deletion. A combined multiomics analysis highlighted changes in Rap1 signaling, cytokine–cytokine receptor interaction, focal adhesion, and mitogen-activated protein kinase signaling metabolism pathways. Conclusions Deletion of LDHA in macrophages results in a notable reduction in the proinflammatory profile and concurrent upregulation of anti-inflammatory pathways. These findings suggest that LDHA could serve as a promising therapeutic target for inflammation, a key contributor to the pathogenesis of AKI.
Collapse
Affiliation(s)
- Yan Lu
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gunars Osis
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna A. Zmijewska
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amie Traylor
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saakshi Thukral
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Landon Wilson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F. George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
17
|
Bao C, Ma Q, Ying X, Wang F, Hou Y, Wang D, Zhu L, Huang J, He C. Histone lactylation in macrophage biology and disease: from plasticity regulation to therapeutic implications. EBioMedicine 2025; 111:105502. [PMID: 39662177 PMCID: PMC11697715 DOI: 10.1016/j.ebiom.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Epigenetic modifications have been identified as critical molecular determinants influencing macrophage plasticity and heterogeneity. Among these, histone lactylation is a recently discovered epigenetic modification. Research examining the effects of histone lactylation on macrophage activation and polarization has grown substantially in recent years. Evidence increasingly suggests that lactate-mediated changes in histone lactylation levels within macrophages can modulate gene transcription, thereby contributing to the pathogenesis of various diseases. This review provides a comprehensive analysis of the role of histone lactylation in macrophage activation, exploring its discovery, effects, and association with macrophage diversity and phenotypic variability. Moreover, it highlights the impact of alterations in macrophage histone lactylation in diverse pathological contexts, such as inflammation, tumorigenesis, neurological disorders, and other complex conditions, and demonstrates the therapeutic potential of drugs targeting these epigenetic modifications. This mechanistic understanding provides insights into the underlying disease mechanisms and opens new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xihong Ying
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Fengsheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Yue Hou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dun Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Linsen Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
18
|
Yin W, Wang JH, Liang YM, Liu KH, Chen Y, Chen Y. Neferine Targeted the NLRC5/NLRP3 Pathway to Inhibit M1-type Polarization and Pyroptosis of Macrophages to Improve Hyperuricemic Nephropathy. Curr Mol Med 2025; 25:90-111. [PMID: 38549521 DOI: 10.2174/0115665240272051240122074511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 02/19/2025]
Abstract
BACKGROUND Neferine (Nef) has a renal protective effect. This research intended to explore the impact of Nef on hyperuricemic nephropathy (HN). METHODS Adenine and potassium oxonate were administered to SD rats to induce the HN model. Bone marrow macrophages (BMDM) and NRK-52E were used to construct a transwell co-culture system. The polarization of BMDM and apoptosis levels were detected using immunofluorescence and flow cytometry. Renal pathological changes were detected using hematoxylin-eosin (HE) and Masson staining. Biochemical methods were adopted to detect serum in rats. CCK-8 and EDU staining were used to assess cell activity and proliferation. RT-qPCR and western blot were adopted to detect NLRC5, NLRP3, pyroptosis, proliferation, and apoptosis-related factor levels. RESULTS After Nef treatment, renal injury and fibrosis in HN rats were inhibited, and UA concentration, urinary protein, BUN, and CRE levels were decreased. After Nef intervention, M1 markers, pyroptosis-related factors, and NLRC5 levels in BMDM stimulated with uric acid (UA) treatment were decreased. Meanwhile, the proliferation level of NRK-52E cells co-cultured with UA-treated BMDM was increased, but the apoptosis level was decreased. After NLRC5 overexpression, Nef-induced regulation was reversed, accompanied by increased NLRP3 levels. After NLRP3 was knocked down, the levels of M1-type markers and pyroptosis-related factors were reduced in BMDM. CONCLUSION Nef improved HN by inhibiting macrophages polarized to M1-type and pyroptosis by targeting the NLRC5/NLRP3 pathway. This research provides a scientific theoretical basis for the treatment of HN.
Collapse
Affiliation(s)
- Wei Yin
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Jin-Hua Wang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Yu-Mei Liang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Kang-Han Liu
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Ying Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Yusa Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| |
Collapse
|
19
|
Fan X, Lin J, Liu H, Deng Q, Zheng Y, Wang X, Yang L. The role of macrophage-derived exosomes in noncancer liver diseases: From intercellular crosstalk to clinical potential. Int Immunopharmacol 2024; 143:113437. [PMID: 39454408 DOI: 10.1016/j.intimp.2024.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chronic liver disease has a substantial global prevalence and mortality rate. Macrophages, pivotal cells in innate immunity, exhibit remarkable heterogeneity and plasticity and play a considerable role in maintaining organ homeostasis, modulating inflammatory responses, and influencing disease progression in the liver. Exosomes, which can serve as conduits for intercellular communication, biomarkers, and therapeutic targets for a spectrum of diseases, have recently garnered increasing attention recently. Given that the liver is the organ with the highest macrophage content, a thorough understanding of the influence of macrophage-derived exosomes (MDEs) on noncancer liver disease pathogenesis and their potential therapeutic applications is paramount. Interactions among MDEs, hepatocytes, hepatic stellate cells (HSCs), and other nonparenchymal cells constitute a complex network regulates liver immune homeostasis. In this review, we summarize the latest progress in the current understanding of MDE heterogeneity and cellular crosstalk in noncancer liver diseases, as well as their potential clinical applications. Additionally, challenges and future directions are underscored.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Lin
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Honglan Liu
- Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Colavite PM, Azevedo MDCS, Francisconi CF, Fonseca AC, Tabanez AP, Melchiades JL, Passadori DC, Borrego A, De Franco M, Trombone APF, Garlet GP. Intermediate and Transitory Inflammation Mediate Proper Alveolar Bone Healing Outcome in Contrast to Extreme Low/High Responses: Evidence from Mice Strains Selected for Distinct Inflammatory Phenotypes. BIOLOGY 2024; 13:972. [PMID: 39765639 PMCID: PMC11673754 DOI: 10.3390/biology13120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Alveolar bone healing is influenced by various local and systemic factors, including the local inflammatory response. This study aimed to evaluate the role of inflammatory responsiveness in alveolar bone healing using 8-week-old male and female mice (N = 5/time/group) strains selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response carrying distinct homozygous RR/SS Slc11a1 genotypes, namely AIRminRR, AIRminSS, AIRmaxRR, and AIRmaxSS mice. After upper right incisor extraction, bone healing was analyzed at 0, 3, 7, and 14 days using micro-computed tomography, histomorphometry, birefringence, immunohistochemistry, and PCRArray analysis. AIRmaxSS and AIRminRR presented the highest and lowest inflammatory readouts, respectively, associated with lowest repair levels in both strains, while intermediate inflammatory phenotypes observed in AIRminSS and AIRmaxRR were associated with higher repair levels in such strains. The better healing outcomes are associated with intermediate inflammatory cell counts, a balanced expression of pro- and anti-inflammatory cytokines and chemokines, increased expression of growth and osteogenic factors and MSCs markers. Our results demonstrate that extreme high and low inflammatory responses are not ideal for a proper bone repair outcome, while an intermediate and transitory inflammation is associated with a proper alveolar bone healing outcome.
