1
|
Stancill JS, Corbett JA. The Role of Thioredoxin/Peroxiredoxin in the β-Cell Defense Against Oxidative Damage. Front Endocrinol (Lausanne) 2021; 12:718235. [PMID: 34557160 PMCID: PMC8453158 DOI: 10.3389/fendo.2021.718235] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/19/2021] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress is hypothesized to play a role in pancreatic β-cell damage, potentially contributing to β-cell dysfunction and death in both type 1 and type 2 diabetes. Oxidative stress arises when naturally occurring reactive oxygen species (ROS) are produced at levels that overwhelm the antioxidant capacity of the cell. ROS, including superoxide and hydrogen peroxide, are primarily produced by electron leak during mitochondrial oxidative metabolism. Additionally, peroxynitrite, an oxidant generated by the reaction of superoxide and nitric oxide, may also cause β-cell damage during autoimmune destruction of these cells. β-cells are thought to be susceptible to oxidative damage based on reports that they express low levels of antioxidant enzymes compared to other tissues. Furthermore, markers of oxidative damage are observed in islets from diabetic rodent models and human patients. However, recent studies have demonstrated high expression of various isoforms of peroxiredoxins, thioredoxin, and thioredoxin reductase in β-cells and have provided experimental evidence supporting a role for these enzymes in promoting β-cell function and survival in response to a variety of oxidative stressors. This mini-review will focus on the mechanism by which thioredoxins and peroxiredoxins detoxify ROS and on the protective roles of these enzymes in β-cells. Additionally, we speculate about the role of this antioxidant system in promoting insulin secretion.
Collapse
|
2
|
Yu L, Liu Y, Jin Y, Liu T, Wang W, Lu X, Zhang C. Zinc Supplementation Prevented Type 2 Diabetes-Induced Liver Injury Mediated by the Nrf2-MT Antioxidative Pathway. J Diabetes Res 2021; 2021:6662418. [PMID: 34307690 PMCID: PMC8279848 DOI: 10.1155/2021/6662418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
Zinc is an essential trace element that is often reduced under the type 1 diabetic condition. Previous studies demonstrated that zinc deficiency enhanced type 1 diabetes-induced liver injury and that zinc supplementation significantly helped to prevent this. Due to the differences in pathogenesis between type 1 and type 2 diabetes, it is unknown whether zinc supplementation can induce a beneficial effect on type 2 diabetes-induced liver injury. This possible protective mechanism was investigated in the present study. A high-fat diet, along with a one-time dose of streptozotocin, was applied to metallothionein (MT) knockout mice, nuclear factor-erythroid 2-related factor (Nrf) 2 knockout mice, and age-matched wild-type (WT) control mice, in order to induce type 2 diabetes. This was followed by zinc treatment at 5 mg/kg body weight given every other day for 3 months. Global metabolic disorders of both glucose and lipids were unaffected by zinc supplementation. This induced preventive effects on conditions caused by type 2 diabetes like oxidative stress, apoptosis, the subsequent hepatic inflammatory response, fibrosis, hypertrophy, and hepatic dysfunction. Additionally, we also observed that type 2 diabetes reduced hepatic MT expression, while zinc supplementation induced hepatic MT expression. This is a crucial antioxidant. A mechanistic study showed that MT deficiency blocked zinc supplementation-induced hepatic protection under the condition of type 2 diabetes. This suggested that endogenous MT is involved in the hepatic protection of zinc supplementation in type 2 diabetic mice. Furthermore, zinc supplementation-induced hepatic MT increase was unobserved once Nrf2 was deficient, indicating that Nrf2 mediated the upregulation of hepatic MT in response to zinc supplementation. Results of this study indicated that zinc supplementation prevented type 2 diabetes-induced liver injury through the activation of the Nrf2-MT-mediated antioxidative pathway.
Collapse
Affiliation(s)
- Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yichun Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Tinghao Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenhan Wang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Martin D, Towey M, Horrobin D, Lynch M. A Diet Enriched in α-Lipoic Acid Reverses the Age-Related Compromise in Antioxidant Defences in Rat Cortical Tissue. Nutr Neurosci 2016; 3:193-206. [DOI: 10.1080/1028415x.2000.11747316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Broniowska KA, Oleson BJ, McGraw J, Naatz A, Mathews CE, Corbett JA. How the location of superoxide generation influences the β-cell response to nitric oxide. J Biol Chem 2015; 290:7952-60. [PMID: 25648890 DOI: 10.1074/jbc.m114.627869] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytokines impair the function and decrease the viability of insulin-producing β-cells by a pathway that requires the expression of inducible nitric oxide synthase (iNOS) and generation of high levels of nitric oxide. In addition to nitric oxide, excessive formation of reactive oxygen species, such as superoxide and hydrogen peroxide, has been shown to cause β-cell damage. Although the reaction of nitric oxide with superoxide results in the formation of peroxynitrite, we have shown that β-cells do not have the capacity to produce this powerful oxidant in response to cytokines. When β-cells are forced to generate peroxynitrite using nitric oxide donors and superoxide-generating redox cycling agents, superoxide scavenges nitric oxide and prevents the inhibitory and destructive actions of nitric oxide on mitochondrial oxidative metabolism and β-cell viability. In this study, we show that the β-cell response to nitric oxide is regulated by the location of superoxide generation. Nitric oxide freely diffuses through cell membranes, and it reacts with superoxide produced within cells and in the extracellular space, generating peroxynitrite. However, only when it is produced within cells does superoxide attenuate nitric oxide-induced mitochondrial dysfunction, gene expression, and toxicity. These findings suggest that the location of radical generation and the site of radical reactions are key determinants in the functional response of β-cells to reactive oxygen species and reactive nitrogen species. Although nitric oxide is freely diffusible, its biological function can be controlled by the local generation of superoxide, such that when this reaction occurs within β-cells, superoxide protects β-cells by scavenging nitric oxide.
Collapse
Affiliation(s)
- Katarzyna A Broniowska
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Bryndon J Oleson
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Jennifer McGraw
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Aaron Naatz
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Clayton E Mathews
- the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida 32610
| | - John A Corbett
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
5
|
SoRelle JA, Itoh T, Peng H, Kanak MA, Sugimoto K, Matsumoto S, Levy MF, Lawrence MC, Naziruddin B. Withaferin A inhibits pro-inflammatory cytokine-induced damage to islets in culture and following transplantation. Diabetologia 2013; 56:814-24. [PMID: 23318585 DOI: 10.1007/s00125-012-2813-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/07/2012] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Beta cell death triggered by pro-inflammatory cytokines plays a central role in the pathogenesis of type 1 diabetes and loss of transplanted islets. The nuclear factor κB (NF-κB) signalling pathway is a key regulator of beta cell stress response, survival and apoptosis. Withaferin A (WA), a steroidal lactone derived from Withania somnifera, has been demonstrated to be a potent, safe, anti-inflammatory molecule that can inhibit NF-κB signalling. Therefore, we evaluated the ability of WA to protect mouse and human islets from the damaging effects of pro-inflammatory cytokines in vitro and following intraportal transplantation. METHODS Mouse and human islets were treated with a cytokine cocktail, and NF-κB activation was measured by immunoblots, p65 nuclear translocation and chromatin immunoprecipitation of p65-bound DNA. Intraportal transplantation of a marginal mass of syngeneic mouse islets was performed to evaluate the in vivo protective effect of WA. RESULTS Treatment with WA substantially improved islet engraftment of syngeneic islets (83% for infusion with 200 islets + WA; 0% for 200 islets + vehicle) in a mouse model of diabetes, compared with marginal graft controls with superior islet function in WA-treated mice confirmed by glucose tolerance test. Treatment of human and mouse islets with WA prevented cytokine-induced cell death, inhibited inflammatory cytokine secretion and protected islet potency. CONCLUSIONS WA was shown to be a strong inhibitor of the inflammatory response in islets, protecting against cytokine-induced cell damage while improving survival of transplanted islets. These results suggest that WA could be incorporated as an adjunctive treatment to improve islet transplant outcome.
Collapse
Affiliation(s)
- J A SoRelle
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lee EM, Lee YE, Lee E, Ryu GR, Ko SH, Moon SD, Song KH, Ahn YB. Protective Effect of Heme Oxygenase-1 on High Glucose-Induced Pancreatic β-Cell Injury. Diabetes Metab J 2011; 35:469-79. [PMID: 22111038 PMCID: PMC3221022 DOI: 10.4093/dmj.2011.35.5.469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/19/2011] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Glucose toxicity that is caused by chronic exposure to a high glucose concentration leads to islet dysfunction and induces apoptosis in pancreatic β-cells. Heme oxygenase-1 (HO-1) has been identified as an anti-apoptotic and cytoprotective gene. The purpose of this study is to investigate whether HO-1 up-regulation when using metalloprotophyrin (cobalt protoporphyrin, CoPP) could protect pancreatic β-cells from high glucose-induced apoptosis. METHODS Reverse transcription-polymerase chain reaction was performed to analyze the CoPP-induced mRNA expression of HO-1. Cell viability of INS-1 cells cultured in the presence of CoPP was examined by acridine orange/propidium iodide staining. The generation of intracellular reactive oxygen species (ROS) was measured using flow cytometry. Glucose stimulated insulin secretion (GSIS) was determined following incubation with CoPP in different glucose concentrations. RESULTS CoPP increased HO-1 mRNA expression in both a dose- and time-dependent manner. Overexpression of HO-1 inhibited caspase-3, and the number of dead cells in the presence of CoPP was significantly decreased when exposed to high glucose conditions (HG). CoPP also decreased the generation of intracellular ROS by 50% during 72 hours of culture with HG. However, decreased GSIS was not recovered even in the presence of CoPP. CONCLUSION Our data suggest that CoPP-induced HO-1 up-regulation results in protection from high glucose-induced apoptosis in INS-1 cells; however, glucose stimulated insulin secretion is not restored.
