1
|
Singh RP, Hahn BH, Bischoff DS. Identification and Contribution of Inflammation-Induced Novel MicroRNA in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 13:848149. [PMID: 35444657 PMCID: PMC9013931 DOI: 10.3389/fimmu.2022.848149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Recently microRNAs (miRNAs) have been recognized as powerful regulators of many genes and pathways involved in the pathogenesis of inflammatory diseases including Systemic Lupus Erythematosus (SLE). SLE is an autoimmune disease characterized by production of various autoantibodies, inflammatory immune cells, and dysregulation of epigenetic changes. Several candidate miRNAs regulating inflammation and autoimmunity in SLE are described. In this study, we found significant increases in the expression of miR21, miR25, and miR186 in peripheral blood mononuclear cells (PBMCs) of SLE patients compared to healthy controls. However, miR146a was significantly decreased in SLE patients compared to healthy controls and was negatively correlated with plasma estradiol levels and with SLE disease activity scores (SLEDAI). We also found that protein levels of IL-12 and IL-21 were significantly increased in SLE patients as compared to healthy controls. Further, our data shows that protein levels of IL-12 were positively correlated with miR21 expression and protein levels of IL-21 positively correlated with miR25 and miR186 expression in SLE patients. In addition, we found that levels of miR21, miR25, and miR186 positively correlated with SLEDAI and miR146a was negatively correlated in SLE patients. Thus, our data shows a dynamic interplay between disease pathogenesis and miRNA expression. This study has translational potential and may identify novel therapeutic targets in patients with SLE.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Balahura LR, Selaru A, Dinescu S, Costache M. Inflammation and Inflammasomes: Pros and Cons in Tumorigenesis. J Immunol Res 2020; 2020:2549763. [PMID: 33015196 PMCID: PMC7520695 DOI: 10.1155/2020/2549763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, it has been well established that tumorigenesis is affected by chronic inflammation. During this event, proinflammatory cytokines are produced by numerous types of cells, such as fibroblasts, endothelial cells, macrophages, and tumor cells, and are able to promote the initiation, progression, and metastasis of different types of cancer. When persistent inflammation occurs, activation of inflammasome complexes is initiated, leading to its assembly and further activation of caspase, production of proinflammatory cytokines, and pyroptosis induction. The function of this multiprotein complex is not only to reassure inflammation and to promote cell death, through caspase activity, but also has been identified to have significant contributions during tumorigenesis and cancer development. So far, many efforts have been made in order to extend the knowledge of inflammasome implications and how its components could be targeted as therapeutic agents. Additionally, microRNAs (miRNAs), evolutionary conserved noncoding molecules, have emerged as pivotal players during numerous biological events by regulating gene and protein expression. Therefore, dysregulations of miRNA expressions have been correlated with inflammation during tumor development. In this review, we aim to highlight the dual role of inflammasomes and proinflammatory cytokines during carcinogenesis paired with the distinguished effects of miRNAs upon inflammation cascades during tumor growth and progression.
Collapse
Affiliation(s)
- Liliana R Balahura
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences "Victor Babes", Bucharest 050096, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Aida Selaru
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences "Victor Babes", Bucharest 050096, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
- The Research Institute of the University of Bucharest, Bucharest 050663, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
- The Research Institute of the University of Bucharest, Bucharest 050663, Romania
| |
Collapse
|
3
|
Huang H, Pham Q, Davis CD, Yu L, Wang TT. Delineating effect of corn microRNAs and matrix, ingested as whole food, on gut microbiota in a rodent model. Food Sci Nutr 2020; 8:4066-4077. [PMID: 32884688 PMCID: PMC7455949 DOI: 10.1002/fsn3.1672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Dietary microRNAs (miRNAs) are thought to regulate a wide range of biological processes, including the gut microbiota. However, it is difficult to separate specific effect(s) of miRNA from that of the food matrix. This study aims to elucidate the specific effect(s) of dietary corn miRNAs, ingested as a whole food, on the gut microbiota. We developed an autoclave procedure to remove 98% of miRNA from corn. A mouse feeding study was conducted comparing autoclaved corn to nonautoclaved corn and purified corn miRNA. Compared to nonspecific nucleotides and corn devoid of miRNAs, feeding purified corn miRNAs or corn to C57BL/6 mice via gavage or diet supplementation for two weeks lead to a decrease in total bacteria in the cecum. The effect appeared to be due to changes in Firmicutes. Additionally, corn matrix minus miRNA and processing also affected gut bacteria. In silico analysis identified corn miRNAs that aligned to Firmicutes genome sequences lending further support to the interaction between corn miRNAs and this bacterium. These data support interactions between plant food miRNA, as well as matrix, and the gut microbiota exist but complex. However, it provides additional support for mechanism by which bioactive dietary components interact with the gut microbiota.