Collapse
Affiliation(s)
- Priscila Maria Colavite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Michelle de Campos Soriani Azevedo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Carolina Fávaro Francisconi
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Angélica Cristina Fonseca
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - André Petenucci Tabanez
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Jéssica Lima Melchiades
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Daniela Carignatto Passadori
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Andrea Borrego
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, Sao Paulo CEP 05503-900, SP, Brazil; (A.B.); (M.D.F.)
| | - Marcelo De Franco
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, Sao Paulo CEP 05503-900, SP, Brazil; (A.B.); (M.D.F.)
- Pasteur Institute, Diagnostic Section, Sao Paulo CEP 01311-000, SP, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| |
Collapse
|
21
|
Tong W, Song C, Jin D, Li M, Cheng Z, Lu G, Yang B, Deng F. QSOX1 exerts anti-inflammatory effects in sepsis-induced acute lung injury: Regulation involving EGFR phosphorylation mediated M1 polarization of macrophages. Int J Biochem Cell Biol 2024; 176:106651. [PMID: 39251039 DOI: 10.1016/j.biocel.2024.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Sepsis is a systemic inflammatory response caused by an infection, which can easily lead to acute lung injury. Quiescin Q6 sulfhydryl oxidase 1 (QSOX1) is a sulfhydryl oxidase involved in oxidative stress and the inflammatory response. However, there are few reports on the role of QSOX1 in sepsis-induced acute lung injury (SALI). In this study, mice model of SALI was constructed by intraperitoneal injection with lipopolysaccharide (LPS). The increased inflammatory response and lactate dehydrogenase activity in bronchoalveolar lavage fluid (BALF) indicated successful modeling. Increased QSOX1 expression was both observed in lung tissues and lung macrophages of sepsis mice accompanied by increased polarization of M1-type macrophages. To explore the role of QSOX1 in the SALI, lentivirus containing QSOX1-specific overexpression or knockdown vectors were used to change QSOX1 expression in LPS-treated RAW264.7 cells. QSOX1 suppressed LPS-induced M1 polarization and further inhibited inflammatory response in RAW264.7 cells. Interestingly, the phosphorylation of epidermal growth factor receptor (EGFR), the promoter of M1 polarization in macrophages, was found to be downregulated upon QSOX1 overexpression in RAW264.7 cells. Mechanically, the binding of QSOX1 to EGFR protein promoted EGFR ubiquitination and degradation, thereby down-regulating EGFR phosphorylation. Moreover, inhibiting EGFR expression or its phosphorylation restored the impact of QSOX1 silencing on M1 polarization and inflammation in the LPS-treated RAW264.7 cells. In summary, QSOX1 may exert anti-inflammatory effects in SALI by inhibiting EGFR phosphorylation-mediated M1 macrophage polarization. This presented a potential target for the treatment and prevention of SALI.
Collapse
Affiliation(s)
- Wenjia Tong
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Conglei Song
- Department of Pediatric Neurology, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Neurology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Danqun Jin
- Department of Pediatric Intensive Care Unit, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Min Li
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Zimei Cheng
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bin Yang
- Department of Pediatric Neurology, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Neurology, Anhui Provincial Children's Hospital, Hefei, Anhui, China..
| | - Fang Deng
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, Anhui, China.; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, Anhui, China..
| |
Collapse
|
22
|
Li Z, Li X, Lu Y, Zhu X, Zheng W, Chen K, Wang X, Wang T, Guan W, Su Z, Liu S, Wu J. Novel Photo-STING Agonists Delivered by Erythrocyte Efferocytosis-Mimicking Pattern to Repolarize Tumor-Associated Macrophages for Boosting Anticancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410937. [PMID: 39380354 DOI: 10.1002/adma.202410937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Indexed: 10/10/2024]
Abstract
Immunotherapy has emerged as a highly effective therapeutic strategy for cancer treatment. Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon gene (STING) pathway activation facilitates tumor-associated macrophage (TAM) polarization toward M1 phenotype, and Mn2+ are effective agents for this pathway activation. However, the high in vivo degradation rate and toxicity of Mn2+ hamper clinical application of immunotherapy. Here, this work has newly synthesized and screened manganese porphyrins for Mn2+ transport, referred to as photo-STING agonists (PSAs), and further encapsulate them into core-shell nanoparticles named Rm@PP-GA with dual specificity for tumor tissue and TAMs. Not only do PSAs achieve higher Mn2+ delivery efficiency compared to Mn2+, but they also generate reactive oxygen species under light exposure, promoting mitochondrial DNA release for cGAS-STING pathway activation. In Rm@PP-GA, globin and red blood cell membranes (Rm) are used for erythrocyte efferocytosis-mimicking delivery. Rm can effectively prolong the in vivo circulation period while globin enables PSAs to be taken up by TAMs via CD163 receptors. After Rm rupture mediated by perfluorohexane in nanoparticles under ultrasonication, drugs are specifically released for TAM repolarization. Further, dendritic cells mature, as well as T lymphocyte infiltrate, both of which favor tumor eradication. Therefore, cancer immunotherapy is optimized by novel PSAs delivered by erythrocyte efferocytosis-mimicking delivery pattern.