Collapse
Affiliation(s)
- Eun-Mi Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Young-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Esder Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Gyeong Ryul Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sung-Dae Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Yu-Bae Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Song MY, Jeong GS, Kwon KB, Ka SO, Jang HY, Park JW, Kim YC, Park BH. Sulfuretin protects against cytokine-induced beta-cell damage and prevents streptozotocin-induced diabetes. Exp Mol Med 2011; 42:628-38. [PMID: 20661005 DOI: 10.3858/emm.2010.42.9.062] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
NF-kappaB activation has been implicated as a key signaling mechanism for pancreatic beta-cell damage. Sulfuretin is one of the main flavonoids produced by Rhus verniciflua, which is reported to inhibit the inflammatory response by suppressing the NF-kappaB pathway. Therefore, we isolated sulfuretin from Rhus verniciflua and evaluated if sulfuretin could inhibit cytokine- or streptozotocin-induced beta-cell damage. Rat insulinoma RINm5F cells and isolated rat islets were treated with IL-1 beta and IFN-gamma to induce cytotoxicity. Incubation of cells and islets with sulfuretin resulted in a significant reduction of cytokine-induced NF-gamma B activation and its downstream events, iNOS expression, and nitric oxide production. The cytotoxic effects of cytokines were completely abolished when cells or islets were pretreated with sulfuretin. The protective effect of sulfuretin was further demonstrated by normal insulin secretion of cytokine-treated islets in response to glucose. Treatment of mice with streptozotocin resulted in hyperglycemia and hypoinsulinemia, which was further evidenced by immunohistochemical staining of islets. However, the diabetogenic effects of streptozotocin were completely prevented when mice were pretreated with sulfuretin. The anti-diabetogenic effects of sulfuretin were also mediated by suppression of NF-kappaB activation. Collectively, these results indicate that sulfuretin may have therapeutic value in preventing beta-cell damage.
Collapse
Affiliation(s)
- Mi-Young Song
- Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju 561-756, Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lv N, Song MY, Lee YR, Choi HN, Kwon KB, Park JW, Park BH. Dihydroavenanthramide D protects pancreatic β-cells from cytokine and streptozotocin toxicity. Biochem Biophys Res Commun 2009; 387:97-102. [DOI: 10.1016/j.bbrc.2009.06.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 06/28/2009] [Indexed: 12/11/2022]
|
9
|
Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NF-kappaB pathway. Toxicol Appl Pharmacol 2008; 235:57-67. [PMID: 19071154 DOI: 10.1016/j.taap.2008.11.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 12/12/2022]
Abstract
Sulforaphane (SFN) is an indirect antioxidant that protects animal tissues from chemical or biological insults by stimulating the expression of several NF-E2-related factor-2 (Nrf2)-regulated phase 2 enzymes. Treatment of RINm5F insulinoma cells with SFN increases Nrf2 nuclear translocation and expression of phase 2 enzymes. In this study, we investigated whether the activation of Nrf2 by SFN treatment or ectopic overexpression of Nrf2 inhibited cytokine-induced beta-cell damage. Treatment of RIN cells with IL-1beta and IFN-gamma induced beta-cell damage through a NF-kappaB-dependent signaling pathway. Activation of Nrf2 by treatment with SFN and induction of Nrf2 overexpression by transfection with Nrf2 prevented cytokine toxicity. The mechanism by which Nrf2 activation inhibited NF-kappaB-dependent cell death signals appeared to involve the reduction of oxidative stress, as demonstrated by the inhibition of cytokine-induced H(2)O(2) production. The protective effect of SFN was further demonstrated by the restoration of normal insulin secreting responses to glucose in cytokine-treated rat pancreatic islets. Furthermore, pretreatment with SFN blocked the development of type 1 diabetes in streptozotocin-treated mice.
Collapse
|
10
|
Schroeder MM, Belloto RJ, Hudson RA, McInerney MF. Effects of Antioxidants Coenzyme Q10 and Lipoic Acid on Interleukin-1β-Mediated Inhibition of Glucose-Stimulated Insulin Release from Cultured Mouse Pancreatic Islets. Immunopharmacol Immunotoxicol 2008; 27:109-22. [PMID: 15803864 DOI: 10.1081/iph-51755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
During the development of the autoimmune disease, insulin-dependent diabetes mellitus (IDDM) islet cell death is thought to be mediated in part by oxygen and nitrogen free radicals and interleukin 1beta (IL-1beta), secreted by activated macrophages. Free radicals disrupt the homeostasis of biological systems by damaging major constituent molecules such as lipids, proteins, and DNA. Islet cells are quite susceptible to oxidative damage due to low levels of antioxidant enzymes involved in free radical consumption. If IDDM is associated with an imbalance of oxidative stresses and antioxidant responses in islet cells, then it may be possible to ameliorate disease by supplementating antioxidant defenses. In this study, the antioxidants coenzyme Q10 and lipoic acid were able to block IL-1beta-mediated inhibition of glucose-stimulated insulin secretion from islet cells at 10(-12) M and 10(-9) M, respectively.
Collapse
Affiliation(s)
- Michelle M Schroeder
- Department of Medicinal and Biological Chemistry, College of Pharmacy, University of Toledo, BO 2833, MS# 606, 2801 W. Bancroft St., Toledo, OH 43606-3390, USA
| | | | | | | |
Collapse
|
11
|
Abstract
The healthy beta-cell has an enormous capacity to adapt to conditions of higher insulin demand (e.g. in obesity, pregnancy, cortisol excess) to maintain normoglycaemia with an increase in its functional beta-cell mass. This compensates in 80-90% of individuals for insulin resistance. However, in 10-20% of individuals, the beta-cells are unable to match the demands of insulin resistance and insulin levels are relatively insufficient to maintain normal glycaemic control. This eventually leads to glucose intolerance and type 2 diabetes (T2DM). Accordingly, preservation of functional beta-cell mass has become central in the treatment of type 1 diabetes as well as T2DM. The purpose of this review is to summarize the recently described mechanisms of beta-cell death in T2DM and to postulate possible new targets for treatment.
Collapse
Affiliation(s)
- Kathrin Maedler
- Department of Medicine, Larry L. Hillblom Islet Research Center, University of California at Los Angeles, Los Angeles, CA 90095-7345, USA.
| |
Collapse
|
12
|
Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K. The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology 2008; 149:2208-18. [PMID: 18239070 PMCID: PMC2734491 DOI: 10.1210/en.2007-1059] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Subclinical inflammation is a recently discovered phenomenon in type 2 diabetes. Elevated cytokines impair beta-cell function and survival. A recent clinical trial shows that blocking IL-1beta signaling by IL-1 receptor antagonist (IL-1Ra) improves beta-cell secretory function in patients with type 2 diabetes. In the present study, we provide further mechanisms of the protective role of IL-1Ra on the beta-cell. IL-1Ra prevented diabetes in vivo in C57BL/6J mice fed a high-fat/high-sucrose diet (HFD) for 12 wk; it improved glucose tolerance and insulin secretion. High-fat diet treatment increased serum levels of free fatty acids and of the adipokines resistin and leptin, which were reduced by IL-1Ra treatment. In addition, IL-1Ra counteracted adiponectin levels, which were decreased by high-fat feeding. Studies on isolated islets revealed that IL-1Ra specifically acted on the beta-cell. IL-1Ra protected islets from HFD treated animals from beta-cell apoptosis, induced beta-cell proliferation, and improved glucose-stimulated insulin secretion. Insulin mRNA was reduced in islets from mice fed a HFD but normalized in the IL-1Ra group. Our results show that IL-1Ra improves beta-cell survival and function, and support the potential role for IL-1Ra in the treatment of diabetes.
Collapse
Affiliation(s)
- Nadine S Sauter
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, Los Angeles, California 90095-7345, USA
| | | | | | | | | |
Collapse
|
13
|
da Silva Krause M, de Bittencourt PIH. Type 1 diabetes: can exercise impair the autoimmune event? TheL-arginine/glutamine coupling hypothesis. Cell Biochem Funct 2008; 26:406-33. [DOI: 10.1002/cbf.1470] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Flavonoids protect against cytokine-induced pancreatic beta-cell damage through suppression of nuclear factor kappaB activation. Pancreas 2007; 35:e1-9. [PMID: 18090225 DOI: 10.1097/mpa.0b013e31811ed0d2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES In the past few decades, the use of natural compounds, such as flavonoids, as anti-inflammatory agents has gained much attention. Our current study focuses on the preventive effects of quercetin, apigenin, and luteolin on cytokine-induced beta-cell damage. METHODS Pancreatic beta-cells or islets were treated with cytokine mixtures in the presence or absence of flavonoids and the inhibitory effect of flavonoids against cytokine toxicity was determined. RESULTS Treatment of RINm5F (RIN) rat insulinoma cells with interleukin 1beta (IL-1beta) and interferon gamma (IFN-gamma) induced cell damage. Quercetin, apigenin, and luteolin completely protected against IL-1beta- and IFN-gamma-mediated cytotoxicity in RIN cells. Incubation with quercetin, apigenin, and luteolin resulted in a significant reduction in IL-1beta- and IFN-gamma-induced nitric oxide production, a finding that correlated well with reduced levels of the inducible form of NO synthase messenger RNA and protein. The molecular mechanism by which quercetin, apigenin, and luteolin inhibited inducible NO synthase gene expression appeared to involve the inhibition of nuclear factor kappaB (NF-kappaB) activation. The IL-1beta- and IFN-gamma-stimulated RIN cells showed increases in NF-kappaB binding activity, p50 and p65 subunit levels in nucleus, and IkappaB alpha degradation in cytosol compared with unstimulated cells. Quercetin, apigenin, and luteolin also prevented IL-1beta- and IFN-gamma-mediated inhibition of insulin secretion. CONCLUSION Quercetin, apigenin, and luteolin inhibited cytotoxicity in RIN cells and attenuated the decrease of glucose-stimulated insulin secretion in islets by IL-1beta and IFN-gamma.
