1
|
Muszka Z, Jenei V, Mácsik R, Mezhonova E, Diyab S, Csősz R, Bácsi A, Mázló A, Koncz G. Life-threatening risk factors contribute to the development of diseases with the highest mortality through the induction of regulated necrotic cell death. Cell Death Dis 2025; 16:273. [PMID: 40216765 PMCID: PMC11992264 DOI: 10.1038/s41419-025-07563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Chronic diseases affecting the cardiovascular system, diabetes mellitus, neurodegenerative diseases, and various other organ-specific conditions, involve different underlying pathological processes. However, they share common risk factors that contribute to the development and progression of these diseases, including air pollution, hypertension, obesity, high cholesterol levels, smoking and alcoholism. In this review, we aim to explore the connection between four types of diseases with different etiologies and various risk factors. We highlight that the presence of risk factors induces regulated necrotic cell death, leading to the release of damage-associated molecular patterns (DAMPs), ultimately resulting in sterile inflammation. Therefore, DAMP-mediated inflammation may be the link explaining how risk factors can lead to the development and maintenance of chronic diseases. To explore these processes, we summarize the main cell death pathways activated by the most common life-threatening risk factors, the types of released DAMPs and how these events are associated with the pathophysiology of diseases with the highest mortality. Various risk factors, such as smoking, air pollution, alcoholism, hypertension, obesity, and high cholesterol levels induce regulated necrosis. Subsequently, the release of DAMPs leads to chronic inflammation, which increases the risk of many diseases, including those with the highest mortality rates.
Collapse
Affiliation(s)
- Zsuzsa Muszka
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Rebeka Mácsik
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Evgeniya Mezhonova
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Silina Diyab
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Réka Csősz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| |
Collapse
|
2
|
Xu L, Zhao Y, Yang Y, Qi E, Liu B, Zhuang P, Song S, Chang T, Chen Z, Kang X, Xiong X. Constitutive Hepatic mTORC1 Activation Aggravates Alcohol-Induced Liver Injury via Endoplasmic Reticulum Stress-Mediated Ferroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00106-3. [PMID: 40204188 DOI: 10.1016/j.ajpath.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
Alcohol-related liver disease (ALD), a consequence of excessive alcohol use, manifests across a broad spectrum of liver damage, ranging from steatosis to cirrhosis. DEPDC5 (DEP domain-containing protein 5) is a component of the GATOR1 (gap activity towards rags 1) complex, which functions as a repressor of the amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. In this study, hepatocyte-specific Depdc5 knockout mice (Depdc5△Hep) were generated, and it was found that aberrant activation of mTORC1 caused by Depdc5 deletion led to exacerbated endoplasmic reticulum (ER) stress and hepatocyte ferroptosis in the livers of ethanol-fed mice. Torin-1, an ATP-competitive mTOR inhibitor, suppressed the mTORC1 activity and reversed the effects of Depdc5 deletion on ER stress and ferroptosis in ethanol-fed mouse livers. Furthermore, pharmacologic relief of ER stress using tauroursodeoxycholic acid or inhibition of ferroptosis with liproxstatin-1 both alleviated the liver abnormalities induced by Depdc5 ablation in ethanol-fed mice. In addition, the research uncovered that ER stress functions as an upstream signal of ferroptosis in the progression of ALD. These findings provide novel in vivo evidence that sustained mTORC1 activation leads to alcoholic liver injury by inducing ER stress and ferroptosis, suggesting that targeting these pathways may represent a potential therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Lin Xu
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuanyuan Zhao
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Clinical Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Yang
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Enbo Qi
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Boao Liu
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peili Zhuang
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Shiyi Song
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tingmin Chang
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhiguo Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaohong Kang
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Xiwen Xiong
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
3
|
Fu Y, Maccioni L, Wang XW, Greten TF, Gao B. Alcohol-associated liver cancer. Hepatology 2024; 80:1462-1479. [PMID: 38607725 DOI: 10.1097/hep.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Heavy alcohol intake induces a wide spectrum of liver diseases ranging from steatosis, steatohepatitis, cirrhosis, and HCC. Although alcohol consumption is a well-known risk factor for the development, morbidity, and mortality of HCC globally, alcohol-associated hepatocellular carcinoma (A-HCC) is poorly characterized compared to viral hepatitis-associated HCC. Most A-HCCs develop after alcohol-associated cirrhosis (AC), but the direct carcinogenesis from ethanol and its metabolites to A-HCC remains obscure. The differences between A-HCC and HCCs caused by other etiologies have not been well investigated in terms of clinical prognosis, genetic or epigenetic landscape, molecular mechanisms, and heterogeneity. Moreover, there is a huge gap between basic research and clinical practice due to the lack of preclinical models of A-HCC. In the current review, we discuss the pathogenesis, heterogeneity, preclinical approaches, epigenetic, and genetic profiles of A-HCC, and discuss the current insights into and the prospects for future research on A-HCC. The potential effect of alcohol on cholangiocarcinoma and liver metastasis is also discussed.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tim F Greten
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
You Y, Qian Z, Jiang Y, Chen L, Wu D, Liu L, Zhang F, Ning X, Zhang Y, Xiao J. Insights into the pathogenesis of gestational and hepatic diseases: the impact of ferroptosis. Front Cell Dev Biol 2024; 12:1482838. [PMID: 39600338 PMCID: PMC11588751 DOI: 10.3389/fcell.2024.1482838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Ferroptosis, a distinct form of non-apoptotic cell death characterized by iron dependency and lipid peroxidation, is increasingly linked to various pathological conditions in pregnancy and liver diseases. It plays a critical role throughout pregnancy, influencing processes such as embryogenesis, implantation, and the maintenance of gestation. A growing body of evidence indicates that disruptions in these processes can precipitate pregnancy-related disorders, including pre-eclampsia (PE), gestational diabetes mellitus (GDM), and intrahepatic cholestasis of pregnancy (ICP). Notably, while ICP is primarily associated with elevated maternal serum bile acid levels, its precise etiology remains elusive. Oxidative stress induced by bile acid accumulation is believed to be a significant factor in ICP pathogenesis. Similarly, the liver's susceptibility to oxidative damage underscores the importance of lipid metabolism dysregulation and impaired iron homeostasis in the progression of liver diseases such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cholestatic liver injury, autoimmune hepatitis (AIH), acute liver injury, viral hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). This review discusses the shared signaling mechanisms of ferroptosis in gestational and hepatic diseases, and explores recent advances in understanding the mechanisms of ferroptosis and its potential role in the pathogenesis of gestational and hepatic disorders, with the aim of identifying viable therapeutic targets.