Collapse
Affiliation(s)
- Zhiyan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xianghui Li
- First Affiliated Hospital of Guangxi Medical University, Department of Dermatology, Nanning, 530021, China
| | - Yanjun Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xudong Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenxuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Kai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xingzhou Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenxian Guan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Song Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
23
|
Lan W, Yang L, Tan X. Crosstalk between ferroptosis and macrophages: potential value for targeted treatment in diseases. Mol Cell Biochem 2024; 479:2523-2543. [PMID: 37880443 DOI: 10.1007/s11010-023-04871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Ferroptosis is a newly identified form of programmed cell death that is connected to iron-dependent lipid peroxidization. It involves a variety of physiological processes involving iron metabolism, lipid metabolism, oxidative stress, and biosynthesis of nicotinamide adenine dinucleotide phosphate, glutathione, and coenzyme Q10. So far, it has been discovered to contribute to the pathological process of many diseases, such as myocardial infarction, acute kidney injury, atherosclerosis, and so on. Macrophages are innate immune system cells that regulate metabolism, phagocytize pathogens and dead cells, mediate inflammatory reactions, promote tissue repair, etc. Emerging evidence shows strong associations between macrophages and ferroptosis, which can provide us with a deeper comprehension of the pathological process of diseases and new targets for the treatments. In this review, we summarized the crosstalk between macrophages and ferroptosis and anatomized the application of this association in disease treatments, both non-neoplastic and neoplastic diseases. In addition, we have also addressed problems that remain to be investigated, in the hope of inspiring novel therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Wanxin Lan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
24
|
Lu Z, Wang Z, Zhang XA, Ning K. Myokines May Be the Answer to the Beneficial Immunomodulation of Tailored Exercise-A Narrative Review. Biomolecules 2024; 14:1205. [PMID: 39456138 PMCID: PMC11506288 DOI: 10.3390/biom14101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Exercise can regulate the immune function, activate the activity of immune cells, and promote the health of the organism, but the mechanism is not clear. Skeletal muscle is a secretory organ that secretes bioactive substances known as myokines. Exercise promotes skeletal muscle contraction and the expression of myokines including irisin, IL-6, BDNF, etc. Here, we review nine myokines that are regulated by exercise. These myokines have been shown to be associated with immune responses and to regulate the proliferation, differentiation, and maturation of immune cells and enhance their function, thereby serving to improve the health of the organism. The aim of this article is to review the effects of myokines on intrinsic and adaptive immunity and the important role that exercise plays in them. It provides a theoretical basis for exercise to promote health and provides a potential mechanism for the correlation between muscle factor expression and immunity, as well as the involvement of exercise in body immunity. It also provides the possibility to find a suitable exercise training program for immune system diseases.
Collapse
Affiliation(s)
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| |
Collapse
|
25
|
Li S, Wang Y, Liu Q, Tang F, Zhang X, Yang S, Wang Q, Yang Q, Li S, Liu J, Han L, Liao Y, Yin X, Fan J, Feng H. RBC-hitchhiking PLGA nanoparticles loading β-glucan as a delivery system to enhance in vitro and in vivo immune responses in mice. Front Vet Sci 2024; 11:1462518. [PMID: 39351151 PMCID: PMC11439874 DOI: 10.3389/fvets.2024.1462518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Red blood cells (RBCs) naturally trap some bacterial pathogens in the circulation and kill them by oxidative stress. Following neutralization, the bacteria are presented to antigen-presenting cells in the spleen by the RBCs. This ability of RBCs has been harnessed to develop a system where they play a crucial role in enhancing the immune response, offering a novel approach to enhance the body's immunity. In this work, a conjugate, G-OVA, was formed by connecting β-glucan and OVA through a disulfide bond. Poly (lactic-co-glycolic acid) (PLGA) was then employed to encapsulate G-OVA, yielding G-OVA-PLGA. Finally, the nanoparticles were adsorbed onto RBCs to develop G-OVA-PLGA@RBC. The results demonstrated that the delivery of nanoparticles by RBCs enhanced the antibody response to antigens both in vitro and in vivo. The objective of this study was to investigate the increased immune activity of G-OVA-PLGA nanoparticles facilitated by RBCs transportation and to elucidate some of its underlying mechanisms. These findings are anticipated to contribute valuable insights for the development of efficient and safe immune enhancers.
Collapse
Affiliation(s)
- Sheng Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yao Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Feng Tang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xinnan Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shuyao Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Qiran Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Qian Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shanshan Li
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jie Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lu Han
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yi Liao
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xuemei Yin
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jing Fan
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
27
|
Lun H, Li P, Li J, Liu F. The effect of intestinal flora metabolites on macrophage polarization. Heliyon 2024; 10:e35755. [PMID: 39170251 PMCID: PMC11337042 DOI: 10.1016/j.heliyon.2024.e35755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Intestinal flora metabolites played a crucial role in immunomodulation by influencing host immune responses through various pathways. Macrophages, as a type of innate immune cell, were essential in chemotaxis, phagocytosis, inflammatory responses, and microbial elimination. Different macrophage phenotypes had distinct biological functions, regulated by diverse factors and mechanisms. Advances in intestinal flora sequencing and metabolomics have enhanced understanding of how intestinal flora metabolites affect macrophage phenotypes and functions. These metabolites had varying effects on macrophage polarization and different mechanisms of influence. This study summarized the impact of gut microbiota metabolites on macrophage phenotype and function, along with the underlying mechanisms associated with different metabolites produced by intestinal flora.
Collapse
Affiliation(s)
- Hengzhong Lun
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fenfen Liu
- Department of Nephrology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
28
|
Pei J, Zhang J, Yu C, Luo J, Wen S, Hua Y, Wei G. Transcriptomics-based exploration of shared M1-type macrophage-related biomarker in acute kidney injury after kidney transplantation and acute rejection after kidney transplantation. Transpl Immunol 2024; 85:102066. [PMID: 38815767 DOI: 10.1016/j.trim.2024.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Macrophage type 1 (M1) cells are associated with both acute kidney injury (AKI) during kidney transplantation and acute rejection (AR) after kidney transplantation. Our study explored M1-related biomarkers involved in both AKI and AR and their potential biological functions. METHODS Based on the Gene Expression Omnibus (GEO) database, the immune cell infiltration levels and differentially expressed genes were examined in AKI and AR in the kidney transplantation; M1-related genes shared in AKI and AR were identified using weighted gene co-expression analysis (WGCNA) system. Subsequently, protein-protein interaction (PPI) networks and machine learning methods to identify Hub genes and construct diagnostic models. Both AKI model and AR rat models were built to validate the expressions of Hub genes and test the injury phenotype, oxidative stress markers, and inflammatory factors. Finally, the transcription factor (TF)-Hub gene and micro-RNA (miRNA)-Hub gene regulatory networks were constructed based on identified Hub genes. RESULTS Out of 2167 differential expression genes (DEGs) in AKI and 2100 DEGs in AR, four M1-related Hub genes were obtained by PPI networks and machine learning methods, namely GBP2, TYROBP, CCR5, and TLR8. The calibration curves in the nomogram diagnostic model for these four Hub genes suggested the same predictive probability as an ideal model for AKI and AR after kidney transplantation (AUC values of the area under the ROC curve were all >0.7). The same observations were confirmed in ischemia reperfusion injury (IRI) and AR rat models by identifying common four Hub genes (GBP2, TYROBP, TLR8, and CCR5). Western blots showed that these four Hub genes were significantly different in rat models of IRI and AR (all p<0.05). Compared with the control group, IRI and AR groups showed aggravated histopathological damage and increased secretion of oxidative stress markers and inflammatory factors in rat kidneys (all p<0.05). Finally, TF-Hub and miRNA-Hub gene regulatory networks were constructed to provide a theoretical basis for the regulation of Hub genes. CONCLUSION We identified four macrophage M1-related Hub genes shared among AKI and AR after kidney transplantation. These genes may be considered for diagnosis of AKI and AR after kidney transplantation.