Collapse
|
15
|
Jung DY, Lee HJ, Lee EN, Lee J, Kim EY, Park HJ, Chang CY, Lee SK, Joh JW, Kwon GY, Kim SJ. Beneficial effects of simultaneous treatment with 15-deoxyspergualin and monoclonal antibodies to CD45RB and CD154 on murine islet transplantation recipients. Transplantation 2006; 82:188-95. [PMID: 16858281 DOI: 10.1097/01.tp.0000226175.94546.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Treatment of transplant recipients with either 15-deoxyspergualin (DSG) or monoclonal antibodies (mAbs) to T-cell proteins CD45RB and CD154 (a two-signal blockade) has been shown to prolong islet graft survival. Therefore, we investigated the combined effect of DSG, anti-CD45RB, and anti-CD154 in murine islet model. METHODS Chemically induced diabetic C57BL/6 mice underwent allografting with islets from BALB/c mice or xenografting with rat islets. After transplantation, they were treated with either DSG, the two-signal blockade, or both (the triple treatment). The tolerogenic effects of the posttransplant treatments were measured with an intraperitoneal glucose tolerance test (IPGTT), immunohistology, enzyme-linked immunosorbent assays, and flow cytometry. RESULTS Blood glucose profiles measured after glucose challenges were improved in all islet recipients. Enhancement of xenograft survival in triple-treated groups was not statistically significant (P = 0.08), compared to graft survival in group received only the two-signal blockade. However, 15 days after transplantation, xenografts in the triple-treated group showed a significant decrease in the proportion of CD4, CD8, and CD4CD45RB T-cells, and in the expression of interleukin-10 and interferon-gamma, relative to grafts in the other treatment groups. In addition, reduced infiltration of the xenografts by CD3 T-cells was observed in groups that had received either the two-signal blockade or the triple treatment. With long-term (>248 days) xenografts, only those in the triple-treated group were free of inflammatory infiltrates. These grafts also exhibited larger islet clusters and contained more insulin- and glucagon-positive cells, relative to grafts in the other treatment groups. CONCLUSION Triple treatment has a beneficial effect in murine islet xenotransplantation.
Collapse
Affiliation(s)
- Da-Yeon Jung
- Transplantation Research Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kwon KB, Kim EK, Jeong ES, Lee YH, Lee YR, Park JW, Ryu DG, Park BH. Cortex cinnamomi extract prevents streptozotocin- and cytokine-induced β-cell damage by inhibiting NF-κB. World J Gastroenterol 2006; 12:4331-7. [PMID: 16865774 PMCID: PMC4087743 DOI: 10.3748/wjg.v12.i27.4331] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clarify the mechanism underlying the anti-diabetic activities of cortex cinnamomi extract (CCE).
METHODS: To induce in vivo diabetes, mice were injected with streptozotocin (STZ) via a tail vein (100 mg STZ/kg body weight). To determine the effects of CCE, mice were administered CCE twice daily for 7 d by oral gavage starting 1 wk before the STZ injection. Blood glucose and plasma insulin concentration were measured as an index of diabetes. Also, to induce cytotoxicity of RINm5F cells, we treated with cytokines (IL-1β (2.0 ng/mL) and IFN-γ (100 U/mL)). Cell viability and nitric oxide production were measured colorimetrically. Inducible nitric oxide synthase (iNOS) mRNA and protein expression were determined by RT-PCR and Western blotting, respectively. The activation of NF-κB was assayed by using gel mobility shift assays of nuclear extracts.
RESULTS: Treatment of mice with STZ resulted in hyperglycemia and hypoinsulinemia, which was further evidenced by immunohistochemical staining of islets. However, the diabetogenic effects of STZ were completely prevented when mice were pretreated with CCE. The inhibitory effect of CCE on STZ-induced hyperglycemia was mediated through the suppression of iNOS expression. In rat insulinoma RINm5F cells, CCE completely protected against interleukin-1β and interferon-γ-mediated cytotoxicity. Moreover, RINm5F cells incubated with CCE showed significant reductions in interleukin-1β and interferon-γ-induced nitric oxide production and in iNOS mRNA and protein expression, and these findings correlated well with in vivo observations.
CONCLUSION: The molecular mechanism by which CCE inhibits iNOS gene expression appears to involve the inhibition of NF-κB activation. These results reveal the possible therapeutic value of CCE for the prevention of diabetes mellitus progression.
Collapse
Affiliation(s)
- Kang-Beom Kwon
- Department of Physiology, School of Oriental Medicine, Wonkwang University, Iksan 570-749, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
McCabe C, Samali A, O'Brien T. Cytoprotection of beta cells: rational gene transfer strategies. Diabetes Metab Res Rev 2006; 22:241-52. [PMID: 16397906 DOI: 10.1002/dmrr.615] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gene transfer to pancreatic islets may prove useful in preventing islet cell destruction and prolonging islet graft survival after transplantation in patients with type 1 diabetes mellitus (T1DM). Potentially, a host of therapeutically relevant transgenes may be incorporated into an appropriate gene delivery vehicle and used for islet modification. An increasing understanding of the molecular pathogenesis of immune-mediated beta cell death has served to highlight molecules which have become suitable candidates for promoting islet cell survival in the face of oxidative stress. This review aims to give an overview of some conventional gene transfer strategies aimed at promoting islet cell survival in the face of cytokine onslaught. These strategies target three aspects of islet cell physiology: redox status and antioxidant defence, anti-apoptotic gene expression and mediators of cytokine signal transduction pathways.
Collapse
Affiliation(s)
- Cillian McCabe
- Regenerative Medicine Institute, National Centre for Biomedical Engineering Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
18
|
Amoli MM, Larijani B. Would blockage of cytokines improve the outcome of pancreatic islet transplantation? Med Hypotheses 2005; 66:816-9. [PMID: 16278052 DOI: 10.1016/j.mehy.2005.08.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 08/22/2005] [Indexed: 11/20/2022]
Abstract
It has been estimated that up to 60% of pancreatic islet tissue undergoes apoptosis within the first several days post-transplantation. This strongly suggests the involvement of an inflammatory event other than alloantigen-specific immune reaction following islet transplantation which contributes to partial destruction of grafts. Inflammatory cytokines including IL-1beta, TNF-alpha and IFN-gamma are implicated in the pancreatic islet beta-cell death and functional loss during autoimmune diabetes and also seem to be involved in early loss of islet mass in islet transplantation. Inflammatory cytokines and free oxygen radicals released in situ could cause apoptosis and the functional impairment of islets after islet transplantation and graft failure. It can be hypothesized that preventing destruction of transplanted islets using cytokine blockade could be helpful in improving islet transplantation outcome. Several approaches have been made based on this hypothesis to examine the effect of inflammatory blockade on the islets survival and functional islet mass. Further investigations are required to identify most efficient way for block of cytokine-induced damage in pancreatic islets transplantation.
Collapse
Affiliation(s)
- Mahsa M Amoli
- Endocrinology and Metabolism Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
19
|
Chen H, Li X, Epstein PN. MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity. Diabetes 2005; 54:1437-46. [PMID: 15855331 DOI: 10.2337/diabetes.54.5.1437] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are proposed mediators of cytokine-induced beta-cell destruction in type 1 diabetes. We produced transgenic mice with increased beta-cell expression of manganese superoxide dismutase (MnSOD) and catalase. Expression of these antioxidants increased beta-cell ROS scavenging and improved beta-cell survival after treatment with different sources of ROS. MnSOD or catalase conferred protection against streptozotocin (STZ)-induced beta-cell injury. Coexpression of MnSOD and catalase provided synergistic protection against peroxynitrite and STZ. To determine the potential effect of these antioxidants on cytokine-induced toxicity, we exposed isolated islets to a cytokine mixture, including interleukin-1beta and interferon-gamma. Cytokine toxicity was measured as reduced metabolic activity after 6 days and reduced insulin secretion after 1 day. Cytokines increased ROS production, and both antioxidants were effective in reducing cytokine-induced ROS. However, MnSOD and/or catalase provided no protection against cytokine-induced injury. To understand this, the nuclear factor-kappaB (NF-kappaB) signaling cascade was investigated. Antioxidants reduced NF-kappaB activation by ROS, but none of the antioxidants altered activation by cytokines, as measured by inhibitor of kappaB phosphorylation, NF-kappaB translocation, inducible NO synthase activation, and NO production. Our data agree with previous reports that antioxidants benefit beta-cell survival against ROS damage, but they are not consistent with reports that antioxidants reduce cytokine toxicity. ROS appear to have no role in cytokine toxicity in primary beta-cells.
Collapse
Affiliation(s)
- Hainan Chen
- Department of Pediatrics, University of Louisville, 570 South Preston St., Baxter Research Building, Suite 304, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
20
|
Choi SE, Choi KM, Yoon IH, Shin JY, Kim JS, Park WY, Han DJ, Kim SC, Ahn C, Kim JY, Hwang ES, Cha CY, Szot GL, Yoon KH, Park CG. IL-6 protects pancreatic islet beta cells from pro-inflammatory cytokines-induced cell death and functional impairment in vitro and in vivo. Transpl Immunol 2005; 13:43-53. [PMID: 15203128 DOI: 10.1016/j.trim.2004.04.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 03/31/2004] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
Protection of pancreatic islet beta cells from pro-inflammatory cytokines-induced cell death and functional impairment is a key issue in developing therapeutic interventions of type 1 diabetes mellitus including islet transplantation. The effects of IL-6 on the protection of beta cells in vitro and in vivo were examined. Freshly isolated islets or MIN6 beta cells, when pre-incubated with IL-6, showed significantly higher viabilities measured by MTT assay and FACS analysis of PI stained cells against pro-apoptotic signaling delivered by IL-1beta, TNF-alpha and IFN-gamma. Insulin secretory function was also significantly protected in static culture with glucose and KCl stimulation. In vivo assessment using marginal mass syngeneic islet transplantation in mouse model revealed IL-6 conferred significantly better blood glucose control and graft survival rate over 50 days. Conclusively, IL-6 protects pancreatic islets or beta-cells from inflammatory cytokines-induced cell death and functional impairment both in vitro and in vivo. This strategy could be exploited in the clinical setting to maintain functional islet mass.
Collapse
Affiliation(s)
- Seung-Eun Choi
- Department of Biochemistry, College of Medicine, Seoul National University, 28 Yongon-Dong Chongno-gu, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Papaccio G, Graziano A, Valiante S, D'Aquino R, Travali S, Nicoletti F. Interleukin (IL)-1? toxicity to islet ? cells: Efaroxan exerts a complete protection. J Cell Physiol 2005; 203:94-102. [PMID: 15389634 DOI: 10.1002/jcp.20198] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Interleukin (IL)-1beta-treated rat islets of Langerhans were exposed in vitro either to the imidazoline compound, Efaroxan, or to the selective inducible nitric oxide synthase (iNOS) inhibitor, 1400W, in a medium containing a high concentration of glucose (16.7 mmol/L). Our data have evidenced the following: (i) addition of Efaroxan to islet cultures inhibited IL-1beta activation of ICE (cysteine protease IL-1beta converting enzyme) while addition of 1400W did not; (ii) Efaroxan completely inhibited IL-1beta-induced suppression of insulin secretion and induction of iNOS mRNA transcripts, and, in addition, counteracted islet beta-cell protein profile alterations, Bax-cytochrome c translocation, caspase activation, and apoptosis; (iii) 1400W inhibited IL-1beta induction of iNOS, but failed to completely counteract the other cytotoxic effects; (iv) the two compounds, moreover, exerted different effects on manganese superoxide dismutase (MnSOD), in fact, while Efaroxan inhibited the early stimulatory effect of IL-1beta on MnSOD, 1400W did not. Thus, Efaroxan completely protected islet beta cells from damage caused by IL-1beta-induced toxicity, while compound 1400W only inhibited NO radical production without altering the cytokine's cytotoxicity. Our observations have evidenced that suppression of ICE activation is required to counteract IL-1beta-mediated islet beta cell toxicity, and that IL-1beta-induced apoptosis is NO-independent and involves the cytochrome c-mitochondrial pathway.