Collapse
Affiliation(s)
- Yilan You
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhiwen Qian
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ying Jiang
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Lingyan Chen
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Danping Wu
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Lu Liu
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Feng Zhang
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xin Ning
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Yan Zhang
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Jianping Xiao
- Departments of Obstetrics and Gynecology, Wuxi Maternal and Child Healthcare Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Departments of Obstetrics and Gynecology, Wuxi Maternity and Child Healthcare Hospital, Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Zheng C, Li S, Lyu H, Chen C, Mueller J, Dropmann A, Hammad S, Dooley S, He S, Mueller S. Direct Ingestion of Oxidized Red Blood Cells (Efferocytosis) by Hepatocytes. Hepat Med 2024; 16:65-77. [PMID: 39247515 PMCID: PMC11380495 DOI: 10.2147/hmer.s469990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Both hepatic iron accumulation and hemolysis have been identified as independent prognostic factor in alcohol-related liver disease (ALD); however, the mechanisms still remain poorly understood. We here demonstrate that hepatocytes are able to directly ingest aged and ethanol-primed red blood cells (RBCs), a process termed efferocytosis. Methods Efferocytosis of RBCs was directly studied in vitro and observed by live microscopy for real-time visualization. RBCs pretreated with either CuSO4 or ethanol following co-incubation with Huh7 cells and murine primary hepatocytes. Heme oxygenase-1 (HO-1) and other targets were measured by q-PCR. Results As shown by live microscopy, oxidized RBCs, but not intact RBCs, are rapidly ingested by both Huh7 cells and murine primary hepatocytes within 10 minutes. In some cases, more than 10 RBCs were seen within hepatocytes, surrounding the nucleus. RBC efferocytosis also rapidly induces HO1, its upstream regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and ferritin, indicating efficient heme degradation. Preliminary data further suggest that hepatocyte efferocytosis of oxidized RBCs is, at least in part, mediated by scavenging receptors such as ASGPR1. Of note, pretreatment of RBCs with ethanol but also heme and bilirubin also initiated efferocytosis. In a cohort of heavy human drinkers, a significant correlation of hepatic ASGPR1 with the heme degradation pathway was observed. Conclusion We here demonstrate that hepatocytes can directly ingest and degrade oxidized RBCs through efferocytosis, a process that can be also triggered by ethanol, heme and bilirubin. Our findings are highly suggestive for a novel mechanism of hepatic iron overload in ALD patients.
Collapse
Affiliation(s)
- Chaowen Zheng
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Siyuan Li
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Huanran Lyu
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Cheng Chen
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Johannes Mueller
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Anne Dropmann
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Seddik Hammad
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Quena, Egypt
| | - Steven Dooley
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
- Viscera AG Bauchmedizin, Bern, Switzerland
| |
Collapse
|
6
|
Yang C, Yang Y, Hu X, Tang Q, Zhang J, Zhang P, Lu X, Xu J, Li S, Dong Z, Zhu L, Wang L. Loss of GCN5L1 exacerbates damage in alcoholic liver disease through ferroptosis activation. Liver Int 2024; 44:1924-1936. [PMID: 38597373 DOI: 10.1111/liv.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND AND AIMS Iron overload, oxidative stress and ferroptosis are associated with liver injury in alcohol-associated liver disease (ALD), however, the crosstalk among these regulatory pathways in ALD development is unclear. METHODS ALD mouse model and general control of amino acid synthesis 5 like 1 (GCN5L1) liver knockout mice were generated to investigate the role of GCN5L1 in ALD development. Proteomic screening tests were performed to identify the key factors mediating GCN5L1 loss-induced ALD. RESULTS Gene Expression Omnibus data set analysis indicates that GCN5L1 expression is negatively associated with ALD progression. GCN5L1 hepatic knockout mice develop severe liver injury and lipid accumulation when fed an alcohol diet. Screening tests identified that GCN5L1 targeted the mitochondrial iron transporter CISD1 to regulate mitochondrial iron homeostasis in ethanol-induced ferroptosis. GCN5L1-modulated CISD1 acetylation and activity were crucial for iron accumulation and ferroptosis in response to alcohol exposure. CONCLUSION Pharmaceutical modulation of CISD1 activity is critical for cellular iron homeostasis and ethanol-induced ferroptosis. The GCN5L1/CISD1 axis is crucial for oxidative stress and ethanol-induced ferroptosis in ALD and is a promising avenue for novel therapeutic strategies.