Collapse
Affiliation(s)
- Haiqiu Huang
- Diet, Genomics and Immunology LaboratoryBeltsville Human Nutrition Research CenterUSDA‐ARSBeltsvilleMarylandUSA
- Office of Dietary SupplementsNIHBethesdaMarylandUSA
| | - Quynhchi Pham
- Diet, Genomics and Immunology LaboratoryBeltsville Human Nutrition Research CenterUSDA‐ARSBeltsvilleMarylandUSA
| | | | - Liangli Yu
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Thomas T.Y. Wang
- Diet, Genomics and Immunology LaboratoryBeltsville Human Nutrition Research CenterUSDA‐ARSBeltsvilleMarylandUSA
| |
Collapse
|
4
|
Ibrahim RR, Amer RA, Abozeid AA, Elsharaby RM, Shafik NM. Micro RNA 146a gene variant / TNF-α / IL-6 / IL-1 β; A cross-link axis inbetween oxidative stress, endothelial dysfunction and neuro-inflammation in acute ischemic stroke and chronic schizophrenic patients. Arch Biochem Biophys 2020; 679:108193. [DOI: 10.1016/j.abb.2019.108193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
|
5
|
Wang H, Lv Y, Wang C, Leng D, Yan Y, Blessing Fasae M, Madiha Zahra S, Jiang Y, Wang Z, Yang B, Bai Y. Systematic Analysis of Intestinal MicroRNAs Expression in HCC: Identification of Suitable Reference Genes in Fecal Samples. Front Genet 2019; 10:687. [PMID: 31456816 PMCID: PMC6700738 DOI: 10.3389/fgene.2019.00687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/01/2019] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an extremely fatal malignancy. Intestinal microRNAs, which can be detected in fecal samples in humans may be involved in the pathological process of HCC. Therefore, screening for functional intestinal microRNAs in fecal samples and investigating their potential roles in the molecular progression of HCC are necessary. Quantitative real-time PCR (qRT-PCR) has been widely used in microRNA expression studies. However, few genes have been reported as reference genes for intestinal microRNAs in fecal samples. In order to obtain a more accurately analyzed intestinal microRNAs expression, we first searched for reliable reference genes for intestinal microRNAs expression normalization during qRT-PCR, using three software packages (GeNorm, NormFinder, and Bestkeeper). Next we screened and predicted the target genes of the differentially intestinal microRNAs of control and HCC mice through quantitative RT-PCR or miRtarBase. Finally, we also analyzed the mRNA targets for enrichment of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using the DAVID Bioinformatic Resources database. This study has successfully screened relatively suitable reference genes and we have discovered that the differential intestinal microRNAs play significant roles in the development of HCC. The top reference genes identified in this study could provide a theoretical foundation for the reasonable selection of a suitable reference gene. Furthermore, the detection of intestinal microRNAs expression may serve as a promising therapeutic target for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Cao Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Dongjing Leng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Moyondafoluwa Blessing Fasae
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Syeda Madiha Zahra
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Chronic Disease Research Institute, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhiguo Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Chronic Disease Research Institute, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine–Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Chronic Disease Research Institute, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
6
|
Shafabakhsh R, Aghadavod E, Mobini M, Heidari-Soureshjani R, Asemi Z. Association between microRNAs expression and signaling pathways of inflammatory markers in diabetic retinopathy. J Cell Physiol 2018; 234:7781-7787. [PMID: 30478931 DOI: 10.1002/jcp.27685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Diabetic retinopathy is one of the common and serious microvascular complications of diabetes mellitus, as hyperglycemia has metabolic effects on the retina. Hyperglycemia induces increased oxidative stress, which stimulates inflammation pathways and promotes vascular dysfunction of the retina that leads to increased capillary permeability and vascular leakage. One of the main factors involving diabetic retinopathy is the inflammation signaling pathways. In contemporary times, microRNAs (miRNAs) are identified as functional biomarkers for early detection and treatment of numerous diseases specifically diabetic retinopathy. MiRNAs can modulate gene expression through regulation of transcriptional and posttranscriptional of target genes. With that, miRNAs can regulate almost every cellular and developmental process, including the regulation of instinct immune responses and inflammation. The aim of this study is to investigate the role of miRNAs in inflammation pathways and the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Mobini
- Department of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Li Z, Wang Y, Zhu Y. Association of miRNA-146a rs2910164 and miRNA-196 rs11614913 polymorphisms in patients with ulcerative colitis: A meta-analysis and review. Medicine (Baltimore) 2018; 97:e12294. [PMID: 30278502 PMCID: PMC6181578 DOI: 10.1097/md.0000000000012294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND It has been reported that the single nucleotide polymorphisms (SNPs) miRNA-196 (miR-196) rs11614913 and miRNA-146a (miR-146a) rs2910164 are related to susceptibility to ulcerative colitis (UC). Because the previously reported results have been mixed and uncertain, the aim of this study was to perform a meta-analysis and review to assess the relationship between these 2 SNPs and UC risk. METHODS In this analysis, 5 studies involving 1023 cases and 1769 controls for miR-196 rs11614913 and 4 studies involving 827 cases and 1451 controls for miR-146 rs2910164 were included. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to pool the effect size. RESULTS A decreased risk of UC was identified in homozygote comparison (GG vs CC: OR = 0.69, 95% CI: 0.52-0.93, P = .02), recessive comparison (GG vs CG + CC: OR = 0.74, 95% CI: 0.59-0.92, P = .007), and dominant comparison (GG + CG vs CC: OR = 0.79, 95% CI: 0.65-0.97, P = .02) of miR-146 rs2910164 in Asian but not Caucasian population. No evidence of an association was shown between the rs11614913 polymorphism and UC risk in allelic, heterozygote, homozygote, recessive, and dominant models in both Caucasian and Asian populations (P > .05). CONCLUSIONS MiR-146 rs2910164, but not miR-196 rs11614913, was associated with a decreased risk of UC in Asian population. However, the results should be treated with caution because of the limited sample size and heterogeneity. Well-designed studies with large sample sizes and more ethnic groups are needed to validate the risks identified in the current meta-analysis and review.
Collapse
Affiliation(s)
- Zhongyi Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University
| | - Yao Wang
- Department of Epidemiology, Medical School of Jinan University, Guangzhou, Guangdong Province
| | - Yi Zhu
- Department of Gastroenterological Surgery, First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| |
Collapse
|
8
|
Arancio W, Calogero Amato M, Magliozzo M, Pizzolanti G, Vesco R, Giordano C. Serum miRNAs in women affected by hyperandrogenic polycystic ovary syndrome: the potential role of miR-155 as a biomarker for monitoring the estroprogestinic treatment. Gynecol Endocrinol 2018; 34:704-708. [PMID: 29385860 DOI: 10.1080/09513590.2018.1428299] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs can be used as very efficient circulating biomarkers. The role of microRNAs in polycystic ovary syndrome (PCOS) and the effects of antiandrogen therapy on microRNA expression is still not fully understood. A panel of serum microRNAs were retrotranscribed via looped reverse primer transcription specific for each miRNA and quantified via probe specific RT-PCR in 16 Caucasian hyperandrogenic PCOS women selected according to the Rotterdam criteria and in a subset of seven patients after four months of sequential reverse antiandrogenic therapy. All women recruited underwent an oral glucose tolerance test (OGTT) and a baseline total cholesterol, high density lipoproteins cholesterol, triglycerides, AST and ALT dosage. In the follicular phase women were evaluated for total testosterone, Δ4-androstenedione, DHEAS, 17OHpg, FSH, LH, and 17-β-E2. The AUC2hglucose, ISI Matsuda, oral disposition index (DIo) and visceral adipose index (VAI) were also calculated. We suggest that miR-155 might have a role as biomarker in hyperandrogenic PCOS patients to monitor the effect of antiandrogen therapy.