Collapse
Affiliation(s)
- Jun Pei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jie Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Chengjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jin Luo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Sheng Wen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi Hua
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China.
| |
Collapse
|
29
|
Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, Lim KT. Stimuli-Mediated Macrophage Switching, Unraveling the Dynamics at the Nanoplatforms-Macrophage Interface. Adv Healthc Mater 2024; 13:e2400581. [PMID: 38637323 DOI: 10.1002/adhm.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Macrophages play an essential role in immunotherapy and tissue regeneration owing to their remarkable plasticity and diverse functions. Recent bioengineering developments have focused on using external physical stimuli such as electric and magnetic fields, temperature, and compressive stress, among others, on micro/nanostructures to induce macrophage polarization, thereby increasing their therapeutic potential. However, it is difficult to find a concise review of the interaction between physical stimuli, advanced micro/nanostructures, and macrophage polarization. This review examines the present research on physical stimuli-induced macrophage polarization on micro/nanoplatforms, emphasizing the synergistic role of fabricated structure and stimulation for advanced immunotherapy and tissue regeneration. A concise overview of the research advancements investigating the impact of physical stimuli, including electric fields, magnetic fields, compressive forces, fluid shear stress, photothermal stimuli, and multiple stimulations on the polarization of macrophages within complex engineered structures, is provided. The prospective implications of these strategies in regenerative medicine and immunotherapeutic approaches are highlighted. This review will aid in creating stimuli-responsive platforms for immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
30
|
Li D, Gao S. The interplay between T lymphocytes and macrophages in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2024; 479:1925-1936. [PMID: 37540399 DOI: 10.1007/s11010-023-04822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Acute myocardial infarction is one of the most important causes of death in the world, causing a huge health and economic burden to the world. It is still a ticklish problem how to effectively prevent reperfusion injury while recovering the blood flow of ischemic myocardium. During the process of myocardial ischemia/reperfusion injury (MI/RI), the modulation of immune cells plays an important role. Monocyte/macrophage, neutrophils and endothelial cells initiate the inflammatory response and induce the release of various inflammatory cytokines, resulting in increased vascular permeability, tissue edema and damage. Meanwhile, T cells were recruited to impaired myocardium and release pro-inflammatory and anti-inflammatory cytokines. T cells and macrophages play important roles in keeping cardiac homeostasis and orchestrate tissue repair. T cells differentiation and macrophages polarization precisely regulates the tissue microenvironment in MI/RI, and shows cross action, but the mechanism is unclear. To identify potential intervention targets and propose ideas for treatment and prevention of MI/RI, this review explores the crosstalk between T lymphocytes and macrophages in MI/RI.
Collapse
Affiliation(s)
- Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
31
|
Guo Q, Qian ZM. Macrophage based drug delivery: Key challenges and strategies. Bioact Mater 2024; 38:55-72. [PMID: 38699242 PMCID: PMC11061709 DOI: 10.1016/j.bioactmat.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
As a natural immune cell and antigen presenting cell, macrophages have been studied and engineered to treat human diseases. Macrophages are well-suited for use as drug carriers because of their biological characteristics, such as excellent biocompatibility, long circulation, intrinsic inflammatory homing and phagocytosis. Meanwhile, macrophages' uniquely high plasticity and easy re-education polarization facilitates their use as part of efficacious therapeutics for the treatment of inflammatory diseases or tumors. Although recent studies have demonstrated promising advances in macrophage-based drug delivery, several challenges currently hinder further improvement of therapeutic effect and clinical application. This article focuses on the main challenges of utilizing macrophage-based drug delivery, from the selection of macrophage sources, drug loading, and maintenance of macrophage phenotypes, to drug migration and release at target sites. In addition, corresponding strategies and insights related to these challenges are described. Finally, we also provide perspective on shortcomings on the road to clinical translation and production.
Collapse
Affiliation(s)
- Qian Guo
- Laboratory of Drug Delivery, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226019, China
- National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China
| |
Collapse
|
32
|
Feng Z, Gao L, Lu Y, He X, Xie J. The potential contribution of aberrant cathepsin K expression to gastric cancer pathogenesis. Discov Oncol 2024; 15:218. [PMID: 38856944 PMCID: PMC11164852 DOI: 10.1007/s12672-023-00814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 06/11/2024] Open
Abstract
The role of cathepsin K (CTSK) expression in the pathogenesis and progression of gastric cancer (GC) remains unclear. Hence, the primary objective of this study is to elucidate the precise expression and biological role of CTSK in GC by employing a combination of bioinformatics analysis and in vitro experiments. Our findings indicated a significant upregulation of CTSK in GC. The bioinformatics analysis revealed that GC patients with a high level of CTSK expression exhibited enrichment of hallmark gene sets associated with angiogenesis, epithelial-mesenchymal transition (EMT), inflammatory response, KRAS signaling up, TNFα signaling via KFκB, IL2-STAT5 signaling, and IL6-JAK-STAT3 signaling. Additionally, these patients demonstrated elevated levels of M2-macrophage infiltration, which was also correlated with a poorer prognosis. The results of in vitro experiments provided confirmation that the over-expression of CTSK leads to an increase in the proliferative and invasive abilities of GC cells. However, further evaluation was necessary to determine the impact of CTSK on the migration capability of these cells. Our findings suggested that CTSK has the potential to facilitate the initiation and progression of GC by augmenting the invasive capacity of GC cells, engaging in tumor-associated EMT, and fostering the establishment of an immunosuppressive tumor microenvironment (TME).
Collapse
Affiliation(s)
- Zhijun Feng
- Jiangmen Central Hospital, No. 23, Haibang Street, Pengjiang District, Jiangmen, Guangdong, China
- The Second Clinical Medical College, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Lina Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Yapeng Lu
- Department of Anesthesiology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Xiaodong He
- The Second Clinical Medical College, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China.
| | - Jianqin Xie
- Department of Anesthesiology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China.
- The Second Clinical Medical College, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China.
| |
Collapse
|
33
|
Zhang C, Shi Y, Liu C, Sudesh SM, Hu Z, Li P, Liu Q, Ma Y, Shi A, Cai H. Therapeutic strategies targeting mechanisms of macrophages in diabetic heart disease. Cardiovasc Diabetol 2024; 23:169. [PMID: 38750502 PMCID: PMC11097480 DOI: 10.1186/s12933-024-02273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.
Collapse
Affiliation(s)
- Chaoyue Zhang
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Changzhi Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shivon Mirza Sudesh
- Faculty of Medicine, St. George University of London, London, UK
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus
| | - Zhao Hu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pengyang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Qi Liu
- Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Yiming Ma
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ao Shi
- Faculty of Medicine, St. George University of London, London, UK.