Collapse
Affiliation(s)
- Chenxi Yang
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ye Yang
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiuya Hu
- Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiqi Tang
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiaqi Zhang
- Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Peiyu Zhang
- Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Lu
- Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Juan Xu
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sai Li
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhengni Dong
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Zhu
- Department of Pharmacology, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Centre for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingdi Wang
- Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Osna NA, Tikhanovich I, Ortega-Ribera M, Mueller S, Zheng C, Mueller J, Li S, Sakane S, Weber RCG, Kim HY, Lee W, Ganguly S, Kimura Y, Liu X, Dhar D, Diggle K, Brenner DA, Kisseleva T, Attal N, McKillop IH, Chokshi S, Mahato R, Rasineni K, Szabo G, Kharbanda KK. Alcohol-Associated Liver Disease Outcomes: Critical Mechanisms of Liver Injury Progression. Biomolecules 2024; 14:404. [PMID: 38672422 PMCID: PMC11048648 DOI: 10.3390/biom14040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a substantial cause of morbidity and mortality worldwide and represents a spectrum of liver injury beginning with hepatic steatosis (fatty liver) progressing to inflammation and culminating in cirrhosis. Multiple factors contribute to ALD progression and disease severity. Here, we overview several crucial mechanisms related to ALD end-stage outcome development, such as epigenetic changes, cell death, hemolysis, hepatic stellate cells activation, and hepatic fatty acid binding protein 4. Additionally, in this review, we also present two clinically relevant models using human precision-cut liver slices and hepatic organoids to examine ALD pathogenesis and progression.
Collapse
Affiliation(s)
- Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Martí Ortega-Ribera
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (M.O.-R.); (G.S.)
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
- Viscera AG Bauchmedizin, 83011 Bern, Switzerland
| | - Chaowen Zheng
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Johannes Mueller
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Siyuan Li
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Sadatsugu Sakane
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Raquel Carvalho Gontijo Weber
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Hyun Young Kim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Wonseok Lee
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Souradipta Ganguly
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Yusuke Kimura
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Xiao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Debanjan Dhar
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
| | - Karin Diggle
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Neha Attal
- Department of Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC 28203, USA; (N.A.); (I.H.M.)
| | - Iain H. McKillop
- Department of Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC 28203, USA; (N.A.); (I.H.M.)
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE59NT, UK;
- School of Microbial Sciences, King’s College, London SE59NT, UK
| | - Ram Mahato
- Department of Pharmaceutical Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA;
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68106, USA;
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (M.O.-R.); (G.S.)
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68106, USA;
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
8
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
9
|
Wang Y, Shi C, Guo J, Zhang Y, Gong Z. Distinct Types of Cell Death and Implications in Liver Diseases: An Overview of Mechanisms and Application. J Clin Transl Hepatol 2023; 11:1413-1424. [PMID: 37719956 PMCID: PMC10500292 DOI: 10.14218/jcth.2023.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 09/19/2023] Open
Abstract
Cell death is associated with a variety of liver diseases, and hepatocyte death is a core factor in the occurrence and progression of liver diseases. In recent years, new cell death modes have been identified, and certain biomarkers have been detected in the circulation during various cell death modes that mediate liver injury. In this review, cell death modes associated with liver diseases are summarized, including some cell death modes that have emerged in recent years. We described the mechanisms associated with liver diseases and summarized recent applications of targeting cell death in liver diseases. It provides new ideas for the diagnosis and treatment of liver diseases. In addition, multiple cell death modes can contribute to the same liver disease. Different cell death modes are not isolated, and they interact with each other in liver diseases. Future studies may focus on exploring the regulation between various cell death response pathways in liver diseases.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Radushkevitz-Frishman T, Charni-Natan M, Goldstein I. Dynamic chromatin accessibility during nutritional iron overload reveals a BMP6-independent induction of cell cycle genes. J Nutr Biochem 2023:109407. [PMID: 37336330 DOI: 10.1016/j.jnutbio.2023.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Iron is essential to organism physiology as it participates in numerous biological processes including oxygen transport, respiration and erythropoiesis. Although iron is critical to physiology, excess iron is toxic to cells and tissues due to generation of reactive oxygen species. Therefore, well-kept iron homeostasis is a mainstay of proper cell and organ function. Iron overload disorders, caused by nutritional or genetic factors, contribute to many pathologies such as diabetes, non-alcoholic steatohepatitis and hepatocellular carcinoma. The liver is not only vulnerable to the effects of iron overload, it is also the major organ controlling iron homeostasis. During iron overload, Bone Morphogenic Protein (BMP) levels increase and initiate a hepatic response aimed at lowering iron levels. The transcriptional effects of iron overload are not well-characterized and the underlining enhancer regulation is uncharted. Here, we profiled the liver's transcriptome and chromatin accessibility following nutritional iron overload. We found marked changes in gene expression and enhancer accessibility following iron overload. Surprisingly, 16% of genes induced following iron overload participate in propagating the cell cycle. Induction of cell cycle genes was independent of BMP. Genome-wide enhancer landscape profiling revealed hundreds of enhancers with altered activity following iron overload. Characterization of transcription factor motifs and footprints in iron-regulated enhancers showed a role for the Activator Protein 1 (AP-1) transcription factor in promoting cell cycle-related transcription. In summary, we found that the transcriptional program at play during iron overload is bifurcated in which BMP signaling controls iron homeostasis genes while an AP-1-driven program controls cell cycle genes.
Collapse
Affiliation(s)
- Talia Radushkevitz-Frishman
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel.
| |
Collapse
|
11
|
Tadokoro T, Morishita A, Himoto T, Masaki T. Nutritional Support for Alcoholic Liver Disease. Nutrients 2023; 15:nu15061360. [PMID: 36986091 PMCID: PMC10059060 DOI: 10.3390/nu15061360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Malnutrition is a common finding in alcohol use disorders and is associated with the prognosis of patients with alcoholic liver disease (ALD). These patients also frequently show deficiencies in vitamins and trace elements, increasing the likelihood of anemia and altered cognitive status. The etiology of malnutrition in ALD patients is multifactorial and complex and includes inadequate dietary intake, abnormal absorption and digestion, increased skeletal and visceral protein catabolism, and abnormal interactions between ethanol and lipid metabolism. Most nutritional measures derive from general chronic liver disease recommendations. Recently, many patients with ALD have been diagnosed with metabolic syndrome, which requires individualized treatment via nutritional therapy to avoid overnutrition. As ALD progresses to cirrhosis, it is frequently complicated by protein–energy malnutrition and sarcopenia. Nutritional therapy is also important in the management of ascites and hepatic encephalopathy as liver failure progresses. The purpose of the review is to summarize important nutritional therapies for the treatment of ALD.