Collapse
Affiliation(s)
- Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Histology and Embryology, School of Medicine, 2nd University of Naples, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Papaccio G, Graziano A, D'Aquino R, Valiante S, Naro F. A biphasic role of nuclear transcription factor (NF)-κB in the islet β-cell apoptosis induced by interleukin (IL)-1β. J Cell Physiol 2005; 204:124-30. [PMID: 15622524 DOI: 10.1002/jcp.20276] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
IL-1beta is an important mediator in the pathogenesis of type 1 diabetes both in vivo and in vitro and it has been shown to induce islet beta-cell apoptosis. Most of the IL-1beta effects seem to be mediated by NF-kappaB transcription factor activation, but its role in the induction of islet beta-cell apoptosis has not yet been clarified. Taking advantage of the protease inhibitor TPCK (N-tosyl-L-phenylalanine chloromethyl ketone), which specifically inhibits the nuclear transcription factor NF-kappaB activation, we studied the role of NF-kappaB in the rIL-1beta treated rat pancreatic islets. Our results show that TPCK blocked rIL-1beta-mediated early increase of MnSOD activity and beta-cell defence/repair protein expression, suggesting a protective role for NF-kappaB at the beginning of IL-1beta treatment; but, in a second phase, NF-kappaB induces a sustained decrease of specific beta-cell proteins like insulin, GLUT-2 and PDX-1 with a concomitant increase of aspecific proteins and iNOS transcription. The appearance of iNOS expression correlates with increased levels of nitrite + nitrate levels and appearance of mitochondrial damage detected either at morphological and biochemical level. After 36 h of IL-1beta treatment islet beta-cells begin to undergo apoptosis. Since IL-1beta induction of apoptosis is completely prevented by TCPK treatment, this finding underscores the central role of NF-kappaB in this process. Thus, our results clearly indicate that NF-kappaB regulates MnSOD genes expression and MnSOD activity, which protects islet beta-cells by IL-1beta damage. Furthermore, when the IL-1beta stress impairs islet beta-cell function, NF-kappaB activation regulates the entrance of islet beta-cell into the cell death program.
Collapse
Affiliation(s)
- Gianpaolo Papaccio
- Department of Experimental Medicine, Laboratory of Histology and Embriology, 2nd University of Naples, Naples, Italy.
| | | | | | | | | |
Collapse
|
23
|
Kwon KB, Ryu DG, Shin MK, Shin BC, Hwang WJ, Lee YR, Park JW, Park BH. Fructus Benincasae RecensExtract Prevents Cytokine‐Induced Nitric Oxide Formation and Cytotoxicity of RINm5F Cells. Immunopharmacol Immunotoxicol 2003; 25:615-25. [PMID: 14686802 DOI: 10.1081/iph-120026445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytokines produced by immune cells infiltrating pancreatic islets are important mediators of beta-cell destruction in insulin-dependent diabetes mellitus. In this study, the effects of Fructus Benincasae Recens (FBR) extract on cytokine-induced beta-cell dysfunction were examined. Fructus Benincasae Recens extract completely protected interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma)-mediated cytotoxicity in rat insulinoma cell line (RINm5F). Incubation with FBR extract resulted in a significant reduction of IL-1beta and IFN-gamma-induced nitric oxide (NO) production, a finding that correlated well with reduced levels of the inducible form of NO synthase (iNOS) mRNA and protein. The molecular mechanism by which FBR extract inhibited iNOS gene expression appeared to involve the inhibition of NF-kappaB activation. Our results revealed the possible therapeutic value of FBR extract for the prevention of diabetes mellitus progression.
Collapse
Affiliation(s)
- Kang-Beom Kwon
- Department of Physiology, School of Oriental Medicine, Won-Kwang University, Iksan, Chonbuk, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kwon KB, Kim JH, Lee YR, Lee HY, Jeong YJ, Rho HW, Ryu DG, Park JW, Park BH. Amomum xanthoides extract prevents cytokine-induced cell death of RINm5F cells through the inhibition of nitric oxide formation. Life Sci 2003; 73:181-91. [PMID: 12738033 DOI: 10.1016/s0024-3205(03)00267-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We previously showed that Amomum xanthoides extract prevented alloxan-induced diabetes through the suppression of NF-kappaB activation. In this study, the preventive effects of A. xanthoides extract on cytokine-induced beta-cell destruction were examined. Cytokines produced by immune cells infiltrating pancreatic islets are important mediators of beta-cell destruction in insulin-dependent diabetes mellitus. A. xanthoides extract completely protected interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma)-mediated cytotoxicity in rat insulinoma cell line (RINm5F). Incubation with A. xanthoides extract resulted in a significant reduction in IL-1beta and IFN-gamma-induced nitric oxide (NO) production, a finding that correlated well with reduced levels of the inducible form of NO synthase (iNOS) mRNA and protein. The molecular mechanism by which A. xanthoides extract inhibited iNOS gene expression appeared to involve the inhibition of NF-kappaB activation. Our results revealed the possible therapeutic value of A. xanthoides extract for the prevention of diabetes mellitus progression.
Collapse
Affiliation(s)
- Kang-Beom Kwon
- Department of Physiology, School of Oriental Medicine, Won-Kwang University, Iksan, Chonbuk 570-749, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brömme HJ, Mörke W, Peschke E. Transformation of barbituric acid into alloxan by hydroxyl radicals: interaction with melatonin and with other hydroxyl radical scavengers. J Pineal Res 2002; 33:239-47. [PMID: 12390507 DOI: 10.1034/j.1600-079x.2002.02936.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Barbituric acid (2,4,6-pyrimidinetrione) can be transformed by a non-enzymatic hydroxylation into alloxan (2,4,5,6-pyrimidinetetrone). This transformation can be used as a reaction indicating the formation of hydroxyl radicals (.OH). This conversion was detected using HPLC. Formation of .OH was demonstrated by electron spin resonance (ESR) spectroscopy combined with spin-trapping techniques. It was shown that .OH generated via the Fenton reaction abstracts first a hydrogen atom from barbituric acid (BA) and forms intermediately a paramagnetic derivative of BA. After a second attack by another .OH, the BA radical is transformed into dialuric acid (DA), which autoxidizes via the alloxan radical (.ALX) to ALX. Superoxide radicals (.O2-) are formed during autoxidation of DA and.ALX. They are able to regenerate ferrous ions. As a result, traces of iron salts are capable of catalyzing the conversion of large amounts of BA into ALX. Several scavengers of .OH were tested with regard to their efficiency in preventing the transformation of BA into ALX. Of all the scavengers analyzed, melatonin was shown to be one of the most potent compounds.
Collapse
Affiliation(s)
- H J Brömme
- Institute of Pathophysiology, Martin Luther University, Halle-Wittenberg, Magdeburger Strasse 18, D-06097 Halle/Saale, Germany.
| | | | | |
Collapse
|
26
|
An Imidazoline Compound Completely Counteracts Interleukin-1β toxic Effects to Rat Pancreatic Islet β Cells. Mol Med 2002. [DOI: 10.1007/bf03402163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
27
|
Vereker E, O'Donnell E, Lynch A, Kelly A, Nolan Y, Lynch MA. Evidence that interleukin-1beta and reactive oxygen species production play a pivotal role in stress-induced impairment of LTP in the rat dentate gyrus. Eur J Neurosci 2001; 14:1809-19. [PMID: 11860476 DOI: 10.1046/j.0953-816x.2001.01809.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Long-term potentiation (LTP) in both area CA1 and the dentate gyrus is attenuated by stress and the evidence is consistent with the view that this is a consequence of increased activation of glucocorticoid receptors, in the hippocampus, following the stress-induced increase in circulating corticosterone. It has been shown that expression of the pro-inflammatory cytokine, interleukin-1beta (IL-1beta), is increased in hippocampus in response to stress; this finding together with the observation that IL-1beta exerts an inhibitory effect on LTP, suggests that IL-1beta may play a key role in mediating this inhibitory effect of stress on LTP. In this study, we explore this possibility and report that stress is also associated with increased reactive oxygen species production. The evidence presented supports the view that this is secondary to the stress-induced increase in IL-1beta concentration, as IL-1beta increased activity of superoxide dismutase and increased reactive oxygen species accumulation in hippocampus in vitro. We report that the inhibitory effect of stress on LTP is mimicked by H2O2, which increases reactive oxygen species accumulation, and by IL-1beta, the effect of which is overcome by the antioxidant, phenylarsine oxide. The hypothesis that the stress-induced increase in reactive oxygen species production may underlie the suppression of LTP is further supported by the finding that the effect of stress is abrogated by dietary manipulation with antioxidant vitamins E and C.
Collapse
Affiliation(s)
- E Vereker
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
28
|
Pileggi A, Molano RD, Berney T, Cattan P, Vizzardelli C, Oliver R, Fraker C, Ricordi C, Pastori RL, Bach FH, Inverardi L. Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Diabetes 2001; 50:1983-91. [PMID: 11522663 DOI: 10.2337/diabetes.50.9.1983] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transplantation of islets of Langerhans represents a viable therapeutic approach for the treatment of type 1 diabetes. Unfortunately, transplanted islets are susceptible to allogeneic recognition and rejection, recurrence of autoimmunity, and destruction by local inflammation at the site of implantation. The last of these phenomena might not only result in functional impairment and death of islet cells but could also contribute to amplifying the subsequent specific immune response. Induction of islet cell protection against inflammation could therefore be postulated to be a powerful means to improve overall graft fate. Heme oxygenase-1 (HO-1) has been described as an inducible protein capable of cytoprotection via radical scavenging and apoptosis prevention. The purpose of the present study was to analyze whether HO-1 upregulation in a beta-cell line and in freshly isolated murine islets could result in protection from apoptosis and improve in vivo functional performance. HO-1 upregulation was induced reproducibly with protoporphyrins and was correlated with protection from apoptosis induced in vitro with proinflammatory cytokines or Fas engagement. Furthermore, in vivo HO-1 upregulation resulted in improved islet function in a model of marginal mass islet transplantation in rodents. Strategies aimed at inducing HO-1 upregulation might result in improved success in islet transplantation.