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus.
| | - Hongyan Cai
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
34
|
Zheng Y, Wei K, Jiang P, Zhao J, Shan Y, Shi Y, Zhao F, Chang C, Li Y, Zhou M, Lv X, Guo S, He D. Macrophage polarization in rheumatoid arthritis: signaling pathways, metabolic reprogramming, and crosstalk with synovial fibroblasts. Front Immunol 2024; 15:1394108. [PMID: 38799455 PMCID: PMC11116671 DOI: 10.3389/fimmu.2024.1394108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent synovial inflammation and progressive joint destruction. Macrophages are key effector cells that play a central role in RA pathogenesis through their ability to polarize into distinct functional phenotypes. An imbalance favoring pro-inflammatory M1 macrophages over anti-inflammatory M2 macrophages disrupts immune homeostasis and exacerbates joint inflammation. Multiple signaling pathways, including Notch, JAK/STAT, NF-κb, and MAPK, regulate macrophage polarization towards the M1 phenotype in RA. Metabolic reprogramming also contributes to this process, with M1 macrophages prioritizing glycolysis while M2 macrophages utilize oxidative phosphorylation. Redressing this imbalance by modulating macrophage polarization and metabolic state represents a promising therapeutic strategy. Furthermore, complex bidirectional interactions exist between synovial macrophages and fibroblast-like synoviocytes (FLS), forming a self-perpetuating inflammatory loop. Macrophage-derived factors promote aggressive phenotypes in FLS, while FLS-secreted mediators contribute to aberrant macrophage activation. Elucidating the signaling networks governing macrophage polarization, metabolic adaptations, and crosstalk with FLS is crucial to developing targeted therapies that can restore immune homeostasis and mitigate joint pathology in RA.
Collapse
Affiliation(s)
- Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Fuyu Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yunshen Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xinliang Lv
- Department of Rheumatology, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Zhao D, Wang Y, Wu S, Ji X, Gong K, Zheng H, Zhu M. Research progress on the role of macrophages in acne and regulation by natural plant products. Front Immunol 2024; 15:1383263. [PMID: 38736879 PMCID: PMC11082307 DOI: 10.3389/fimmu.2024.1383263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yun Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuhui Wu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotian Ji
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke Gong
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Huie Zheng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Mingfang Zhu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
36
|
Lin C, Chu Y, Zheng Y, Gu S, Hu Y, He J, Shen Z. Macrophages: plastic participants in the diagnosis and treatment of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1337129. [PMID: 38650924 PMCID: PMC11033442 DOI: 10.3389/fimmu.2024.1337129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) rank among the most prevalent types of head and neck cancer globally. Unfortunately, a significant number of patients receive their diagnoses at advanced stages, limiting the effectiveness of available treatments. The tumor microenvironment (TME) is a pivotal player in HNSCC development, with macrophages holding a central role. Macrophages demonstrate diverse functions within the TME, both inhibiting and facilitating cancer progression. M1 macrophages are characterized by their phagocytic and immune activities, while M2 macrophages tend to promote inflammation and immunosuppression. Striking a balance between these different polarization states is essential for maintaining overall health, yet in the context of tumors, M2 macrophages typically prevail. Recent efforts have been directed at controlling the polarization states of macrophages, paving the way for novel approaches to cancer treatment. Various drugs and immunotherapies, including innovative treatments based on macrophages like engineering macrophages and CAR-M cell therapy, have been developed. This article provides an overview of the roles played by macrophages in HNSCC, explores potential therapeutic targets and strategies, and presents fresh perspectives on the future of HNSCC treatment.
Collapse
Affiliation(s)
- Chen Lin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yidian Chu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Ye Zheng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yanghao Hu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jiali He
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhisen Shen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
37
|
Li J, Wang W, Yang Z, Qiu L, Ren Y, Wang D, Li M, Li W, Gao F, Zhang J. Causal association of obesity with epigenetic aging and telomere length: a bidirectional mendelian randomization study. Lipids Health Dis 2024; 23:78. [PMID: 38475782 PMCID: PMC10935937 DOI: 10.1186/s12944-024-02042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND In observational studies, there exists an association between obesity and epigenetic age as well as telomere length. However, varying and partially conflicting outcomes have notably arisen from distinct studies on this topic. In the present study, two-way Mendelian randomization was used to identify potential causal associations between obesity and epigenetic age and telomeres. METHODS A genome-wide association study was conducted using data from individuals of European ancestry to investigate bidirectional Mendelian randomization (MR) regarding the causal relationships between obesity, as indicated by three obesity indicators (body mass index or BMI, waist circumference adjusted for BMI or WCadjBMI, and waist-to-hip ratio adjusted for BMI or WHRadjBMI), and four epigenetic age measures (HannumAge, HorvathAge, GrimAge, PhenoAge), as well as telomere length. To assess these causal associations, various statistical methods were employed, including Inverse Variance Weighted (IVW), Weighted Median, MR Egger, Weighted Mode, and Simple Mode. To address the issue of multiple testing, we applied the Bonferroni correction. These methods were used to determine whether there is a causal link between obesity and epigenetic age, as well as telomere length, and to explore potential bidirectional relationships. Forest plots and scatter plots were generated to show causal associations between exposures and outcomes. For a comprehensive visualization of the results, leave-one-out sensitivity analysis plots, individual SNP-based forest plots for MR analysis, and funnel plots were included in the presentation of the results. RESULTS A strong causal association was identified between obesity and accelerated HannumAge, GrimAge, PhenoAge and telomere length shrinkage. The causal relationship between WCadjBMI and PhenoAge acceleration (OR: 2.099, 95%CI: 1.248-3.531, p = 0.005) was the strongest among them. However, only the p-values for the causal associations of obesity with GrimAge, PhenoAge, and telomere length met the criteria after correction using the Bonferroni multiple test. In the reverse MR analysis, there were statistically significant causal associations between HorvathAge, PhenoAge and GrimAge and BMI, but these associations exhibited lower effect sizes, as indicated by their Odds Ratios (ORs). Notably, sensitivity analysis revealed the robustness of the study results. CONCLUSIONS The present findings reveal a causal relationship between obesity and the acceleration of epigenetic aging as well as the reduction of telomere length, offering valuable insights for further scientific investigations aimed at developing strategies to mitigate the aging process in humans.