Collapse
Affiliation(s)
- Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
- Correspondence: ; Tel.: +81-87-891-2156
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu 761-0123, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| |
Collapse
|
12
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
13
|
Li Y, Qin M, Zhong W, Liu C, Deng G, Yang M, Li J, Ye H, Shi H, Wu C, Lin H, Chen Y, Huang S, Zhou C, Lv Z, Gao L. RAGE promotes dysregulation of iron and lipid metabolism in alcoholic liver disease. Redox Biol 2022; 59:102559. [PMID: 36502724 PMCID: PMC9758571 DOI: 10.1016/j.redox.2022.102559] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Alcoholic liver disease (ALD) is associated with hepatic inflammatory activation and iron overload. The receptor for advanced glycation end products (RAGE) is an important metabolic mediator during the development of ALD. The aim of this study was to determine the effect of RAGE on iron homeostasis in ALD. We found increased circulating transferrin, hepcidin and ferritin in ALD patients and positively correlated with RAGE level. RAGE knockout (RAGE-/-) and wild-type mice were subjected to chronic alcoholic feeding for 6 weeks to induce ALD, and RAGE inhibitor, iron chelator or lipid peroxidation inhibitor were administered. We showed that chronic alcohol administration triggered hepatic steatosis, inflammation, and oxidative stress, which were eliminated by deficiency or inhibition of RAGE. Surprisingly, pathways of hepatic iron metabolism were significantly altered, including increased iron uptake (Tf/TfR) and storage (Ferritin), as well as decreased iron export (FPN1/Hepcidin). In vitro experiments confirmed that RAGE had different effects on the mechanism of iron metabolism of hepatocytes and macrophages respectively. In conclusion, our data revealed preclinical evidence for RAGE inhibition as an effective intervention for alleviating alcohol-induced liver injury.
Collapse
Affiliation(s)
- Yunjia Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengchen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Chang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China,Integrated Hospital of Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Menghan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Haixin Ye
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Haiyan Lin
- Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Gao
- Zhujiang Hospital, Southern Medical University, Guangzhou, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Integrated Hospital of Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Xue M, Tian Y, Sui Y, Zhao H, Gao H, Liang H, Qiu X, Sun Z, Zhang Y, Qin Y. Protective effect of fucoidan against iron overload and ferroptosis-induced liver injury in rats exposed to alcohol. Biomed Pharmacother 2022; 153:113402. [DOI: 10.1016/j.biopha.2022.113402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/09/2023] Open
|
15
|
Abstract
The liver is the major target organ of continued alcohol consumption at risk and resulting alcoholic liver disease (ALD) is the most common liver disease worldwide. The underlying molecular mechanisms are still poorly understood despite decades of scientific effort limiting our abilities to identify those individuals who are at risk to develop the disease, to develop appropriate screening strategies and, in addition, to develop targeted therapeutic approaches. ALD is predestined for the newly evolving translational medicine, as conventional clinical and health care structures seem to be constrained to fully appreciate this disease. This concept paper aims at summarizing the 15 years translational experience at the Center of Alcohol Research in Heidelberg, namely based on the long-term prospective and detailed characterization of heavy drinkers with mortality data. In addition, novel experimental findings will be presented. A special focus will be the long-known hepatic iron accumulation, the somewhat overlooked role of the hematopoietic system and novel insights into iron sensing and the role of hepcidin. Our preliminary work indicates that enhanced red blood cell (RBC) turnover is critical for survival in ALD patients. RBC turnover is not primarily due to vitamin deficiency but rather to ethanol toxicity directly targeted to erythrocytes but also to the bone marrow stem cell compartment. These novel insights also help to explain long-known aspects of ALD such as mean corpuscular volume of erythrocytes (MCV) and elevated aspartate transaminase (GOT/AST) levels. This work also aims at identifying future projects, naming unresolved observations, and presenting novel hypothetical concepts still requiring future validation.
Collapse
|
16
|
Tsuchiya H. Iron-Induced Hepatocarcinogenesis—Preventive Effects of Nutrients. Front Oncol 2022; 12:940552. [PMID: 35832553 PMCID: PMC9271801 DOI: 10.3389/fonc.2022.940552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 01/10/2023] Open
Abstract
The liver is a primary organ that stores body iron, and plays a central role in the regulation of iron homeostasis. Hepatic iron overload (HIO) is a prevalent feature among patients with chronic liver diseases (CLDs), including alcoholic/nonalcoholic liver diseases and hepatitis C. HIO is suggested to promote the progression toward hepatocellular carcinoma because of the pro-oxidant nature of iron. Iron metabolism is tightly regulated by various factors, such as hepcidin and ferroportin, in healthy individuals to protect the liver from such deteriorative effects. However, their intrinsic expressions or functions are frequently compromised in patients with HIO. Thus, various nutrients have been reported to regulate hepatic iron metabolism and protect the liver from iron-induced damage. These nutrients are beneficial in HIO-associated CLD treatment and eventually prevent iron-mediated hepatocarcinogenesis. This mini-review aimed to discuss the mechanisms and hepatocarcinogenic risk of HIO in patients with CLDs. Moreover, nutrients that hold the potential to prevent iron-induced hepatocarcinogenesis are summarized.