Collapse
Affiliation(s)
- A Pileggi
- Diabetes Research Institute, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Takeda T, Tsuura Y, Fujita J, Fujimoto S, Mukai E, Kajikawa M, Hamamoto Y, Kume M, Yamamoto Y, Yamaoka Y, Yamada Y, Seino Y. Heat shock restores insulin secretion after injury by nitric oxide by maintaining glucokinase activity in rat islets. Biochem Biophys Res Commun 2001; 284:20-5. [PMID: 11374865 DOI: 10.1006/bbrc.2001.4933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock protein (hsp), including hsp70, has been reported to restore the glucose-induced insulin release suppressed by nitric oxide (NO). However, the mechanism underlying this recovery remains unclear. In the present study, we examine the effects, in rat islets, of heat shock on insulin secretion inhibited by a small amount of NO and also on glucose metabolism, the crucial factor in insulin release. Exposure to a higher dose (15 U/ml) of interleukin-1beta (IL-1beta) abolished the insulin release by stimulation of glucose or KCl in both control and heat shocked islets. In rat islets exposed to a lower dose (1.5 U/ml) of IL-1beta, insulin secretion in response to glucose, but not to glyceraldehydes (GA), ketoisocaproate (KIC), or KCl, was selectively impaired, concomitantly with lower ATP concentrations in the presence of 16.7 mM glucose, while such suppression of insulin secretion and ATP content was not observed in heat shock-treated islets. NO production in islets exposed to 1.5 U/ml IL-1beta was significantly, but only partly, decreased by heat shock treatment. The glucose utilization rate measurement using [5-3H]-glucose and [2-3H]-glucose and the glucokinase activity in vitro were reduced in islets treated with 1.5 U/ml IL-1beta. In heat shock-treated islets, glucose utilization and glucokinase activity were not affected by 1.5 U/ml IL-1beta. These data suggest that heat shock restores glucose-induced insulin release inhibited by NO by maintaining glucokinase activity and the glucose utilization rate in islets in addition to reducing endogenous NO production.
Collapse
Affiliation(s)
- T Takeda
- Department of Metabolism and Clinical Nutrition, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vantyghem MC, Balduyck M, Zerimech F, Martin A, Douillard C, Bans S, Degand PM, Lefebvre J. Oxidative markers in diabetic ketoacidosis. J Endocrinol Invest 2000; 23:732-6. [PMID: 11194706 DOI: 10.1007/bf03345062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
UNLABELLED Oxidative stress has been implicated in the pathogenesis of the chronic complications of diabetes mellitus but little is known in diabetic ketoacidosis (DKA). The aim of this work was to determine whether lipid peroxidation, as assessed by measuring malondialdehyde (MDA, a prooxidant) and antioxidant status (TAS, an index of antioxidant defenses), is modified in DKA, and also whether any observed abnormalities were related to metabolic disturbances. METHODS four groups of patients were studied, comprising 19 patients with DKA, massive ketonuria and plasma standard bicarbonate levels below 16 mmol/l (group 1); 20 patients with poorly controlled diabetes, glycated hemoglobin (HbA1c) above 8% and plasma bicarbonate levels above 16 mmol/l (group 2); 11 patients with well-controlled diabetes and HbA1c below 8% (group 3); and 10 non-diabetic, non-obese control subjects (group 4). Metabolic parameters, MDA levels and TAS were assessed in the plasma of the four groups of subjects. RESULTS mean plasma MDA and TAS values were significantly different among the four groups (respectively p < 0.001 and p < 0.01). Mean plasma MDA value was significantly higher in group 1 than in group 3 (p < 0.02) and group 4 (p < 0.001) but was not different from that in group 2. Mean plasma MDA value in group 2 was significantly lower than that in group 4 (p = 0.002). Mean plasma TAS value in group 1 was significantly lower than in groups 3 (p < 0.002) and 4 (p < 0.05). Mean plasma TAS value was significantly lower in group 2 than in group 4 (p<0.05). Plasma MDA values in the diabetic patients (groups 1+2+3) were not related to any clinical characteristics (BMI, age, duration of the disease) or metabolic parameters (glycemia, HbA1c bicarbonates, blood urea nitrogen, phosphatemia, lipids), while plasma TAS values correlated negatively with glycemia, osmolality and HbA1c. A significant relationship was also found between TAS and HbA1c in group 1 (p < 0.05) and between MDA and HbA1c in group 3 (p < 0.05). Correlations were also found between TAS and phosphatemia in group 1 (p < 0.01) and between MDA and phosphatemia in group 2 (p < 0.01). A positive relationship between MDA and cholesterol levels was found in group 1 (p < 0.01). In conclusion, MDA values are increased and TAS values decreased in DKA and poorly controlled diabetes, and tend to correlate more with markers of diabetic imbalance than with markers of acute metabolic disturbances of DKA.
Collapse
Affiliation(s)
- M C Vantyghem
- Endocrinology Department, Biochemistry Laboratory, CHRU, Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
The inhibitory effect of interleukin-1beta on long-term potentiation is coupled with increased activity of stress-activated protein kinases. J Neurosci 2000. [PMID: 10995825 DOI: 10.1523/jneurosci.20-18-06811.2000] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long-term potentiation (LTP) in perforant path-granule cell synapses is decreased in aged rats, stressed rats, and rats injected intracerebroventricularly with the proinflammatory cytokine interleukin-1beta (IL-1beta). One factor that is common to these experimental conditions is an increase in the concentration of IL-1beta in the dentate gyrus, suggesting a causal relationship between the compromise in LTP and increased IL-1beta concentration. In this study, we have investigated the downstream consequences of an increase in IL-1beta concentration and report that the reduced LTP in rats injected intracerebroventricularly with IL-1beta was accompanied by a decrease in KCl-stimulated glutamate release in synaptosomes prepared from dentate gyrus, although unstimulated glutamate release was increased. These changes were paralleled by increased activity of the stress-activated kinases, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase. Intracerebroventricular injection of IL-1beta increased reactive oxygen species production in hippocampal tissue, whereas IL-1beta and H(2)O(2) increased activities of both JNK and p38 in vitro. Dietary manipulation with antioxidant vitamins E and C blocked the increase in reactive oxygen species production, the stimulation of JNK and p38 activity, the attenuation of glutamate release, and the IL-1beta-induced inhibitory of LTP. We propose that IL-1beta stimulates activity of stress-activated kinases, which in turn may inhibit glutamate release and result in compromised LTP and that these actions are a consequence of increased production of reactive oxygen species.
Collapse
|
32
|
Ketchum RJ, Deng S, Weber M, Jahr H, Brayman KL. Reduced NO production improves early canine islet xenograft function: a role for nitric oxide in islet xenograft primary nonfunction. Cell Transplant 2000; 9:453-462. [PMID: 11038062 DOI: 10.1177/096368970000900402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Isolated canine islets transplanted to hyperglycemic rats fail to restore euglycemia in almost all cases, although the grafted islet tissue appears to be morphologically intact for up to 48 h following transplantation. Cytokines typically produced in the xenograft environment (e.g., IL-1 and TNF) inhibit insulin biosynthesis and secretion from isolated pancreatic islets, and are associated with the production of nitric oxide (NO). To further define the relationship between NO production and islet xenotransplantation, the inhibition of NO in a splenocyte/islet coculture system, and the in vivo effect of this inhibition on canine islet xenotransplantation, was investigated. Splenocytes (SPLC) from Lewis rats were cocultured with canine islets (freshly isolated or cultured 7 days), supernatant removed, and NO concentration (NO2) determined by optical density (Griess reaction, 550 nm, expressed as nmol nitrite/10(6) cells/18 h). Lipopolysaccharide (LPS) was used as a positive control of SPLC production of NO. Stimulation by LPS resulted in maximal NO production (2.20 +/- 0.16 nmol/10(6) cells/18 h, p < 0.001 compared to baseline values of 0.73 +/- 0.04 nmol/10(6) cells/18 h). In the presence of NO inhibitors (NMA, polymyxin B, hydrocortisone, aminoguanidine, DMSO), nitrite levels did not significantly rise above unstimulated values. Freshly isolated canine islets did stimulate NO production (1.26 +/- 0.12 nmol/10(6) cells/18 h, p < 0.001). In contrast, cultured canine islets did not stimulate NO production (0.84 +/- 0.09 nmol/10(6) cells/18 h). Transplantation of freshly isolated canine islets to STZ-diabetic recipient Lewis rats resulted in amelioration of hyperglycemia in only 50% (n = 6) of recipients 12 h posttransplant, with a return to hyperglycemia at all subsequent time points. Transplantation of 7-day cultured canine islets resulted in amelioration of hyperglycemia in 88% of recipients 12 h posttransplant and 63% of recipients 24 h posttransplant [p = 0.028, mean survival time (MST) = 1.0 days, n = 8]. Transplantation of canine islet xenografts with aminoguanidine therapy (BID, n = 11) resulted in amelioration of hyperglycemia in 100% of recipients at 12 h posttransplant, decreasing to 82% by 24 h following transplantation (p = 0.002, MST = 0.9 days). These results demonstrate that freshly isolated canine islets are potent stimulators of NO production by rat SPLC in vitro, and that culture of canine islets, or addition of NO inhibitors, abrogates stimulated NO production. These results also demonstrate a statistically significant improvement (p < 0.001) in early function of canine islet xenografts following 7 days of islet culture prior to transplant, and following recipient treatment with aminoguanidine. These studies suggest that the production of NO in the microenvironment of the graft site may adversely affect engraftment and function of canine islets, and suggest that the abrogation of islet-stimulated NO production may improve engraftment following islet xenotransplantation.