Collapse
Affiliation(s)
- Walter Arancio
- a Section of Endocrinology, Diabetes and Metabolism, Biomedical Department of Internal and Specialized Medicine (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Marco Calogero Amato
- a Section of Endocrinology, Diabetes and Metabolism, Biomedical Department of Internal and Specialized Medicine (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Miriam Magliozzo
- a Section of Endocrinology, Diabetes and Metabolism, Biomedical Department of Internal and Specialized Medicine (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Giuseppe Pizzolanti
- a Section of Endocrinology, Diabetes and Metabolism, Biomedical Department of Internal and Specialized Medicine (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Rosalia Vesco
- a Section of Endocrinology, Diabetes and Metabolism, Biomedical Department of Internal and Specialized Medicine (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Carla Giordano
- a Section of Endocrinology, Diabetes and Metabolism, Biomedical Department of Internal and Specialized Medicine (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| |
Collapse
|
9
|
Lee J, Ha SJ, Lee HJ, Kim MJ, Kim JH, Kim YT, Song KM, Kim YJ, Kim HK, Jung SK. Protective effect of Tremella fuciformis Berk extract on LPS-induced acute inflammation via inhibition of the NF-κB and MAPK pathways. Food Funct 2018; 7:3263-72. [PMID: 27334265 DOI: 10.1039/c6fo00540c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tremella fuciformis Berk (TFB) has long been used as a traditional medicine in Asia. Although TFB exhibits antioxidant and anti-inflammatory effects, the mechanisms of action responsible have remained unknown. We confirmed the anti-inflammatory effects of Tremella fuciformis Berk extract (TFE) in RAW 264.7 cells and observed significantly suppressed LPS-induced iNOS/NO and COX-2/PGE2 production. TFE also suppressed LPS-induced IKK, IkB, and p65 phosphorylation, as well as LPS-induced translocation of p65 from the cytosol. Additionally, TFE inhibited LPS-induced phosphorylation of MAPKs. In an acute inflammation study, oral administration of TFE significantly inhibited LPS-induced IL-1β, IL-6 and TNF-α production and iNOS and COX-2 expression. The major bioactive compounds from TFB extract were identified as gentisic acid, protocatechuic acid, 4-hydroxybenzoic acid, and coumaric acid. Among these compounds, protocatechuic acid showed the strongest inhibitory effects on LPS-induced NO production in RAW 264.7 cells. Overall, these results suggest that TFE is a promising anti-inflammatory agent that suppresses iNOS/NO and COX-2/PGE2 expression, as well as the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jangho Lee
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| | - Su Jeong Ha
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| | - Hye Jin Lee
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| | - Min Jung Kim
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea
| | - Jin Hee Kim
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea
| | - Yun Tai Kim
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea and Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| | - Kyung-Mo Song
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| | - Young-Jun Kim
- Food Safety Center, Ottogi Corp, Gyeonggi-do, 431-070, Republic of Korea
| | - Hyun Ku Kim
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| | - Sung Keun Jung
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea and Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do, 463-746, Republic of Korea.
| |
Collapse
|
10
|
Huang H, Davis CD, Wang TTY. Extensive Degradation and Low Bioavailability of Orally Consumed Corn miRNAs in Mice. Nutrients 2018; 10:nu10020215. [PMID: 29462875 PMCID: PMC5852791 DOI: 10.3390/nu10020215] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 01/09/2023] Open
Abstract
The current study seeks to resolve the discrepancy in the literature regarding the cross-kingdom transfer of plant microRNAs (miRNAs) into mammals using an improved miRNA processing and detection method. Two studies utilizing C57BL/6 mice were performed. In the first study, mice were fed an AIN-93M diet and gavaged with water, random deoxynucleotide triphosphates (dNTP) or isolated corn miRNAs for two weeks (n = 10 per group). In the second study, mice were fed an AIN-93M diet, or the diet supplemented with 3% fresh or autoclaved corn powder for two weeks (n = 10 per group). Corn miRNA levels were analyzed in blood and tissue samples by real-time PCR (RT-PCR) following periodate oxidation and β elimination treatments to eliminate artifacts. After removing false positive detections, there were no differences in corn miRNA levels between control and treated groups in cecal, fecal, liver and blood samples. Using an in vitro digestion system, corn miRNAs in AIN-93M diet or in the extracts were found to be extensively degraded. Less than 1% was recovered in the gastrointestinal tract after oral and gastric phases. In conclusion, no evidence of increased levels of corn miRNAs in whole blood or tissues after supplementation of corn miRNAs in the diet was observed in a mouse model.
Collapse
Affiliation(s)
- Haiqiu Huang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD 20705, USA.
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Cindy D Davis
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD 20705, USA.
| |
Collapse
|
11
|
Valmiki S, Ahuja V, Paul J. MicroRNA exhibit altered expression in the inflamed colonic mucosa of ulcerative colitis patients. World J Gastroenterol 2017; 23:5324-5332. [PMID: 28839432 PMCID: PMC5550781 DOI: 10.3748/wjg.v23.i29.5324] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the miRNA expression in colonic mucosal biopsies from endoscopically inflamed and non inflamed regions of ulcerative colitis (UC) patients.