Collapse
Affiliation(s)
- Jixin Li
- Chinese Academy of Traditional Chinese Medicine, Xiyuan Hospital, Beijing, China
| | - Wenru Wang
- Chinese Academy of Traditional Chinese Medicine, Xiyuan Hospital, Beijing, China
| | - Zhenyu Yang
- Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Linjie Qiu
- Chinese Academy of Traditional Chinese Medicine, Xiyuan Hospital, Beijing, China
| | - Yan Ren
- Chinese Academy of Traditional Chinese Medicine, Xiyuan Hospital, Beijing, China
| | - Dongling Wang
- Chinese Academy of Traditional Chinese Medicine, Xiyuan Hospital, Beijing, China
| | - Meijie Li
- Chinese Academy of Traditional Chinese Medicine, Xiyuan Hospital, Beijing, China
| | - Wenjie Li
- Chinese Academy of Traditional Chinese Medicine, Xiyuan Hospital, Beijing, China
| | - Feng Gao
- Chinese Academy of Traditional Chinese Medicine, Xiyuan Hospital, Beijing, China.
| | - Jin Zhang
- Chinese Academy of Traditional Chinese Medicine, Xiyuan Hospital, Beijing, China.
| |
Collapse
|
38
|
Shin JJ, Park J, Shin HS, Arab I, Suk K, Lee WH. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:2670. [PMID: 38473915 DOI: 10.3390/ijms25052670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past century, molecular biology's focus has transitioned from proteins to DNA, and now to RNA. Once considered merely a genetic information carrier, RNA is now recognized as both a vital element in early cellular life and a regulator in complex organisms. Long noncoding RNAs (lncRNAs), which are over 200 bases long but do not code for proteins, play roles in gene expression regulation and signal transduction by inducing epigenetic changes or interacting with various proteins and RNAs. These interactions exhibit a range of functions in various cell types, including macrophages. Notably, some macrophage lncRNAs influence the activation of NF-κB, a crucial transcription factor governing immune and inflammatory responses. Macrophage NF-κB is instrumental in the progression of various pathological conditions including sepsis, atherosclerosis, cancer, autoimmune disorders, and hypersensitivity. It orchestrates gene expression related to immune responses, inflammation, cell survival, and proliferation. Consequently, its malfunction is a key contributor to the onset and development of these diseases. This review aims to summarize the function of lncRNAs in regulating NF-κB activity in macrophage activation and inflammation, with a particular emphasis on their relevance to human diseases and their potential as therapeutic targets. The insights gained from studies on macrophage lncRNAs, as discussed in this review, could provide valuable knowledge for the development of treatments for various pathological conditions involving macrophages.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
39
|
Liu Y, Li S, Liu B, Zhang J, Wang C, Feng L. Maternal urban particulate matter (SRM 1648a) exposure disrupted the cellular immune homeostasis during early life: The potential attribution of altered placental transcriptome profile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169432. [PMID: 38135080 DOI: 10.1016/j.scitotenv.2023.169432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Ambient fine particular matter (PM2.5) exposure has been associated with numerous adverse effects including triggering functional disorders of the placenta and inducing immune imbalance in offspring. However, how maternal PM2.5 exposure impacts immune development during early life is not fully understood. In the current study, we exposed mice with low-, middle-, and high-dose PM2.5 during pregnancy to investigate the potential link between the transcriptional changes in the placenta and immune imbalance in mice offspring induced by PM2.5 exposures. Using flow cytometry, we found that the proportions of B cells, CD3+CD4+ T cells, CD3+CD8+ T cells, and macrophage (Mφ) cells were altered in the blood of PM2.5-exposed mice pups but not dendritic cells (DCs) and natural killer cells (NKs). Using bulk RNA sequencing, we found that PM2.5 exposure altered the transcriptional profile which indicated an inhibition of the complement and coagulation cascades in the placenta. Weighted gene co-expression network analysis (WGCNA) revealed the potential crosstalk between the perturbation of placental gene expression and the changes of immune cell subsets in pups on postnatal day 10 (PND10). Specifically, WGCNA identified a cluster of genes including Defb15, Defb20, Defb25, Cst8, Cst12, and Adam7 that might regulate the core immune cell types in PND10 pups. Although the underlying mechanisms of how maternal PM2.5 exposure induces peripheral lymphocyte disturbance in offspring still remain much unknown, our findings here shed light on the potential role of placental dysfunction in these adverse effects.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Shuman Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Bin Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Cuiping Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
40
|
Hu W, Lu Y, Duan Y, Yang Y, Wang M, Guo J, Xu J, Lu X, Ma Q. Regulation of Immune Inflammation and Promotion of Periodontal Bone Regeneration by Irisin-Loaded Bioactive Glass Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38315709 DOI: 10.1021/acs.langmuir.3c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Clinical solutions of bone defects caused by periodontitis involve surgical treatment and subsequent anti-infection treatment using antibiotics. Such a strategy faces a key challenge in that the excessive host immune response results in the damage of periodontal tissues. Consequently, it is of great importance to develop novel periodontitis treatment that allows the regulation of the host immune response and promotes the generation of periodontal tissues. Irisin has a good bone regeneration ability and could reduce the inflammatory reaction by regulating the differentiation of macrophages. In this study, we loaded irisin onto bioactive glass nanoparticles (BGNs) to prepare a composite, irisin-BGNs (IR-BGNs) with anti-inflammatory, bacteriostatic, and tissue regeneration functions, providing a novel idea for the design of ideal materials for repairing oral tissue defects caused by periodontitis. We also verified that the IR-BGNs had better anti-inflammatory properties on RAW264.7 cells compared to irisin and BGNs alone. Strikingly, when hPDLCs were stimulated with IR-BGNs, they exhibited increased expression of markers linked to osteogenesis, ALP activity, and mineralization ability in comparison to the negative control. Furthermore, on the basis of RNA sequencing results, we validated that the p38 pathway can contribute to the osteogenic differentiation of the IR-BGNs. This work may offer new thoughts on the design of ideal materials for repairing oral tissue defects.