Collapse
Affiliation(s)
- R J Ketchum
- Department of Anatomy & Cell Biology, Oklahoma State University College of Osteopathic Medicine, Tulsa 74107-1898, USA.
| | | | | | | | | |
Collapse
|
33
|
Prasad K. Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG). Mol Cell Biochem 2000; 209:89-96. [PMID: 10942205 DOI: 10.1023/a:1007079802459] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Secoisolariciresinol diglucoside (SDG) isolated from flaxseed has antioxidant activity and has been shown to prevent hypercholesterolemic atherosclerosis. An investigation was made of the effects of SDG on the development of diabetes in diabetic prone BioBreeding rats (BBdp rats), a model of human type I diabetes [insulin dependent diabetes mellitus (IDDM)] to determine if this type of diabetes is due to oxidative stress and if SDG can prevent the incidence of diabetes. The rats were divided into three groups: Group I, BioBreeding normal rats (BBn rats) (n = 10); group II, BBdp untreated (n = 11); and group III, BBdp treated with SDG 22 mg/kg body wt, orally) (n = 14). Oxidative stress was determined by measuring lipid peroxidation product malondialdehyde (MDA) an index of level of reactive oxygen species in blood and pancreas; and pancreatic chemiluminescence (Pancreatic-CL), a measure of antioxidant reserve. Incidence of diabetes was 72.7% in untreated and 21.4% in SDG-treated group as determined by glycosuria and hyperglycemia. SDG prevented the development of diabetes by approximately 71%. Development of diabetes was associated with an increase in serum and pancreatic MDA and a decrease in antioxidant reserve. Prevention in development of diabetes by SDG was associated with a decrease in serum and pancreatic-MDA and an increase in antioxidant reserve. These results suggest that IDDM is mediated through oxidative stress and that SDG prevents the development of diabetes.
Collapse
Affiliation(s)
- K Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
34
|
Prasad K, Mantha SV, Muir AD, Westcott ND. Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol Cell Biochem 2000; 206:141-9. [PMID: 10839204 DOI: 10.1023/a:1007018030524] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Reactive oxygen species (ROS) have been implicated in the development of streptozotocin (STZ)-induced diabetes mellitus. Secoisolariciresinol diglucoside (SDG) isolated from flaxseed is an antioxidant. An investigation was made of the effects of SDG on the development of STZ-induced diabetes in rat, to determine if SDG can prevent/reduce the development of diabetes and if this prevention/reduction is associated with reduction in oxidative stress. DESIGN AND METHODS The rats were divided into 4 groups: Group I, Control; Group II, SDG (22 mg/kg body wt, orally) for 24 days; Group III, STZ (80 mg/kg intraperitoneally); Group IV, SDG in the dose similar to Group II three days prior to STZ and 21 days thereafter. Oxidative stress was assessed by measuring serum and pancreatic lipid peroxidation product malondialdehyde (MDA), pancreatic antioxidant reserve (pancreatic-CL) and oxygen free radical producing activity of white blood cells (WBC-CL). A diagnosis of diabetes was made on the basis of glucosuria and was confirmed at the time of sacrifice (21 days after STZ treatment) by the presence of hyperglycemia. At the end of the protocol blood samples were collected for estimation of glucose, MDA and WBC-CL, and pancreas were removed for estimation of MDA and antioxidant reserve. RESULTS Incidence of diabetes was 100% in Group III and 25% in Group IV. SDG prevented the development of diabetes by 75%. Development of diabetes was associated with an increase in serum and pancreatic MDA, and in WBC-CL, and a decrease in pancreatic antioxidant reserve. Prevention of diabetes by SDG was associated with a decrease in serum and pancreatic MDA and WBC-CL and an increase in pancreatic antioxidant reserve. CONCLUSIONS These results suggest that STZ-induced diabetes is mediated through oxidative stress and that SDG is effective in reducing the STZ-induced diabetes mellitus.
Collapse
Affiliation(s)
- K Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
35
|
O'Donnell E, Vereker E, Lynch MA. Age-related impairment in LTP is accompanied by enhanced activity of stress-activated protein kinases: analysis of underlying mechanisms. Eur J Neurosci 2000; 12:345-52. [PMID: 10651889 DOI: 10.1046/j.1460-9568.2000.00900.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The age-related impairment in long-term potentiation in the rat dentate gyrus is coupled with an increase in the proinflammatory cytokine, interleukin-1beta (IL-1beta). It is possible that this increase in IL-1beta might be a consequence of the age-related increase in reactive oxygen species production in hippocampal tissue. In this study we set out to identify the underlying cause of the age-related increase in reactive oxygen species production and to establish whether any consequences of such a change might impact on the ability of aged rats to sustain long-term potentiation (LTP). We report that there was an age-related increase in the activity of superoxide dismutase but no parallel increases in activities of glutathione peroxidase or catalase, while age-related decreases in the concentration of the scavengers, vitamins E and C and glutathione were also observed. We propose that these compromises in antioxidative strategies may result in an increase in reactive oxygen species production. The data described indicate that IL-1beta and H2O2 increase the activity of two stress-activated mitogen-activated protein kinases, c-Jun NH2-terminal kinase (JNK) and p38 in vitro, while age-related increases in both kinases were observed. We propose that the endogenous increase in these parameters which occurs with age induces the increase in activity of the stress-activated kinases, which in turn impacts on the ability of the aged rat to sustain LTP.
Collapse
Affiliation(s)
- E O'Donnell
- Department of Physiology, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
36
|
McGahon BM, Murray CA, Horrobin DF. Age-related changes in oxidative mechanisms and LTP are reversed by dietary manipulation. Neurobiol Aging 1999; 20:643-53. [PMID: 10674430 DOI: 10.1016/s0197-4580(99)00027-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aged rats exhibit an impaired ability to sustain long-term potentiation in dentate gyrus which correlates with a decrease in arachidonic acid concentration. Here we confirm the previous finding that dietary supplementation with arachidonic acid and its precursor, gamma-linolenic acid, reversed the impairment in LTP in aged rats and report that there is a significant correlation between membrane arachidonic acid concentration and response to tetanic stimulation. We observed that age was associated with decreases in the concentration of vitamins C and E and increased activity of superoxide dismutase, indicative of a compromise in antioxidative defenses; these changes were paralleled by increases in interleukin-1beta (IL-1beta) concentration and lipid peroxidation. Dietary manipulation restored polyunsaturated fatty acid concentrations to values observed in tissue prepared from young rats and reversed the age-related changes in vitamins E and C, IL-1beta concentration and superoxide dismutase activity. We propose that these changes reverse the increase in lipid peroxidation and thereby the age-related change in polyunsaturated fatty acids.
Collapse
Affiliation(s)
- B M McGahon
- Department of Physiology, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
37
|
Ogawa J, Takahashi S, Fujiwara T, Fukushige J, Hosokawa T, Izumi T, Kurakata S, Horikoshi H. Troglitazone can prevent development of type 1 diabetes induced by multiple low-dose streptozotocin in mice. Life Sci 1999; 65:1287-96. [PMID: 10503944 DOI: 10.1016/s0024-3205(99)00364-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent investigations suggest that cytotoxic cytokines such as tumor necrosis factor (TNF)alpha and interleukin (IL)-1beta or free radicals play an essential role in destruction of pancreatic beta cells in Type 1 diabetes and that, therefore, anti-oxidant or anti-TNF alpha and IL-1beta therapy could prevent the development of Type I diabetes. Troglitazone belongs to a novel class of antidiabetic agent possessing the ability to enhance insulin action provably through activating PPAR gamma and to scavenge free radicals. In the present study, we examined whether troglitazone can prevent the development of Type 1 diabetes in multiple, low-dose streptozotocin (MLDSTZ)-injected mice. In addition, effects of troglitazone on cytokine-induced pancreatic beta cell damage were examined in vitro. Type 1 diabetes was induced by MLDSTZ injection to DBA/2 mice (40 mg/kg/day for 5 days). Troglitazone was administered as a 0.2% food admixture (240 mg/kg/day) for 4 weeks from the start of or immediately after STZ injection. MLDSTZ injection elevated plasma glucose to 615 +/- 8 mg/dl 4 weeks after final STZ injection and was accompanied by infiltration of leukocytes to pancreatic islets (insulitis). Troglitazone treatment with MLDSTZ injection prevented hyperglycemia (230 +/- 30 mg/dl) and, suppressed insulitis and TNF alpha production from intraperitoneal exudate cells. TNF alpha (10 pg/ml) and IL-1beta (1 pg/ml) addition to hamster insulinoma cell line HIT-T15 for 7 days in vitro decreased insulin secretion and cell viability. Simultaneous troglitazone addition (0.03 to approximately 3 microM) significantly improved cytokine-induced decrease in insulin secretion and in cell viability. These findings suggest that troglitazone prevents the development of Type 1 diabetes in the MLDSTZ model by suppressing insulitis associated with decreasing TNF alpha production from intraperitoneal exudate cells and the subsequent TNF alpha and IL-1beta-induced beta cell damage.
Collapse
Affiliation(s)
- J Ogawa
- Pharmacology & Molecular Biology, Research Laboratories, Sankyo Co, Ltd., Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hao W, Myhre AP, Palmer JP. Nitric oxide mediates IL-1beta stimulation of heat shock protein but not IL-1beta inhibition of glutamic acid decarboxylase. Autoimmunity 1999; 29:93-101. [PMID: 10433070 DOI: 10.3109/08916939908995378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Interleukin-1beta (IL-1beta) has been implicated to play an important role in the autoimmune beta cell lesion of insulin-dependent diabetes mellitus (IDDM) because of its inhibition of insulin secretion, direct islet cytotoxicity and alteration of islet cell antigen expression. We have previously demonstrated that IL-1beta inhibits glutamic acid decarboxylase-65 (GAD-65) and increases heat shock protein-70 (HSP-70) expression in islet cells. IL-1beta stimulates the inducible form of nitric oxide (NO) synthase and the resultant increased NO mediates many of IL-1beta's effects. In this study we investigated the role of the NO pathway in mediating the effects of IL-1beta on GAD-65 and HSP-70 expression and on insulin secretion. Islets isolated from Sprague-Dawley rats were cultured with IL-1beta and aminoguanidine (AG), an inhibitor of inducible NO synthase, individually and in combination for 24 h. Accumulated nitrite production, insulin release and islet expression of GAD-65 and HSP-70 were measured. We found that (1) IL-1beta at 10 U/ml increased nitrite production, inhibited insulin release, increased HSP-70 expression and decreased GAD-65 expression. (2) AG alone at 1 mM/ml had no effect on nitrite production, insulin release, GAD-65 and HSP-70 expression. (3) In combination, AG completely blocked IL-1beta increased nitrite production, reversed IL-1beta inhibited insulin release by approximately 50%, completely reversed IL-1beta increased HSP-70 expression, but did not reverse IL-1beta inhibited GAD-65 expression. Our findings indicate that the effect of IL-1beta on HSP-70 expression is mediated by NO production, whereas a NO-independent pathway is involved in the effect of IL-1beta on GAD-65 expression and insulin secretion.