METHODS Colonic mucosal pinch biopsies were analyzed from the inflamed and non inflamed regions of same UC patient. Total RNA was isolated and differential miRNA profiling was done using microarray platform. Quantitative Real Time PCR was performed in colonic biopsies from inflamed (n = 8) and non-inflamed (n = 8) regions of UC and controls (n = 8) to validate the differential expression of miRNA. Potential targets of dysregulated miRNA were identified by using in silico prediction tools and probable role of these miRNA in inflammatory pathways were predicted.
RESULTS The miRNA profile of inflamed colonic mucosa differs significantly from the non-inflamed. Real time PCR analysis showed that some of the miRNA were differentially expressed in the inflamed mucosa as compared to non inflamed mucosa and controls (miR-125b, miR-223, miR-138, and miR-155), while (miR-200a) did not show any significant changes. In contrast to microarray, where miR-378d showed downregulation in the inflamed mucosa, qRT-PCR showed a significant upregulation in the inflamed mucosa as compared to the non inflamed. The in silico prediction analysis revealed that the genes targeted by these miRNAs play role in the major signaling pathways like MAPK pathway, NF-κB signaling pathway, cell adhesion molecules which are all assciated with UC.
CONCLUSION The present study reports disease specific alteration in the expression of miR-125b, miR-155, miR-223 and miR-138 in UC patients and also predict their biological significance.
Collapse
|
12
|
Huang H, Roh J, Davis CD, Wang TTY. An improved method to quantitate mature plant microRNA in biological matrices using modified periodate treatment and inclusion of internal controls. PLoS One 2017; 12:e0175429. [PMID: 28399134 PMCID: PMC5388493 DOI: 10.1371/journal.pone.0175429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/24/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) ubiquitously exist in microorganisms, plants, and animals, and appear to modulate a wide range of critical biological processes. However, no definitive conclusion has been reached regarding the uptake of exogenous dietary small RNAs into mammalian circulation and organs and cross-kingdom regulation. One of the critical issues is our ability to assess and distinguish the origin of miRNAs. Although periodate oxidation has been used to differentiate mammalian and plant miRNAs, validation of treatment efficiency and the inclusion of proper controls for this method were lacking in previous studies. This study aimed to address: 1) the efficiency of periodate treatment in a plant or mammalian RNA matrix, and 2) the necessity of inclusion of internal controls. We designed and tested spike-in synthetic miRNAs in various plant and mammalian matrices and showed that they can be used as a control for the completion of periodate oxidation. We found that overloading the reaction system with high concentration of RNA resulted in incomplete oxidation of unmethylated miRNA. The abundant miRNAs from soy and corn were analyzed in the plasma, liver, and fecal samples of C57BL/6 mice fed a corn and soy-based chow diet using our improved methodology. The improvement resulted in the elimination of the false positive detection in the liver, and we did not detect plant miRNAs in the mouse plasma or liver samples. In summary, an improved methodology was developed for plant miRNA detection that appears to work well in different sample matrices.
Collapse
Affiliation(s)
- Haiqiu Huang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, Maryland, United States of America
- Office of Dietary Supplements, NIH, Bethesda, Maryland, United States of America
| | - Jamin Roh
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, Maryland, United States of America
| | - Cindy D. Davis
- Office of Dietary Supplements, NIH, Bethesda, Maryland, United States of America
| | - Thomas T. Y. Wang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, Maryland, United States of America
| |
Collapse
|
13
|
Ranjha R, Meena NK, Singh A, Ahuja V, Paul J. Association of miR-196a-2 and miR-499 variants with ulcerative colitis and their correlation with expression of respective miRNAs. PLoS One 2017; 12:e0173447. [PMID: 28301487 PMCID: PMC5354276 DOI: 10.1371/journal.pone.0173447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 02/22/2017] [Indexed: 01/01/2023] Open
Abstract
Background and aim MicroRNAs are small non-coding RNAs that play an important role in regulating the gene expression of their target genes. SNP miR-196a-2 rs11614913 and miR-499 rs3746444 are reported to have association with the risk and prognosis of multiple-types of inflammatory diseases including IBD. This study was conducted to show if any association of SNP miR-196a-2rs11614913 and miR-499 rs3746444 exists with ulcerative colitis (UC) patients of north Indian population and how these polymorphisms modulate the expression profile of the respective miRNAs. Methods A total of 638 participants including 197 UC patients and 441 controls were included in this study. Polymorphisms were genotyped by PCR-RFLP and the miRNA expression was measured using qRT-PCR. Genotypes and allele frequencies were calculated using SPSS 16 software. Results MiR-196a-2 rs11614913 (C>T) and miR-499 rs3746444 (T>C) were found to be associated with UC. TT genotype of miR-196a-2 rs11614913 (p = 0.03) was negatively associated with UC whereas the heterozygous TC genotype of miR-499 rs3746444 (p = 0.003) was showing positive association with UC. Patients having a combination of both SNPs, developed disease at older age and they suffered from severe disease extent. Genotype that showed association with the disease also showed correlation with the changes in miRNA expression. Conclusion In this study we found miR-196a-2 rs11614913 and miR-499 rs3746444 were associated with UC in north Indian population. We found the genotype that showed association with UC also altered the expression of respective miRNA in the patient harboring the genotype. There was correlation between associated genotype and altered miRNA expression.