Collapse
|
17
|
Roles of homopolymeric apoferritin in alleviating alcohol-induced liver injury. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Ferrao K, Ali N, Mehta KJ. Iron and iron-related proteins in alcohol consumers: cellular and clinical aspects. J Mol Med (Berl) 2022; 100:1673-1689. [PMID: 36214835 PMCID: PMC9691479 DOI: 10.1007/s00109-022-02254-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
Alcohol-associated liver disease (ALD) is one of the most common chronic liver diseases. Its pathological spectrum includes the overlapping stages of hepatic steatosis/steatohepatitis that can progress to liver fibrosis and cirrhosis; both are risk factors for hepatocellular carcinoma. Moreover, ALD diagnosis and management pose several challenges. The early pathological stages are reversible by alcohol abstinence, but these early stages are often asymptomatic, and currently, there is no specific laboratory biomarker or diagnostic test that can confirm ALD etiology. Alcohol consumers frequently show dysregulation of iron and iron-related proteins. Examination of iron-related parameters in this group may aid in early disease diagnosis and better prognosis and management. For this, a coherent overview of the status of iron and iron-related proteins in alcohol consumers is essential. Therefore, here, we collated and reviewed the alcohol-induced alterations in iron and iron-related proteins. Reported observations include unaltered, increased, or decreased levels of hemoglobin and serum iron, increments in intestinal iron absorption (facilitated via upregulations of duodenal divalent metal transporter-1 and ferroportin), serum ferritin and carbohydrate-deficient transferrin, decrements in serum hepcidin, decreased or unaltered levels of transferrin, increased or unaltered levels of transferrin saturation, and unaltered levels of soluble transferrin receptor. Laboratory values of iron and iron-related proteins in alcohol consumers are provided for reference. The causes and mechanisms underlying these alcohol-induced alterations in iron parameters and anemia in ALD are explained. Notably, alcohol consumption by hemochromatosis (iron overload) patients worsens disease severity due to the synergistic effects of excess iron and alcohol.
Collapse
Affiliation(s)
- Kevin Ferrao
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Najma Ali
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
19
|
Wang S, Chen C, Yu L, Mueller J, Rausch V, Mueller S. Bone morphogenetic protein 6-mediated crosstalk between endothelial cells and hepatocytes recapitulates the iron-sensing pathway in vitro. J Biol Chem 2021; 297:101378. [PMID: 34740612 PMCID: PMC8637636 DOI: 10.1016/j.jbc.2021.101378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Liver sinusoidal endothelial cell–derived bone morphogenetic protein 6 (BMP6) and the BMP6–small mothers against decapentaplegic homolog (SMAD) signaling pathway are essential for the expression of hepcidin, the secretion of which is considered the systemic master switch of iron homeostasis. However, there are continued controversies related to the strong and direct suppressive effect of iron on hepatocellular hepcidin in vitro in contrast to in vivo conditions. Here, we directly studied the crosstalk between endothelial cells (ECs) and hepatocytes using in vitro coculture models that mimic hepcidin signaling in vivo. Huh7 cells were directly cocultured with ECs, and EC conditioned media (CM) were also used to culture Huh7 cells and primary mouse hepatocytes. To explore the reactions of ECs to surrounding iron, they were grown in the presence of ferric ammonium citrate and heme, two iron-containing molecules. We found that both direct coculture with ECs and EC-CM significantly increased hepcidin expression in Huh7 cells. The upstream SMAD pathway, including phosphorylated SMAD1/5/8, SMAD1, and inhibitor of DNA binding 1, was induced by EC-CM, promoting hepcidin expression. Efficient blockage of this EC-mediated hepcidin upregulation by an inhibitor of the BMP6 receptor ALK receptor tyrosine kinase 2/3 or BMP6 siRNA identified BMP6 as a major hepcidin regulator in this coculture system, which highly fits the model of hepcidin regulation by iron in vivo. In addition, EC-derived BMP6 and hepcidin were highly sensitive to levels of not only ferric iron but also heme as low as 500 nM. We here establish a hepatocyte–endothelial coculture system to fully recapitulate iron regulation by hepcidin using EC-derived BMP6.
Collapse
Affiliation(s)
- Shijin Wang
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Cheng Chen
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Linna Yu
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Johannes Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Vanessa Rausch
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
20
|
Yu LN, Wang SJ, Chen C, Rausch V, Elshaarawy O, Mueller S. Direct modulation of hepatocyte hepcidin signaling by iron. World J Hepatol 2021; 13:1378-1393. [PMID: 34786173 PMCID: PMC8568584 DOI: 10.4254/wjh.v13.i10.1378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver-secreted hepcidin is the systemic master switch of iron homeostasis and decreased levels of hepcidin are considered to cause iron overload not only in hereditary hemochromatosis but also in hemolytic anemia and chronic liver diseases. The regulation of hepcidin is complex and its response to iron is still not completely understood.
AIM To study the direct effect of iron on various established hepcidin signaling pathways in hepatoma cells or primary hepatocytes.
METHODS Hepcidin mRNA expression was studied by quantitative real-time (qRT)-PCR in the presence of various forms of iron including ferric ammonium citrate (FAC) in hepatoma cells (Huh7), murine primary hepatocytes and an established co-culture model of phorbol myristate acetate-differentiated THP-1 monocytes and Huh7 cells. To analyze hepcidin signaling, the response to bone morphogenetic protein 6 (BMP6), interleukin (IL)-6, IL-1β, hypoxia and lipopolysaccharide (LPS) were studied. Hepcidin and small mothers against decapentaplegic 6 (SMAD6) mRNA levels were assessed by qRT-PCR and the expression of phosphorylated signal transducer and activator of transcription 3 (phospho-STAT3), STAT3, phospho-SMAD1/5/8 and SMAD1 proteins were analyzed by western blot.