Collapse
Affiliation(s)
- W Hao
- Department of Medicine, University of Washington, Department of Veteran Affairs Puget Sound Health Care System, Seattle 98108, USA.
| | | | | |
Collapse
|
39
|
Hadjivassiliou V, Green MH, James RF, Swift SM, Clayton HA, Green IC. Insulin secretion, DNA damage, and apoptosis in human and rat islets of Langerhans following exposure to nitric oxide, peroxynitrite, and cytokines. Nitric Oxide 1999; 2:429-41. [PMID: 10342486 DOI: 10.1006/niox.1998.0203] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytokine-induced damage may contribute to destruction of insulin-secreting beta-cells in islets of Langerhans during autoimmune diabetes. There is considerable controversy (i) whether human and rat islets respond differently to cytokines, (ii) the extent to which cytokine damage is mediated by induction of nitric oxide formation, and (iii) whether the effects of nitric oxide on islets can be distinguished from those of reactive oxygen species or peroxynitrite. We have analyzed rat and human islet responses in parallel, 48 h after exposure to the nitric oxide donor S-nitrosoglutathione, the mixed donor 3-morpholinosydnonimine, hypoxanthine/xanthine oxidase, peroxynitrite, and combined cytokines (interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma). Insulin secretory response to glucose, insulin content, DNA strand breakage, and early-to-late stage apoptosis were recorded in each experiment. Rat islet insulin secretion was reduced by S-nitrosoglutathione or combined cytokines, but unexpectedly increased by peroxynitrite or hypoxanthine/xanthine oxidase. Effects on human islet insulin secretion were small; cytokines and S-nitrosoglutathione decreased insulin content. Both rat and human islets showed significant and similar levels of DNA damage following all treatments. Apoptosis in neonatal rat islets was increased by every treatment, but was at a low rate in adult rat or human islets and only achieved significance with cytokine treatment of human islets. All cytokine responses were blocked by an arginine analogue. We conclude: (i) Reactive oxygen species increased and nitric oxide decreased insulin secretory responsiveness in rat islets. (ii) Species differences lie mainly in responses to cytokines, applied at a lower dose and shorter time than in most studies of human islets. (iii) Cytokine effects were nitric oxide driven; neither reactive oxygen species nor peroxynitrite reproduced cytokine effects. (iv) Rat and human islets showed equal susceptibility to DNA damage. (v) Apoptosis was not the preferred death pathway in adult islets. (vi) We have found no evidence of human donor variation in the pattern of response to these treatments.
Collapse
Affiliation(s)
- V Hadjivassiliou
- Department of Biochemistry, University of Sussex, Brighton, United Kingdom.
| | | | | | | | | | | |
Collapse
|
40
|
Reddy S, Yip S, Karanam M, Poole CA, Ross JM. An immunohistochemical study of macrophage influx and the co-localization of inducible nitric oxide synthase in the pancreas of non-obese diabetic (NOD) mice during disease acceleration with cyclophosphamide. THE HISTOCHEMICAL JOURNAL 1999; 31:303-14. [PMID: 10461865 DOI: 10.1023/a:1003765918017] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cyclophosphamide has been used to accelerate and synchronize diabetes in non-obese diabetic (NOD) mice. It was injected to 70-day-old female NOD mice and its effect on the progression of insulitis studied at days 0, 4, 7, 11 and at onset of diabetes. Pancreatic sections were also examined for the influx of CD4 and CD8 T cells and macrophages following immunofluorescence staining. The kinetics of macrophage immunoreactive cells in the exocrine and intra-islet areas were also investigated. Light and confocal microscopy were-employed to examine the expression and co-localization of inducible nitric oxide synthase following dual- and triple-label immunofluorescence histochemistry. After cyclophosphamide administration, the severity of insulitis remained similar from days 0 to 4 but began to rise at day 7 and markedly by day 11 and at onset of diabetes. At these two later stages, the insulitis scores were close to 100% while in age-matched control groups the insulitis scores were considerably lower. Immunohistochemical staining showed increasing numbers of CD4 and CD8 T cell subsets and macrophages within the islets and in exocrine, sinusoidal and peri-vascular regions. At onset of diabetes, several islets contained prominent clusters of macrophage immunoreactive cells. Macrophage influx into the islets increased sharply from day 7 (mean number per islet: 119 +/- 54 SEM), peaked at day 11 (mean number per islet: 228 +/- 42), and then declined at onset of diabetes (mean number per islet: 148 +/- 49). Several cells with immunolabelling for inducible nitric oxide synthase were detectable from day 7 onwards until the onset of diabetes. Dual- and triple-label immunohistochemistry showed that a significant proportion of macrophages and only a few beta cells contained the enzyme. Macrophages positive for the enzyme were located as clusters or occasionally contiguously, in the peri-islet and intra-islet areas but rarely in the exocrine region. Islets with minimal distribution of macrophages in the peri-islet areas were not positive for inducible nitric oxide synthase. Beta cells positive for the enzyme were observed in islets with significant macrophage infiltration in locations close to macrophages. The present results show that cyclophosphamide administration to female NOD mice results in a rapid influx of CD4 and CD8 cells and macrophages. The marked up-regulation of inducible nitric oxide synthase in a selective proportion of macrophages, within the islets, immediately preceding and during the onset of diabetes suggests that nitric oxide released by islet macrophages may be an important molecular mediator of beta cell destruction in this accelerated model of insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- S Reddy
- Department of Paediatrics, University of Auckland School of Medicine, New Zealand
| | | | | | | | | |
Collapse
|
41
|
Oliveira HR, Curi R, Carpinelli AR. Glucose induces an acute increase of superoxide dismutase activity in incubated rat pancreatic islets. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C507-10. [PMID: 9950779 DOI: 10.1152/ajpcell.1999.276.2.c507] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSP) in isolated rat pancreatic islets exposed to high glucose concentration for a short period of time (60 min) was determined. High glucose concentration (16.7 mM) did not significantly alter catalase activity. GSP activity was increased by glucose at 5.6 mM, remaining elevated at higher concentrations up to 16.7 mM. However, the activity of SOD increased with glucose concentration, and this increment was closely correlated with the rate of insulin secretion (r = 0.96). High potassium (30 mM) did not increase SOD activity, suggesting that the increase in intracellular ionic calcium concentration does not stimulate this enzyme activity. alpha-Ketoisocaproic acid and pyruvate, which are metabolized through the TCA cycle, did not increase SOD activity, indicating that the stimulation of SOD activity might be triggered by a factor produced through glycolysis or the pentose phosphate pathway.
Collapse
Affiliation(s)
- H R Oliveira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, Brasil
| | | | | |
Collapse
|
42
|
Knekt P, Reunanen A, Marniemi J, Leino A, Aromaa A. Low vitamin E status is a potential risk factor for insulin-dependent diabetes mellitus. J Intern Med 1999; 245:99-102. [PMID: 10095823 DOI: 10.1046/j.1365-2796.1999.00416.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To study the association of vitamin E status with occurrence of insulin-dependent diabetes mellitus (IDDM). DESIGN A case-control study nested within a 21-year follow-up study. SUBJECTS Nineteen incident IDDM patients with an average age of 28 years and three individually matched controls per patient. MAIN OUTCOME MEASURE Serum concentrations of alpha-tocopherol. RESULTS Serum alpha-tocopherol concentration at the baseline examination was inversely associated with IDDM occurring 4-14 years later. The cholesterol-adjusted relative risk of IDDM between the highest and lowest thirds of the vitamin concentration was 0.12 (95% confidence interval = 0.02-0.85). CONCLUSIONS The finding corroborates the hypothesis of a protective effect of vitamin E against development of IDDM. Because of the relatively old age of the patients in the present population, further epidemiological studies on the topic are warranted.
Collapse
Affiliation(s)
- P Knekt
- National Public Health Institute, Helsinki, Finland
| | | | | | | | | |
Collapse
|
43
|
Abstract
Evidence suggests that reactive oxygen species in brain may play a role in the development of age-related neuronal impairments, and that the increase in the concentration of the proinflammatory cytokine, interleukin-1beta (IL-1beta), in aged brain tissue, may also be a contributory factor. In this study, we have analyzed changes in enzymatic and nonenzymatic antioxidant levels, in parallel with interleukin-1beta concentration, in cortical tissue prepared from young and aged rats. We report that there was an age-related increase in the activity of superoxide dismutase without concomitant changes in the activity of catalase or glutathione peroxidase and an age-related decrease in the concentrations of alpha-tocopherol and ascorbate. These observations, coupled with age-related increases in lipid peroxidation and interleukin-1beta concentration, are consistent with a compromised antioxidant defense in cortex of aged rats, a proposal supported by the finding that these changes were not observed in cortical tissue prepared from rats fed on a diet supplemented with alpha-tocopherol and ascorbate for 12 weeks.
Collapse
Affiliation(s)
- E O'Donnell
- Department of Physiology, Trinity College, Dublin, Ireland
| | | |
Collapse
|
44
|
Murray CA, Lynch MA. Dietary supplementation with vitamin E reverses the age-related deficit in long term potentiation in dentate gyrus. J Biol Chem 1998; 273:12161-8. [PMID: 9575163 DOI: 10.1074/jbc.273.20.12161] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long term potentiation (LTP) in dentate gyrus is impaired in aged rats, and this has been associated with an age-related decrease in membrane arachidonic acid concentration. In this study, we considered whether the trigger for this age-related decrease in arachidonic acid might be increased lipid peroxidation stimulated by the proinflammatory cytokine, interleukin-1beta. Groups of aged and young rats were fed on a control diet or a diet supplemented with alpha-tocopherol and assessed for their ability to sustain LTP. Aged rats fed on the control diet exhibited an impaired ability to sustain LTP and analysis of tissue prepared from these rats exhibited increased interleukin-1beta, increased lipid peroxidation, and decreased membrane arachidonic acid concentration compared with young rats fed on either diet. Aged rats fed on the supplemented diet sustained LTP in a manner indistinguishable from young rats, and the age-related increases in interleukin-1beta and lipid peroxidation and the decrease in membrane arachidonic acid concentration were all reversed. We propose that interleukin-1beta may be the trigger that induces these age-related changes and may therefore be responsible for the deficit in long term potentiation in aged rats. The observation that alpha-tocopherol reverses these changes is consistent with the hypothesis that some age-related changes in hippocampus might derive from oxidative stress.