Collapse
Affiliation(s)
- Raju Ranjha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Abhiraman Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
14
|
Treece AL, Duncan DL, Tang W, Elmore S, Morgan DR, Dominguez RL, Speck O, Meyers MO, Gulley ML. Gastric adenocarcinoma microRNA profiles in fixed tissue and in plasma reveal cancer-associated and Epstein-Barr virus-related expression patterns. J Transl Med 2016; 96:661-71. [PMID: 26950485 PMCID: PMC5767475 DOI: 10.1038/labinvest.2016.33] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/09/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022] Open
Abstract
MicroRNA expression in formalin-fixed paraffin-embedded tissue (FFPE) or plasma may add value for cancer management. The GastroGenus miR Panel was developed to measure 55 cancer-specific human microRNAs, Epstein-Barr virus (EBV)-encoded microRNAs, and controls. This Q-rtPCR panel was applied to 100 FFPEs enriched for adenocarcinoma or adjacent non-malignant mucosa, and to plasma of 31 patients. In FFPE, microRNAs upregulated in malignant versus adjacent benign gastric mucosa were hsa-miR-21, -155, -196a, -196b, -185, and -let-7i. Hsa-miR-18a, 34a, 187, -200a, -423-3p, -484, and -744 were downregulated. Plasma of cancer versus non-cancer controls had upregulated hsa-miR-23a, -103, and -221 and downregulated hsa-miR-378, -346, -486-5p, -200b, -196a, -141, and -484. EBV-infected versus uninfected cancers expressed multiple EBV-encoded microRNAs, and concomitant dysregulation of four human microRNAs suggests that viral infection may alter cellular biochemical pathways. Human microRNAs were dysregulated between malignant and benign gastric mucosa and between plasma of cancer patients and non-cancer controls. Strong association of EBV microRNA expression with known EBV status underscores the ability of microRNA technology to reflect disease biology. Expression of viral microRNAs in concert with unique human microRNAs provides novel insights into viral oncogenesis and reinforces the potential for microRNA profiles to aid in classifying gastric cancer subtypes. Pilot studies of plasma suggest the potential for a noninvasive addition to cancer diagnostics.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/virology
- Aged
- Aged, 80 and over
- Case-Control Studies
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/virology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Pilot Projects
- RNA, Neoplasm/blood
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Viral/blood
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/virology
Collapse
Affiliation(s)
- Amanda L Treece
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Duncan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weihua Tang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sandra Elmore
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas R Morgan
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ricardo L Dominguez
- Department of Gastroenterology, Western Regional Hospital, Santa Rosa de Copan, Honduras
| | - Olga Speck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael O Meyers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margaret L Gulley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Rossi AFT, Cadamuro ACT, Biselli-Périco JM, Leite KRM, Severino FE, Reis PP, Cordeiro JA, Silva AE. Interaction between inflammatory mediators and miRNAs in Helicobacter pylori infection. Cell Microbiol 2016; 18:1444-58. [PMID: 26945693 PMCID: PMC5074252 DOI: 10.1111/cmi.12587] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/12/2016] [Accepted: 02/29/2016] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori cause chronic inflammation favouring gastric carcinogenesis, and its eradication may prevent malignant transformation. We evaluated whether H. pylori infection and its eradication modify the expression of inflammatory mediators in patients with chronic gastritis. Furthermore, we assessed whether microRNAs modulate inflammatory pathways induced by H. pylori and identified miRNA–gene interaction networks. mRNA and protein expression of TNFA, IL6, IL1B, IL12A, IL2 and TGFBRII and miRNAs miR‐103a‐3p, miR‐181c‐5p, miR‐370‐3p, miR‐375 and miR‐223‐3p were evaluated in tissue samples from 20 patients with chronic gastritis H. pylori negative (Hp−) and 31 H. pylori positive (Hp+), before and three months after bacterium eradication therapy, in comparison with a pool of Hp− normal gastric mucosa. Our results showed that H. pylori infection leads to up‐regulation of TNFA, IL6, IL12A and IL2 and down‐regulation of miRNAs. Bacterium eradication reduces the expression of TNFA and IL6 and up‐regulates TGFBRII and all investigated miRNAs, except miR‐223‐3p. Moreover, transcriptional profiles of inflammatory mediators and miRNAs after eradication are different from the non‐infected group. Deregulated miRNA–mRNA interaction networks were observed in the Hp+ group before and after eradication. Therefore, miRNAs modulated cytokine expression in the presence of H. pylori and after its eradication, suggesting that miRNAs participate in the pathological process triggered by H. pylori in the gastric mucosa.
Collapse
Affiliation(s)
- Ana Flávia Teixeira Rossi
- UNESP, São Paulo State University, Department of Biology, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Aline Cristina Targa Cadamuro
- UNESP, São Paulo State University, Department of Biology, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Joice Matos Biselli-Périco
- UNESP, São Paulo State University, Department of Biology, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Kátia Ramos Moreira Leite
- USP, São Paulo University, Faculty of Medicine, Department of Surgery, Avenida Dr. Arnaldo, 455, São Paulo, SP, Brazil
| | - Fábio Eduardo Severino
- UNESP, São Paulo State University, Faculty of Medicine, Department of Surgery and Orthopedics, Avenida Prof. Montenegro, Botucatu, SP, Brazil
| | - Patricia P Reis
- UNESP, São Paulo State University, Faculty of Medicine, Department of Surgery and Orthopedics, Avenida Prof. Montenegro, Botucatu, SP, Brazil
| | - José Antonio Cordeiro
- UNESP, São Paulo State University, Department of Biology, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Ana Elizabete Silva
- UNESP, São Paulo State University, Department of Biology, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
16
|
Ai F, Zhang X, Li X, Qin Z, Ye Q, Tian L, Tang A, Li N, Li G, Ma J, Shen S. Up-regulation of matrix metalloproteinases in a mouse model of chemically induced colitis-associated cancer: the role of microRNAs. Oncotarget 2016; 6:5412-25. [PMID: 25742789 PMCID: PMC4467157 DOI: 10.18632/oncotarget.3027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/01/2015] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence has implicated microRNAs in regulating the production of multiple inflammatory mediators including cytokines and chemokines. We previously elucidated the dynamic activation of key signals that link colitis to colorectal cancer. In this study, we observed a sharp increase in the levels of matrix metalloproteinases (Mmps) that provided a basis for the inflammation-cancer link, and we questioned whether this was a consequence of the dysregulation of Mmp-specific microRNAs, at least partly. We assayed a panel of murine microRNAs that were predicted to target Mmps and found they were downregulated in the inflammation-cancer link. Furthermore, we demonstrated that three murine microRNAs, namely miR-128, -134, and -330, can target the three Mmps Mmp3, Mmp10, and Mmp13, respectively. We also found that the level of the microRNA-processing enzyme Dicer1 was decreased in the inflammation-cancer link. These microRNAs functioned as tumor suppressors in colon cancer cells, attenuating the proliferation, migration, and invasion potential of murine colon cancer cells as well as angiogenesis and the growth of tumors derived from these cells. Our results suggest that microRNAs modulate the production of key inflammatory mediators and that microRNA dysfunction may contribute to the non-resolving inflammation associated with cancer.