Collapse
Affiliation(s)
- Wenzhu Hu
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yanlai Lu
- . Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiyuan Duan
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yuxin Yang
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Mingxin Wang
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Jingyao Guo
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Jing Xu
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Xiaolin Lu
- . State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Qian Ma
- . Department of General Dentistry, the Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| |
Collapse
|
41
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
42
|
Zhan L, Tian X, Lin J, Zhang Y, Zhao G, Peng X. The Therapeutic Role and Mechanism of Glabridin Under Aspergillus fumigatus Infection. J Ocul Pharmacol Ther 2024; 40:89-99. [PMID: 38346287 DOI: 10.1089/jop.2023.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Purpose: To characterize the efficiency of glabridin alone and in combination with clinical antifungals in Aspergillus fumigatus keratitis. Methods: The broth microdilution method was performed to investigate whether glabridin exerted an antifungal role on planktonic cells and immature and mature biofilm. Antifungal mechanism was evaluated by Sorbitol and Ergosterol Assays. The synergistic effect of glabridin and antifungals was assessed through the checkerboard microdilution method and time-killing test. Regarding anti-inflammatory role, inflammatory substances induced by A. fumigatus were assessed by real-time quantitative polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay. Drug toxicity was assessed by Draize test in vivo. Macrophage phenotypes were examined by flow cytometry. Results: Regarding antifungal activity, glabridin destroyed fungal cell wall and membrane on planktonic cells and suppressed immature and mature biofilm formation. After combining with natamycin or amphotericin B, glabridin possessed a potent synergistic effect against A. fumigatus. Regarding anti-inflammatory aspects, Dectin-1, toll‑like receptor (TLR)-2 and TLR-4 expression of human corneal epithelial cells were significantly elevated after A. fumigatus challenge and reduced by glabridin. The elevated expression of interleukin-1β and tumor necrosis factor-alpha induced by A. fumigatus or corresponding agonists were reversed by glabridin, equivalent to the effect of corresponding inhibitors. Glabridin could also contribute to anti-inflammation by downregulating inflammatory mediator expression to suppress macrophage infiltration. Conclusions: Glabridin contributed to fungal clearance by destroying fungal cell wall and membrane, and disrupting biofilm. Combining glabridin with clinical antifungals was superior in reducing A. fumigatus growth. Glabridin exerted an anti-inflammatory effect by downregulating proinflammatory substance expression and inhibiting macrophage infiltration, which provide a potential agent and treatment strategies for fungal keratitis.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Xiao S, Qi M, Zhou Q, Gong H, Wei D, Wang G, Feng Q, Wang Z, Liu Z, Zhou Y, Ma X. Macrophage fatty acid oxidation in atherosclerosis. Biomed Pharmacother 2024; 170:116092. [PMID: 38157642 DOI: 10.1016/j.biopha.2023.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Atherosclerosis significantly contributes to the development of cardiovascular diseases (CVD) and is characterized by lipid retention and inflammation within the artery wall. Multiple immune cell types are implicated in the pathogenesis of atherosclerosis, macrophages play a central role as the primary source of inflammatory effectors in this pathogenic process. The metabolic influences of lipids on macrophage function and fatty acid β-oxidation (FAO) have similarly drawn attention due to its relevance as an immunometabolic hub. This review discusses recent findings regarding the impact of mitochondrial-dependent FAO in the phenotype and function of macrophages, as well as transcriptional regulation of FAO within macrophages. Finally, the therapeutic strategy of macrophage FAO in atherosclerosis is highlighted.
Collapse
Affiliation(s)
- Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxu Qi
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinyi Zhou
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiqin Gong
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Duhui Wei
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guangneng Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qilun Feng
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhou Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Liu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiren Zhou
- The Affiliated Nanhua Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Ma
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
44
|
Hua R, Gao H, He C, Xin S, Wang B, Zhang S, Gao L, Tao Q, Wu W, Sun F, Xu J. An emerging view on vascular fibrosis molecular mediators and relevant disorders: from bench to bed. Front Cardiovasc Med 2023; 10:1273502. [PMID: 38179503 PMCID: PMC10764515 DOI: 10.3389/fcvm.2023.1273502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Vascular fibrosis is a widespread pathologic condition that arises during vascular remodeling in cardiovascular dysfunctions. According to previous studies, vascular fibrosis is characterized by endothelial matrix deposition and vascular wall thickening. The RAAS and TGF-β/Smad signaling pathways have been frequently highlighted. It is, however, far from explicit in terms of understanding the cause and progression of vascular fibrosis. In this review, we collected and categorized a large number of molecules which influence the fibrosing process, in order to acquire a better understanding of vascular fibrosis, particularly of pathologic dysfunction. Furthermore, several mediators that prevent vascular fibrosis are discussed in depth in this review, with the aim that this will contribute to the future prevention and treatment of related conditions.
Collapse
Affiliation(s)
- Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Qiang Tao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wenqi Wu
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Mao H, Lin X, Sun Y. Neddylation Regulation of Immune Responses. RESEARCH (WASHINGTON, D.C.) 2023; 6:0283. [PMID: 38434245 PMCID: PMC10907026 DOI: 10.34133/research.0283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 03/05/2024]
Abstract
Neddylation plays a vital role in post-translational modification, intricately shaping the regulation of diverse biological processes, including those related to cellular immune responses. In fact, neddylation exerts control over both innate and adaptive immune systems via various mechanisms. Specifically, neddylation influences the function and survival of innate immune cells, activation of pattern recognition receptors and GMP-AMP synthase-stimulator of interferon genes pathways, as well as the release of various cytokines in innate immune reactions. Moreover, neddylation also governs the function and survival of antigen-presenting cells, which are crucial for initiating adaptive immune reactions. In addition, neddylation regulates T cell activation, proliferation, differentiation, survival, and their effector functions, thereby ensuring an appropriate adaptive immune response. In this review, we summarize the most recent findings in these aspects and delve into the connection between dysregulated neddylation events and immunological disorders, especially inflammatory diseases. Lastly, we propose future directions and potential treatments for these diseases by targeting neddylation.
Collapse
Affiliation(s)
- Hongmei Mao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, China
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Xin Lin
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province, China
- Research Center for Life Science and Human Health,
Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
46
|
Zhang J, Hu C, Zhang R, Xu J, Zhang Y, Yuan L, Zhang S, Pan S, Cao M, Qin J, Cheng X, Xu Z. The role of macrophages in gastric cancer. Front Immunol 2023; 14:1282176. [PMID: 38143746 PMCID: PMC10746385 DOI: 10.3389/fimmu.2023.1282176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
As one of the deadliest cancers of the gastrointestinal tract, there has been limited improvement in long-term survival rates for gastric cancer (GC) in recent decades. The poor prognosis is attributed to difficulties in early detection, minimal opportunity for radical resection and resistance to chemotherapy and radiation. Macrophages are among the most abundant infiltrating immune cells in the GC stroma. These cells engage in crosstalk with cancer cells, adipocytes and other stromal cells to regulate metabolic, inflammatory and immune status, generating an immunosuppressive tumour microenvironment (TME) and ultimately promoting tumour initiation and progression. In this review, we summarise recent advances in our understanding of the origin of macrophages and their types and polarisation in cancer and provide an overview of the role of macrophages in GC carcinogenesis and development and their interaction with the GC immune microenvironment and flora. In addition, we explore the role of macrophages in preclinical and clinical trials on drug resistance and in treatment of GC to assess their potential therapeutic value in this disease.
Collapse
Affiliation(s)
- Jiaqing Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Can Hu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ruolan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jingli Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Siwei Pan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengxuan Cao
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiangjiang Qin
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
47
|
Arab I, Park J, Shin JJ, Shin HS, Suk K, Lee WH. Macrophage lncRNAs in cancer development: Long-awaited therapeutic targets. Biochem Pharmacol 2023; 218:115890. [PMID: 37884197 DOI: 10.1016/j.bcp.2023.115890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
In the tumor microenvironment, the interplay among macrophages, cancer cells, and endothelial cells is multifaceted. Tumor-associated macrophages (TAMs), which often exhibit an M2 phenotype, contribute to tumor growth and angiogenesis, while cancer cells and endothelial cells reciprocally influence macrophage behavior. This complex interrelationship highlights the importance of targeting these interactions for the development of novel cancer therapies aimed at disrupting tumor progression and angiogenesis. Accumulating evidence underscores the indispensable involvement of lncRNAs in shaping macrophage functionality and contributing to the development of cancer. Animal studies have further validated the therapeutic potential of manipulating macrophage lncRNA activity to ameliorate disease severity and reduce morbidity rates. This review provides a survey of our current understanding of macrophage-associated lncRNAs, with a specific emphasis on their molecular targets and their regulatory impact on cancer progression. These lncRNAs predominantly govern macrophage polarization, favoring the dominance of M2 macrophages or TAMs. Exosomes or extracellular vesicles mediate lncRNA transfer between macrophages and cancer cells, affecting cellular functions of each other. Moreover, this review presents therapeutic strategies targeting cancer-associated lncRNAs. The insights and findings presented in this review pertaining to macrophage lncRNAs can offer valuable information for the development of treatments against cancer.