Collapse
Affiliation(s)
- C A Murray
- Department of Physiology, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
45
|
Hohmeier HE, Thigpen A, Tran VV, Davis R, Newgard CB. Stable expression of manganese superoxide dismutase (MnSOD) in insulinoma cells prevents IL-1beta- induced cytotoxicity and reduces nitric oxide production. J Clin Invest 1998; 101:1811-20. [PMID: 9576743 PMCID: PMC508765 DOI: 10.1172/jci1489] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The fact that insulin-producing islet beta-cells are susceptible to the cytotoxic effects of inflammatory cytokines represents a potential hinderance to the use of such cells for transplantation therapy of insulin-dependent diabetes mellitus (IDDM). In the current study, we show that IL-1beta induces destruction of INS-1 insulinoma cells, while having no effect on a second insulinoma cell line RIN1046-38 and its engineered derivatives, and that this difference is correlated with a higher level of expression of manganese superoxide dismutase (MnSOD) in the latter cells. Stable overexpression of MnSOD in INS-1 cells provides complete protection against IL-1beta-mediated cytotoxicity, and also results in markedly reduced killing when such cells are exposed to conditioned media from activated human or rat PBMC. Further, overexpression of MnSOD in either RIN- or INS-1-derived lines results in a sharp reduction in IL-1beta-induced nitric oxide (NO) production, a finding that correlates with reduced levels of the inducible form of nitric oxide synthase (iNOS). Treatment of INS-1 cells with L-NMMA, an inhibitor of iNOS, provides the same degree of protection against IL-1beta or supernatants from LPS-activated rat PBMC as MnSOD overexpression, supporting the idea that MnSOD protects INS-1 cells by interfering with the normal IL-1beta-mediated increase in iNOS. Because NO and its derivatives have been implicated as critical mediators of beta-cell destruction in IDDM, we conclude that well regulated insulinoma cell lines engineered for MnSOD overexpression may be an attractive alternative to isolated islets as vehicles for insulin replacement in autoimmune diabetes.
Collapse
Affiliation(s)
- H E Hohmeier
- Department of Biochemistry and Department of Internal Medicine, Gifford Laboratories for Diabetes Research, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
46
|
Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci 1998. [PMID: 9526014 DOI: 10.1523/jneurosci.18-08-02974.1998] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several cytokines and their receptors are identified in brain; one of these is the proinflammatory cytokine interleukin-1beta that is synthesized and released from neurons and glia in response to stress or insult. Among the actions of interleukin-1beta is its ability to inhibit long-term potentiation in the hippocampus in vitro, an action that mimics one of the consequences of stress and age. It has been shown that the concentration of interleukin-1beta in brain tissue is increased in neurodegenerative conditions, and recent evidence from our laboratory has indicated an increase in the concentration of interleukin-1beta in the hippocampus of aged rats. These observations led us to consider that the underlying common cause of impaired long-term potentiation in aged and stressed rats might be increased endogenous interleukin-1beta concentration in hippocampus. The data presented here indicate that there was an inverse relationship between concentration of interleukin-1beta in the dentate gyrus and long-term potentiation in perforant path-->granule cell synapses in aged rats, stressed rats, and rats pretreated with interleukin-1beta. The evidence suggested that the cytokine induces formation of reactive oxygen species that triggers lipid peroxidation in vivo, as well as in vitro, and that these changes lead to depletion of membrane arachidonic acid that correlates with impaired long-term potentiation. We propose that three theories of aging, the glucocorticoid theory, the membrane theory, and the free radical theory, constitute three facets of age with one underlying trigger: an increase in the endogenous concentration of interleukin-1beta in hippocampus.
Collapse
|
47
|
Rabinovitch A, Suarez-Pinzon WL. Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol 1998; 55:1139-49. [PMID: 9719467 DOI: 10.1016/s0006-2952(97)00492-9] [Citation(s) in RCA: 339] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insulin-dependent diabetes mellitus (IDDM) is a disease that results from autoimmune destruction of the insulin-producing beta-cells in the pancreatic islets of Langerhans. The autoimmune response against islet beta-cells is believed to result from a disorder of immunoregulation. According to this concept, a T helper 1 (Th1) subset of T cells and their cytokine products, i.e. Type 1 cytokines--interleukin 2 (IL-2), interferon gamma (IFNgamma), and tumor necrosis factor beta (TNFbeta), dominate over an immunoregulatory (suppressor) Th2 subset of T cells and their cytokine products, i.e. Type 2 cytokines--IL-4 and IL-10. This allows Type 1 cytokines to initiate a cascade of immune/inflammatory processes in the islet (insulitis), culminating in beta-cell destruction. Type 1 cytokines activate (1) cytotoxic T cells that interact specifically with beta-cells and destroy them, and (2) macrophages to produce proinflammatory cytokines (IL-1 and TNFalpha), and oxygen and nitrogen free radicals that are highly toxic to islet beta-cells. Furthermore, the cytokines IL-1, TNFalpha, and IFNgamma are cytotoxic to beta-cells, in large part by inducing the formation of oxygen free radicals, nitric oxide, and peroxynitrite in the beta-cells themselves. Therefore, it would appear that prevention of islet beta-cell destruction and IDDM should be aimed at stimulating the production and/or action of Type 2 cytokines, inhibiting the production and/or action of Type 1 cytokines, and inhibiting the production and/or action of oxygen and nitrogen free radicals in the pancreatic islets.
Collapse
Affiliation(s)
- A Rabinovitch
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
48
|
Kovarik J, Koulmanda M, Mandel TE. The role of cytokines during rejection of foetal pig and foetal mouse pancreas grafts in nonobese diabetic mice. Transpl Immunol 1997; 5:307-14. [PMID: 9504153 DOI: 10.1016/s0966-3274(97)80014-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rejection of discordant foetal pig islet xenografts in nonimmunosuppressed nonobese diabetic (NOD) mice is dominated by polymorphonuclear cell infiltration whereas allografts are almost exclusively infiltrated by mononuclear cells. To determine if this variation is due to different proinflammatory factors generated at the graft site, we analysed graft-site mRNA expression of various cytokines, and the eosinophil attractant chemokine, eotaxin, in a renal subcapsular islet transplant model using organ cultured foetal pig (xenograft) and foetal BALB/c (allograft) pancreas in prediabetic NOD mice. Using semiquantitative RT-PCR on samples recovered at multiple time points during the first 15 post-transplantation days from mice transplanted with either allogeneic or xenogeneic tissue, we found increased expression of IL-2, IL-4. TNF-beta and IL-10 mRNAs at the peak of the cellular infiltrate (on day 5) in both xenografts and allografts but, in contrast to the allografts, no enhanced transcription of IFN-gamma mRNA in the rejecting xenografts. When an allograft and a xenograft were placed at the opposite pole of the same kidney the histological appearance of the rejecting allograft site resembled the xenograft site with significant numbers of eosinophils in both, and enhanced expression of eotaxin and iNOS. Additionally, the xenograft response, unlike the allograft response, was marked by an early increased expression of TNF-alpha and IL-S (day 3) and an almost complete absence of IFN-gamma expression. The results suggest a distinct cell-mediated mechanism for rejection of foetal pancrease xenografts compared to the rejection of foetal pancreas allografts.
Collapse
Affiliation(s)
- J Kovarik
- WHO Collaborating Centre for Vaccinology and Neonatal Immunology, University of Geneva, Switzerland
| | | | | |
Collapse
|
49
|
Cavallo MG, Monetini L, Valente L, Barone F, Beales P, Russo M, Pozzilli P. Glutathione protects a human insulinoma cell line from tumor necrosis factor-alpha-mediated cytotoxicity. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1997; 27:44-7. [PMID: 9144026 DOI: 10.1007/bf02827241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is postulated that glutathione acting as a free oxygen radical scavenger may protect beta-cells from cytokine-mediated cytotoxicity in insulin-dependent diabetes. In this study the effect of glutathione in preventing the cytotoxic damage mediated by tumor necrosis factor-a in vitro towards a human beta-cell line (CM insulinoma) was investigated. CM cells were exposed in vitro to tumor necrosis factor-alpha, tumor necrosis factor-alpha plus glutathione or glutathione alone at different concentrations. The resulting cytotoxicity was measured using a colorimetric assay. Glutathione significantly reduced the cytotoxicity mediated by tumor necrosis factor-alpha in a dose-dependent fashion (P < 0.001). These results suggest a protective effect of glutathione on beta-cell cytotoxicity induced by tumor necrosis factor-alpha and encourage the use of glutathione in trials aimed at reducing the beta-cell damage occurring in insulin-dependent diabetes.
Collapse
Affiliation(s)
- M G Cavallo
- Istituto II Clinica Medica, University of Rome La Sapienza, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Burczak K, Gamian E, Kochman A. Long-term in vivo performance and biocompatibility of poly(vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas. Biomaterials 1996; 17:2351-6. [PMID: 8982475 DOI: 10.1016/s0142-9612(96)00076-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A bag-shaped macrocapsule suitable for Langerhans islets entrapment and immunoisolation was constructed using a semipermeable hydrogel membrane of poly(vinyl alcohol)(PVA) cross-linked chemically and sterilized by a radiation method. Empty (not seeded with Langerhans islets), sealed, sterile macrocapsules were implanted into the intraperitoneal cavity of adult female Buffalo rats for periods of up to 6.5 months. Long-term in vivo performance of the macrocapsule membrane was evaluated on the basis of the permeability measurements of glucose and albumin. The results of experiments revealed the progressive, disadvantageous alterations of the PVA hydrogel membrane resulting in a decrease in the permeability of solutes. Histochemical examinations of the cellular enzyme activities in the implant-encapsulating tissue, regarding the acid and alkaline phosphatases, were performed to evaluate the activity of cells involved in the inflammatory response to the long-term macrocapsule implantation.
Collapse
Affiliation(s)
- K Burczak
- Institute of Applied Radiation Chemistry, Technical University of Lódź, Poland
| | | | | |
Collapse
|