Collapse
Affiliation(s)
- Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xuemei Zhang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiayu Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Zailong Qin
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Qiurong Ye
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Nan Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China.,Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China.,Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, Hunan, China
| | - Shourong Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
17
|
Abba ML, Patil N, Leupold JH, Allgayer H. MicroRNA Regulation of Epithelial to Mesenchymal Transition. J Clin Med 2016; 5:jcm5010008. [PMID: 26784241 PMCID: PMC4730133 DOI: 10.3390/jcm5010008] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a central regulatory program that is similar in many aspects to several steps of embryonic morphogenesis. In addition to its physiological role in tissue repair and wound healing, EMT contributes to chemo resistance, metastatic dissemination and fibrosis, amongst others. Classically, the morphological change from epithelial to mesenchymal phenotype is characterized by the appearance or loss of a group of proteins which have come to be recognized as markers of the EMT process. As with all proteins, these molecules are controlled at the transcriptional and translational level by transcription factors and microRNAs, respectively. A group of developmental transcription factors form the backbone of the EMT cascade and a large body of evidence shows that microRNAs are heavily involved in the successful coordination of mesenchymal transformation and vice versa, either by suppressing the expression of different groups of transcription factors, or otherwise acting as their functional mediators in orchestrating EMT. This article dissects the contribution of microRNAs to EMT and analyzes the molecular basis for their roles in this cellular process. Here, we emphasize their interaction with core transcription factors like the zinc finger enhancer (E)-box binding homeobox (ZEB), Snail and Twist families as well as some pluripotency transcription factors.
Collapse
Affiliation(s)
- Mohammed L Abba
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| | - Nitin Patil
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| | - Jörg Hendrik Leupold
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| | - Heike Allgayer
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| |
Collapse
|
18
|
Ranjha R, Aggarwal S, Bopanna S, Ahuja V, Paul J. Site-Specific MicroRNA Expression May Lead to Different Subtypes in Ulcerative Colitis. PLoS One 2015; 10:e0142869. [PMID: 26569605 PMCID: PMC4646509 DOI: 10.1371/journal.pone.0142869] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/27/2015] [Indexed: 01/28/2023] Open
Abstract
Background and Aim Ulcerative Colitis (UC) is a type of inflammatory bowel disease, considered as an important disease of gastrointestinal tract having a huge impact on the health of the patient. Prolonged inflammation of colon in UC patients increases the risk of developing colorectal cancer. MiRNA are reported as a connecting link between inflammation and cancer. Differential miRNA expression is reported in Crohn’s disease (CD) patients involving various regions of the gastrointestinal tract. The current study was performed to dissect out the site specific miRNA expression in the colon biopsy samples of UC patients from Northern India. Methods Biopsy samples were collected from UC patients and healthy controls from Rectosigmoid Area (RS) and Ascending Colon (AC). MiRNA expression was compared between patients with RS and AC using a microarray platform. Differential expression was further validated by Real Time PCR analysis. Demographic and pathological data of UC -associated CRC patients was collected from the hospital database and analyzed for assessing the site of cancer. Results Upon analysis of data generated on a microarray platform and qRT PCR revealed that the expression of six miRNAs hsa-miR-146b-5p, hsa-miR-335-3p, hsa-miR-342-3p, hsa-miR-644b-3p, hsa-miR-491-3p, hsa-miR-4732-3p were downregulated in patients where RS was involved as compared to AC. The expression of hsa-miR-141-3p was upregulated in patients where RS region was involved as compared to AC. Analysis of the registered UC patient’s database from the hospital revealed that the site of CRC was predomimnantly the rectosigmoid region of the colon in most of the cases. Conclusion This is the first study to show the differential expression of miRNA involving different sites of colon in UC patients. Taking our data and previous reports into consideration, we propose that differential miRNA expression during UC perhaps contribute in the development of UC-associated CRC at the rectosigmoid area.