RESULTS All iron III forms including FAC efficiently blocked hepcidin mRNA expression at non-toxic dosages in Huh7 cells or primary hepatocytes in a time and dose-dependent manner (P < 0.001; P < 0.05). Hepcidin blockage could be efficiently blunted by iron chelators salicylaldehyde isonicotinoyl hydrazone (SIH) and Desferal (P < 0.001). FAC also inhibited BMP6, hypoxia, IL-1β and IL-6-mediated hepcidin induction (P < 0.001; P < 0.001; P < 0.05; P < 0.001), and FAC also inhibited LPS-mediated hepatic hepcidin induction in co-culture model (P < 0.001). Moreover, FAC reduced SMAD6 mRNA and p-SMAD1/5/8 protein expression at basal or upon stimulation by BMP6 (P < 0.05; P < 0.01), and FAC also reduced SMAD6 and p-SMAD1/5/8 expression under hypoxia (P < 0.01; P < 0.05). However, FAC has no significant effect on p-STAT3 protein expression at basal or upon stimulation by various stimuli. Notably, in the presence of the BMP/SMAD signaling pathway inhibitor LDN193189 Hydrochloride (LDN), FAC was unable to further decrease hepcidin, SMAD6 and p-SMAD1/5/8 expression compared with LDN alone.
CONCLUSION Iron directly blocks hepatocellular hepcidin signaling through the BMP/SMAD pathway but independent of STAT3. This mechanism may contribute to continued iron overload in many pathophysiological conditions ultimately causing a vicious cycle of continued hepcidin suppression.
Collapse
Affiliation(s)
- Lin-Na Yu
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Shi-Jin Wang
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Cheng Chen
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Vanessa Rausch
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| | - Omar Elshaarawy
- Department of Hepatology, Gastroenterology and Liver Transplantation, National Liver Institute, Menoufia University, Shebine Elkom 35121, El Salvador
- Department of Gastroenterology, Royal Liverpool University Hospital, Liverpool L7 8XP, United Kingdom
| | - Sebastian Mueller
- Center for Alcohol Research and Salem Medical Center, University of Heidelberg, Heidelberg 69121, Germany
| |
Collapse
|
21
|
Miyata T, Nagy LE. Programmed cell death in alcohol-associated liver disease. Clin Mol Hepatol 2020; 26:618-625. [PMID: 32951412 PMCID: PMC7641549 DOI: 10.3350/cmh.2020.0142] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Alcohol-associated liver disease (ALD), which ranges from mild disease to alcohol-associated hepatitis and cirrhosis, is the most prevalent type of chronic liver disease and a leading cause of morbidity and mortality worldwide. Accumulating evidence reveals that programmed cell death (PCD) plays a crucial role in progression of ALD involving crosstalk between hepatocytes and immune cells. Multiple pathways of PCD, including apoptosis, necroptosis, autophagy, pyroptosis and ferroptosis, are reported in ALD. Interestingly, PCD pathways are intimately linked and interdependent, making it difficult to therapeutically target a single pathway. This review clarifies the multiple types of PCD occurring in liver and focuses on crosstalk between hepatocytes and innate immune cells in ALD.
Collapse
Affiliation(s)
- Tatsunori Miyata
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA.,Department of Gastroenterological Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
22
|
Wu J, Meng QH. Current understanding of the metabolism of micronutrients in chronic alcoholic liver disease. World J Gastroenterol 2020; 26:4567-4578. [PMID: 32884217 PMCID: PMC7445863 DOI: 10.3748/wjg.v26.i31.4567] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) remains an important health problem worldwide. Perturbation of micronutrients has been broadly reported to be a common characteristic in patients with ALD, given the fact that micronutrients often act as composition or coenzymes of many biochemical enzymes responsible for the inflammatory response, oxidative stress, and cell proliferation. Mapping the metabolic pattern and the function of these micronutrients is a prerequisite before targeted intervention can be delivered in clinical practice. Recent years have registered a significant improvement in our understanding of the role of micronutrients on the pathogenesis and progression of ALD. However, how and to what extent these micronutrients are involved in the pathophysiology of ALD remains largely unknown. In the current study, we provide a review of recent studies that investigated the imbalance of micronutrients in patients with ALD with a focus on zinc, iron, copper, magnesium, selenium, vitamin D and vitamin E, and determine how disturbances in micronutrients relates to the pathophysiology of ALD. Overall, zinc, selenium, vitamin D, and vitamin E uniformly exhibited a deficiency, and iron demonstrated an elevated trend. While for copper, both an elevation and deficiency were observed from existing literature. More importantly, we also highlight several challenges in terms of low sample size, study design discrepancies, sample heterogeneity across studies, and the use of machine learning approaches.