Collapse
Affiliation(s)
- Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
48
|
Nie R, Zhang QY, Tan J, Feng ZY, Huang K, Sheng N, Jiang YL, Song YT, Zou CY, Zhao LM, Li HX, Wang R, Zhou XL, Hu JJ, Wu CY, Li-Ling J, Xie HQ. EGCG modified small intestine submucosa promotes wound healing through immunomodulation. COMPOSITES PART B: ENGINEERING 2023; 267:111005. [DOI: 10.1016/j.compositesb.2023.111005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
49
|
Kan S, Liu C, Zhao X, Feng S, Zhu H, Ma B, Zhou M, Fu X, Hu W, Zhu R. Resveratrol improves the prognosis of rats after spinal cord injury by inhibiting mitogen-activated protein kinases signaling pathway. Sci Rep 2023; 13:19723. [PMID: 37957210 PMCID: PMC10643657 DOI: 10.1038/s41598-023-46541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Spinal cord injury (SCI) is a serious condition that results in irreparable nerve damage and severe loss of motor or sensory function. Resveratrol (3,4',5-trihy- droxystilbene) is a naturally occurring plant-based polyphenol that has demonstrated powerful antioxidative, anti-inflammatory, and anti-carcinogenic pharmaceutical properties in previous studies. In the central nervous system, it promotes neuronal recovery and protects residual function. However, the role of resveratrol in SCI recovery remains elusive. In this study, the potential mechanisms by which resveratrol affect SCI in rats were assessed by constructing a contusion model of SCI. Resveratrol was intraperitoneally administered to rats. Behavioral scores and electrophysiological examinations were performed to assess functional recovery. After magnetic resonance imaging and staining with hematoxylin and eosin (HE) and Luxor Fast Blue (LFB), tissue recovery was analyzed. Immunofluorescence with NeuN and glial fibrillary acidic protein (GFAP) was employed to evaluate neuronal survival and glial changes. TdT-mediated dUTP nick end labeling (TUNEL) assay was performed to examine apoptotic rates. Moreover, network pharmacology was performed to identify relevant pathways of resveratrol for the treatment of SCI. Lastly, ELISA was performed to detect the expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6. Our findings revealed that resveratrol dramatically improved the hindlimb locomotor function and their electrophysiological outcomes. Notably, lesion size was significantly reduced on magnetic resonance imaging. HE and LFB staining exposed increased sparseness of tissue and myelin. GFAP and NeuN immunofluorescence assays at the lesion site determined that resveratrol boosted neuronal survival and attenuated glial cell overgrowth. In addition, resveratrol reduced the density and number of TUNEL-positive cells in rats after injury. Additionally, gene ontology analysis revealed that the enriched differentially expressed protein was associated with the JNK/p38MAPK (c-jun N-terminal kinase/p38 mitogen-activated protein kinase) signaling pathway. Following resveratrol treatment, the expression levels of IL-1β, TNF-α, and IL-6 were decreased. In summary, the administration of resveratrol protects motor function and neuronal survival in rats after SCI. Furthermore, resveratrol exerts an anti-inflammatory effect by blocking the JNK/p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Shunli Kan
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Chengjiang Liu
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Xinyan Zhao
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Sa Feng
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Haoqiang Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Boyuan Ma
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Mengmeng Zhou
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Xuanhao Fu
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China.
| |
Collapse
|
50
|
Kang L, Pang J, Zhang X, Liu Y, Wu Y, Wang J, Han D. L-arabinose Attenuates LPS-Induced Intestinal Inflammation and Injury through Reduced M1 Macrophage Polarization. J Nutr 2023; 153:3327-3340. [PMID: 37717628 DOI: 10.1016/j.tjnut.2023.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND L-arabinose has anti-inflammatory and metabolism-promoting properties, and macrophages participate in the alleviation of inflammation; however, the mechanism by which they contribute to the anti-inflammatory effects of L-arabinose is unknown. OBJECTIVES To investigate the involvement of macrophages in the mitigation of L-arabinose in an intestinal inflammation model induced by lipopolysaccharide (LPS). METHODS Five-week-old male C57BL/6 mice were divided into 3 groups: a control and an LPS group that both received normal water supplementation, and an L-arabinose (ARA+LPS) group that received 5% L-arabinose supplementation. Mice in the LPS and ARA+LPS groups were intraperitoneally injected with LPS (10 mg/kg body weight), whereas the control group was intraperitoneally injected with the same volume of saline. Intestinal morphology, cytokines, tight junction proteins, macrophage phenotypes, and microbial communities were profiled at 6 h postinjection. RESULTS L-arabinose alleviated LPS-induced damage to intestinal morphology. L-arabinose down-regulated serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and messenger RNA (mRNA) levels of TNF-α, IL-1β, interferon-γ (IFN-γ), and toll-like receptor-4 in jejunum and colon compared with those of the LPS group (P < 0.05). The mRNA and protein levels of occludin and claudin-1 were significantly increased by L-arabinose (P < 0.05). Interferon regulatory factor-5 (IRF-5) and signal transducer and activator of transcription-1 (STAT-1), key genes characterized by M1 macrophages, were elevated in the jejunum and colon of LPS mice (P < 0.05) but decreased in the ARA+LPS mice (P < 0.05). In vitro, L-arabinose decreased the proportion of M1 macrophages and inhibited mRNA levels of TNF-α, IL-1β, IL-6, IFN-γ, as well as IRF-5 and STAT-1 (P < 0.01). Moreover, L-arabinose restored the abundance of norank_f__Muribaculaceae, Faecalibaculum, Dubosiella, Prevotellaceae_UCG-001, and Paraasutterella compared with those of LPS (P < 0.05) and increased the concentration of short-chain fatty acids (P < 0.05). CONCLUSION The anti-inflammatory effects of L-arabinose are achieved by reducing M1 macrophage polarization, suggesting that L-arabinose could be a candidate functional food or nutritional strategy for intestinal inflammation and injury.
Collapse
Affiliation(s)
- Luyuan Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|