Collapse
Affiliation(s)
- Raju Ranjha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Surbhi Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sawan Bopanna
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
19
|
Rödel F, Frey B, Multhoff G, Gaipl U. Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett 2015; 356:105-13. [DOI: 10.1016/j.canlet.2013.09.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/13/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
|
20
|
Wronska A, Kurkowska-Jastrzebska I, Santulli G. Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol (Oxf) 2015; 213:60-83. [PMID: 25362848 DOI: 10.1111/apha.12416] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Innovative, more stringent diagnostic and prognostic biomarkers and effective treatment options are needed to lessen its burden. In recent years, microRNAs have emerged as master regulators of gene expression - they bind to complementary sequences within the mRNAs of their target genes and inhibit their expression by either mRNA degradation or translational repression. microRNAs have been implicated in all major cellular processes, including cell cycle, differentiation and metabolism. Their unique mode of action, fine-tuning gene expression rather than turning genes on/off, and their ability to simultaneously regulate multiple elements of relevant pathways makes them enticing potential biomarkers and therapeutic targets. Indeed, cardiovascular patients have specific patterns of circulating microRNA levels, often early in the disease process. This article provides a systematic overview of the role of microRNAs in the pathophysiology, diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- A. Wronska
- Helen and Clyde Wu Center for Molecular Cardiology; Department of Physiology and Cellular Biophysics; College of Physicians and Surgeons of Columbia University; New York NY USA
| | - I. Kurkowska-Jastrzebska
- Department of Experimental and Clinical Pharmacology; Medical University of Warsaw; Warsaw Poland
- 2nd Department of Neurology; National Institute of Psychiatry and Neurology; Warsaw Poland
| | - G. Santulli
- Helen and Clyde Wu Center for Molecular Cardiology; Department of Physiology and Cellular Biophysics; College of Physicians and Surgeons of Columbia University; New York NY USA
| |
Collapse
|
21
|
Fleischhacker M, Schmidt B. Extracellular Nucleic Acids and Cancer. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-94-017-9168-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Novel insights into miRNA in lung and heart inflammatory diseases. Mediators Inflamm 2014; 2014:259131. [PMID: 24991086 PMCID: PMC4058468 DOI: 10.1155/2014/259131] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/03/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding regulatory sequences that govern posttranscriptional inhibition of genes through binding mainly at regulatory regions. The regulatory mechanism of miRNAs are influenced by complex crosstalk among single nucleotide polymorphisms (SNPs) within miRNA seed region and epigenetic modifications. Circulating miRNAs exhibit potential characteristics as stable biomarker. Functionally, miRNAs are involved in basic regulatory mechanisms of cells including inflammation. Thus, miRNA dysregulation, resulting in aberrant expression of a gene, is suggested to play an important role in disease susceptibility. This review focuses on the role of miRNA as diagnostic marker in pathogenesis of lung inflammatory diseases and in cardiac remodelling events during inflammation. From recent reports, In this context, the information about the models in which miRNAs expression were investigated including types of biological samples, as well as on the methods for miRNA validation and prediction/definition of their gene targets are emphasized in the review. Besides disease pathogenesis, promising role of miRNAs in early disease diagnosis and prognostication is also discussed. However, some miRNAs are also indicated with protective role. Thus, identifications and usage of such potential miRNAs as well as disruption of disease susceptible miRNAs using antagonists, antagomirs, are imperative and may provide a novel therapeutic approach towards combating the disease progression.
Collapse
|
23
|
Adyshev DM, Elangovan VR, Moldobaeva N, Mapes B, Sun X, Garcia JGN. Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium. Am J Respir Cell Mol Biol 2014; 50:409-18. [PMID: 24053186 DOI: 10.1165/rcmb.2013-0292oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increased lung vascular permeability and alveolar edema are cardinal features of inflammatory conditions such as acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). We previously demonstrated that pre-B-cell colony-enhancing factor (PBEF)/NAMPT, the proinflammatory cytokine encoded by NAMPT, participates in ARDS and VILI inflammatory syndromes. The present study evaluated posttranscriptional regulation of PBEF/NAMPT gene expression in human lung endothelium via 3'-untranslated region (UTR) microRNA (miRNA) binding. In silico analysis identified hsa-miR-374a and hsa-miR-568 as potential miRNA candidates. Increased PBEF/NAMPT transcription (by RT-PCR) and expression (by Western blotting) induced by 18% cyclic stretch (CS) (2 h: 3.4 ± 0.06 mRNA fold increase (FI); 10 h: 1.5 ± 0.06 protein FI) and by LPS (4 h: 3.8 ± 0.2 mRNA FI; 48 h: 2.6 ± 0.2 protein FI) were significantly attenuated by transfection with mimics of hsa-miR-374a or hsa-miR-568 (40-60% reductions each). LPS and 18% CS increased the activity of a PBEF/NAMPT 3'-UTR luciferase reporter (2.4-3.25 FI) with induction reduced by mimics of each miRNA (44-60% reduction). Specific miRNA inhibitors (antagomirs) for each PBEF/NAMPT miRNA significantly increased the endogenous PBEF/NAMPT mRNA (1.4-3.4 ± 0.1 FI) and protein levels (1.2-1.4 ± 0.1 FI) and 3'-UTR luciferase activity (1.4-1.7 ± 0.1 FI) compared with negative antagomir controls. Collectively, these data demonstrate that increased PBEF/NAMPT expression induced by bioactive agonists (i.e., excessive mechanical stress, LPS) involves epigenetic regulation with hsa-miR-374a and hsa-miR-568, representing novel therapeutic strategies to reduce inflammatory lung injury.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Institute for Personalized Respiratory Medicine, Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
24
|
Huang J, Sun Z, Yan W, Zhu Y, Lin Y, Chen J, Shen B, Wang J. Identification of microRNA as sepsis biomarker based on miRNAs regulatory network analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:594350. [PMID: 24809055 PMCID: PMC3997997 DOI: 10.1155/2014/594350] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/03/2014] [Indexed: 11/17/2022]
Abstract
Sepsis is regarded as arising from an unusual systemic response to infection but the physiopathology of sepsis remains elusive. At present, sepsis is still a fatal condition with delayed diagnosis and a poor outcome. Many biomarkers have been reported in clinical application for patients with sepsis, and claimed to improve the diagnosis and treatment. Because of the difficulty in the interpreting of clinical features of sepsis, some biomarkers do not show high sensitivity and specificity. MicroRNAs (miRNAs) are small noncoding RNAs which pair the sites in mRNAs to regulate gene expression in eukaryotes. They play a key role in inflammatory response, and have been validated to be potential sepsis biomarker recently. In the present work, we apply a miRNA regulatory network based method to identify novel microRNA biomarkers associated with the early diagnosis of sepsis. By analyzing the miRNA expression profiles and the miRNA regulatory network, we obtained novel miRNAs associated with sepsis. Pathways analysis, disease ontology analysis, and protein-protein interaction network (PIN) analysis, as well as ROC curve, were exploited to testify the reliability of the predicted miRNAs. We finally identified 8 novel miRNAs which have the potential to be sepsis biomarkers.