Collapse
Affiliation(s)
- Jing Wu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Qing-Hua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
23
|
Liu CY, Wang M, Yu HM, Han FX, Wu QS, Cai XJ, Kurihara H, Chen YX, Li YF, He RR. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci Biotechnol Biochem 2020; 84:1621-1628. [PMID: 32419644 DOI: 10.1080/09168451.2020.1763155] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A critical pathogenic factor in the development of lethal liver failure is cell death induced by the accumulation of lipid reactive oxygen species. In this study, we discovered and illuminated a new mechanism that led to alcoholic liver disease via ferroptosis, an iron-dependent regulated cell death. Study in vitro showed that both necroptosis inhibitor and ferroptosis inhibitors performed significantly protective effect on alcohol-induced cell death, while apoptosis inhibitor and autophagy inhibitor had no such effect. Our data also indicated that alcohol caused the accumulation of lipid peroxides and the mRNA expression of prostaglandin-endoperoxide synthase 2, reduced the protein expression of the specific light-chain subunit of the cystine/glutamate antiporter and glutathione peroxidase 4. Importantly, ferrostatin-1 significantly ameliorated liver injury that was induced by overdosed alcohol both in vitro and in vivo. These findings highlight that targeting ferroptosis serves as a hepatoprotective strategy for alcoholic liver disease treatment.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, China.,Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University , Guangzhou, China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, China
| | - Hong-Min Yu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, China.,Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University , Guangzhou, China
| | - Fang-Xuan Han
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, China
| | - Qiong-Shi Wu
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, China
| | - Xing-Jun Cai
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, China
| | - Hiroshi Kurihara
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, China.,Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University , Guangzhou, China
| | - Yong-Xing Chen
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) , Haikou, China
| | - Yi-Fang Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, China.,Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University , Guangzhou, China
| | - Rong-Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, China.,Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University , Guangzhou, China
| |
Collapse
|
24
|
Song BJ, Abdelmegeed MA, Cho YE, Akbar M, Rhim JS, Song MK, Hardwick JP. Contributing Roles of CYP2E1 and Other Cytochrome P450 Isoforms in Alcohol-Related Tissue Injury and Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:73-87. [PMID: 31576541 DOI: 10.1007/978-3-030-22254-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this review is to briefly summarize the roles of alcohol (ethanol) and related compounds in promoting cancer and inflammatory injury in many tissues. Long-term chronic heavy alcohol exposure is known to increase the chances of inflammation, oxidative DNA damage, and cancer development in many organs. The rates of alcohol-mediated organ damage and cancer risks are significantly elevated in the presence of co-morbidity factors such as poor nutrition, unhealthy diets, smoking, infection with bacteria or viruses, and exposure to pro-carcinogens. Chronic ingestion of alcohol and its metabolite acetaldehyde may initiate and/or promote the development of cancer in the liver, oral cavity, esophagus, stomach, gastrointestinal tract, pancreas, prostate, and female breast. In this chapter, we summarize the important roles of ethanol/acetaldehyde in promoting inflammatory injury and carcinogenesis in several tissues. We also review the updated roles of the ethanol-inducible cytochrome P450-2E1 (CYP2E1) and other cytochrome P450 isozymes in the metabolism of various potentially toxic substrates, and consequent toxicities, including carcinogenesis in different tissues. We also briefly describe the potential implications of endogenous ethanol produced by gut bacteria, as frequently observed in the experimental models and patients of nonalcoholic fatty liver disease, in promoting DNA mutation and cancer development in the liver and other tissues, including the gastrointestinal tract.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.,Department of Food Science and Nutrition, Andong National University, Andong, Republic of Korea
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Johng S Rhim
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Min-Kyung Song
- Investigational Drug Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - James P Hardwick
- Biochemistry and Molecular Pathology in the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
25
|
Uhrig M, Mueller J, Longerich T, Straub BK, Buschle LR, Schlemmer HP, Mueller S, Ziener CH. Susceptibility based multiparametric quantification of liver disease: Non-invasive evaluation of steatosis and iron overload. Magn Reson Imaging 2019; 63:114-122. [PMID: 31425813 DOI: 10.1016/j.mri.2019.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/11/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To evaluate if single-voxel MR spectroscopy (MRS) of iron and fat correlates with biopsy results of hepatic steatosis and iron overload, and to compare MR-measurements with room-temperature susceptometer (RTS), ultrasound, controlled attenuation parameter (CAP) and serum ferritin. MATERIAL AND METHODS In this prospective study, a set of 42 patients out of 47 screened patients with several chronic liver diseases underwent MRI-examination at 1.5 T including R2-measurements by single-voxel high-speed T2-corrected multiecho spectroscopy, additional liver biopsy, abdominal ultrasound, CAP, and RTS. Routine blood and serum parameters were determined, including ferritin. Atomic absorption spectroscopy (AAS) and histologically confirmed extent of hepatic steatosis from liver biopsy were used as reference standard. For correlation of R2, RTS, CAP, ferritin, and ultrasound with results of AAS and histologically determined fat fraction of liver biopsy specimen, Spearman's and Pearson's correlation as well as receiver operating characteristics curve (ROC) analysis with cut-off values determined by maximizing Youden index was used. RESULTS MRS iron assessment correlated best with AAS, with a Pearson correlation coefficient of 0.715 (p < 0.001), followed by RTS 0.520 (p < 0.001), and serum ferritin 0.213 (p = 0.088, not significant). MRS fat quantification correlated best with the histological confirmed extent of steatosis hepatis with a Spearman correlation coefficient of 0.836 (p < 0.001), followed by CAP 0.604 (p < 0.001) and sonographically diagnosed steatosis 0.358 (p = 0.013). CONCLUSION MRS by T2-corrected multiecho single-voxel spectroscopy correlated best with histological results of hepatic fat and iron content compared to RTS, CAP, abdominal ultrasound, and ferritin. Non-invasive methods to assess hepatic fat and iron are of clinical interest for follow-up examinations of patients with chronic liver diseases, where repeated biopsy is not indicated.