Collapse
Affiliation(s)
- Jie Huang
- Systems Sepsis Biology Team, Soochow University Affiliated Children's Hospital, Suzhou 215003, China
| | - Zhandong Sun
- Systems Sepsis Biology Team, Soochow University Affiliated Children's Hospital, Suzhou 215003, China
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Wenying Yan
- Center for Systems Biology, Soochow University, Suzhou 215006, China
- Suzhou Zhengxing Translational Biomedical Informatics Ltd., Taicang 215400, China
- Taicang Center for Translational Bioinformatics, Taicang 215400, China
| | - Yujie Zhu
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Jiajai Chen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
- Taicang Center for Translational Bioinformatics, Taicang 215400, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Jian Wang
- Systems Sepsis Biology Team, Soochow University Affiliated Children's Hospital, Suzhou 215003, China
| |
Collapse
|
25
|
Kosovrasti VY, Lukashev D, Nechev LV, Amiji MM. Novel RNA interference-based therapies for sepsis. Expert Opin Biol Ther 2014; 14:419-35. [PMID: 24397825 DOI: 10.1517/14712598.2014.875524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Sepsis is an extremely fast-paced disease, initiated by an infection that can progress to multiple organ dysfunction and death. The complexity associated with sepsis makes the therapies difficult to develop. Moreover, the 'one-fits-all' kind of therapy is far from being realistic. AREAS COVERED This review provides a conspectus of the current results of sepsis therapies and their benefits, focusing on the development of small interfering RNA (siRNA) therapeutics for targeting immune cells and sepsis pathways. EXPERT OPINION The question, 'When will an effective therapy for sepsis be available for patients?' remains unanswered. New RNA interference-mediated therapies are emerging as novel approaches for the treatment of sepsis by downregulating key inflammatory cytokine expression. Strategies that exploit multimodal gene silencing using siRNA and targeted delivery systems are discussed in this review. Some of these strategies have shown positive results in preclinical model of sepsis.
Collapse
Affiliation(s)
- Verbena Y Kosovrasti
- Northeastern University, School of Pharmacy, Department of Pharmaceutical Sciences , 140 The Fenway Building, R170, 360 Huntington Avenue, Boston, MA 02115 , USA
| | | | | | | |
Collapse
|
26
|
Li YJ, Yu CH, Li JB, Wu XY. Andrographolide antagonizes cigarette smoke extract-induced inflammatory response and oxidative stress in human alveolar epithelial A549 cells through induction of microRNA-218. Exp Lung Res 2013; 39:463-71. [PMID: 24298938 DOI: 10.3109/01902148.2013.857443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Andrographolide is a major bioactive labdane diterpenoid isolated from Andrographis paniculata and has protective effects against cigarette smoke (CS)-induced lung injury. This study was done to determine whether such protective effects were mediated through modulation of microRNA (miR)-218 expression. Therefore, we exposed human alveolar epithelial A549 cells to cigarette smoke extract (CSE) with or without andrographolide pretreatment and measured the level of glutathione, nuclear factor-kappaB (NF-κB) activation, proinflammatory cytokine production, and miR-218 expression. We found that andrographolide pretreatment significantly restored the glutathione level in CSE-exposed A549 cells, coupled with reduced inhibitor κB (IκB)-α phosphorylation and p65 nuclear translocation and interleukin (IL)-8 and IL-6 secretion. The miR-218 expression was significantly upregulated by andrographolide pretreatment. To determine the biological role of miR-218, we overexpressed and downregulated its expression using miR-218 mimic and anti-miR-218 inhibitor, respectively. We observed that miR-218 overexpression led to a marked reduction in IκB-α phosphorylation, p65 nuclear accumulation, and NF-κB-dependent transcriptional activity in CSE-treated A549 cells. In contrast, miR-218 silencing enhanced IκB-α phosphorylation and p65 nuclear accumulation in cells with andrographolide pretreatment and reversed andrographolide-mediated reduction of IL-6 and IL-8 production. In addition, depletion of miR-218 significantly reversed the upregulation of glutathione levels in A549 cells by andrographolide. Taken together, our results demonstrate that andrographolide mitigates CSE-induced inflammatory response in A549 cells, largely through inhibition of NF-κB activation via upregulation of miR-218, and thus has preventive benefits in CS-induced inflammatory lung diseases.
Collapse
Affiliation(s)
- Ying-jie Li
- 1Department of Cardio-thoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
27
|
Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Guerrero N, Boffelli D, Mote P, Martin DIK. Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction. Aging (Albany NY) 2013; 5:130-41. [PMID: 23470454 PMCID: PMC3616200 DOI: 10.18632/aging.100540] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) function to modulate gene expression, and through this property they regulate a broad spectrum of cellular processes. They can circulate in blood and thereby mediate cell-to-cell communication. Aging involves changes in many cellular processes that are potentially regulated by miRNAs, and some evidence has implicated circulating miRNAs in the aging process. In order to initiate a comprehensive assessment of the role of circulating miRNAs in aging, we have used deep sequencing to characterize circulating miRNAs in the serum of young mice, old mice, and old mice maintained on calorie restriction (CR). Deep sequencing identifies a set of novel miRNAs, and also accurately measures all known miRNAs present in serum. This analysis demonstrates that the levels of many miRNAs circulating in the mouse are increased with age, and that the increases can be antagonized by CR. The genes targeted by this set of age-modulated miRNAs are predicted to regulate biological processes directly relevant to the manifestations of aging including metabolic changes, and the miRNAs themselves have been linked to diseases associated with old age. This finding implicates circulating miRNAs in the aging process, raising questions about their tissues of origin, their cellular targets, and their functional role in metabolic changes that occur with aging.
Collapse
Affiliation(s)
- Joseph M Dhahbi
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|