Collapse
Affiliation(s)
- Monika Uhrig
- German Cancer Research Center (DKFZ), Department of Radiology, D-69120 Heidelberg, Germany
| | - Johannes Mueller
- Dept. of Medicine, Salem Medical Center and Center for Alcohol Research, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Thomas Longerich
- Dept. of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Beate Katharina Straub
- Dept. of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany; Dept. of Pathology, University Hospital Mainz, D-55131 Mainz, Germany
| | - Lukas R Buschle
- German Cancer Research Center (DKFZ), Department of Radiology, D-69120 Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- German Cancer Research Center (DKFZ), Department of Radiology, D-69120 Heidelberg, Germany
| | - Sebastian Mueller
- Dept. of Medicine, Salem Medical Center and Center for Alcohol Research, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Christian H Ziener
- German Cancer Research Center (DKFZ), Department of Radiology, D-69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Abstract
Hereditary hemochromatosis (HH) is one of the most common genetic disorders among persons of northern European descent. There have been recent advances in the diagnosis, management, and treatment of HH. The availability of molecular diagnostic testing for HH has made possible confirmation of the diagnosis for most patients. Several genotype-phenotype correlation studies have clarified the differences in clinical features between patients with the C282Y homozygous genotypes and other HFE mutation patterns. The increasing use of noninvasive tests such as MRI T2* has made quantification of hepatic iron deposition easier and eliminated the need for liver biopsy in most patients. Serum ferritin of <1,000 ng/mL at diagnosis remains an important diagnostic test to identify patients with a low risk of advanced hepatic fibrosis and should be used routinely as part of the initial diagnostic evaluation. Genetic testing for other types of HH is available but is expensive and generally not useful in most clinical settings. Serum ferritin may be elevated among patients with nonalcoholic fatty liver disease and in those with alcoholic liver disease. These diagnoses are more common than HH among patients with elevated serum ferritin who are not C282Y homozygotes or C282Y/H63D compound heterozygotes. A secondary cause for liver disease should be excluded among patients with suspected iron overload who are not C282Y homozygotes. Phlebotomy remains the mainstay of therapy, but emerging novel therapies such as new chelating agents may have a role for selected patients.
Collapse
|
27
|
Czaja AJ. Review article: iron disturbances in chronic liver diseases other than haemochromatosis - pathogenic, prognostic, and therapeutic implications. Aliment Pharmacol Ther 2019; 49:681-701. [PMID: 30761559 DOI: 10.1111/apt.15173] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disturbances in iron regulation have been described in diverse chronic liver diseases other than hereditary haemochromatosis, and iron toxicity may worsen liver injury and outcome. AIMS To describe manifestations and consequences of iron dysregulation in chronic liver diseases apart from hereditary haemochromatosis and to encourage investigations that clarify pathogenic mechanisms, define risk thresholds for iron toxicity, and direct management METHODS: English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS Hyperferritinemia is present in 4%-65% of patients with non-alcoholic fatty liver disease, autoimmune hepatitis, chronic viral hepatitis, or alcoholic liver disease, and hepatic iron content is increased in 11%-52%. Heterozygosity for the C282Y mutation is present in 17%-48%, but this has not uniformly distinguished patients with adverse outcomes. An inappropriately low serum hepcidin level has characterised most chronic liver diseases with the exception of non-alcoholic fatty liver disease, and the finding has been associated mainly with suppression of transcriptional activity of the hepcidin gene. Iron overload has been associated with oxidative stress, advanced fibrosis and decreased survival, and promising therapies beyond phlebotomy and oral iron chelation have included hepcidin agonists. CONCLUSIONS Iron dysregulation is common in chronic liver diseases other than hereditary haemochromatosis, and has been associated with liver toxicity and poor prognosis. Further evaluation of iron overload as a co-morbid factor should identify the key pathogenic disturbances, establish the risk threshold for iron toxicity, and promote molecular interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
28
|
Thursz M, Gual A, Lackner C, Mathurin P, Moreno C, Spahr L, Sterneck M, Cortez-Pinto H. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J Hepatol 2018; 69:154-181. [PMID: 29628280 DOI: 10.1016/j.jhep.2018.03.018] [Citation(s) in RCA: 570] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
|
29
|
Reply to: "Is room temperature susceptometry really an accurate method to assess hepatocellular iron?". J Hepatol 2017; 67:1346-1348. [PMID: 28797582 DOI: 10.1016/j.jhep.2017.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 12/04/2022]
|
30
|
Does Hypoxia Cause Carcinogenic Iron Accumulation in Alcoholic Liver Disease (ALD)? Cancers (Basel) 2017; 9:cancers9110145. [PMID: 29068390 PMCID: PMC5704163 DOI: 10.3390/cancers9110145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is a leading health risk worldwide. Hepatic iron overload is frequently observed in ALD patients and it is an important and independent factor for disease progression, survival, and the development of primary liver cancer (HCC). At a systemic level, iron homeostasis is controlled by the liver-secreted hormone hepcidin. Hepcidin regulation is complex and still not completely understood. It is modulated by many pathophysiological conditions associated with ALD, such as inflammation, anemia, oxidative stress/H2O2, or hypoxia. Namely, the data on hypoxia-signaling of hepcidin are conflicting, which seems to be mainly due to interpretational limitations of in vivo data and methodological challenges. Hence, it is often overlooked that hepcidin-secreting hepatocytes are physiologically exposed to 2–7% oxygen, and that key oxygen species such as H2O2 act as signaling messengers in such a hypoxic environment. Indeed, with the recently introduced glucose oxidase/catalase (GOX/CAT) system it has been possible to independently study hypoxia and H2O2 signaling. First preliminary data indicate that hypoxia enhances H2O2-mediated induction of hepcidin, pointing towards oxidases such as NADPH oxidase 4 (NOX4). We here review and discuss novel concepts of hypoxia signaling that could help to better understand hepcidin-associated iron overload in ALD.
Collapse
|
31
|
Mueller J, Raisi H, Rausch V, Peccerella T, Simons D, Ziener CH, Schlemmer HP, Seitz HK, Waldburger N, Longerich T, Straub BK, Mueller S. Sensitive and non-invasive assessment of hepatocellular iron using a novel room-temperature susceptometer. J Hepatol 2017; 67:535-542. [PMID: 28483679 DOI: 10.1016/j.jhep.2017.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Liver iron accumulates in various chronic liver diseases where it is an independent factor for survival and carcinogenesis. We tested a novel room-temperature susceptometer (RTS) to non-invasively assess liver iron concentration (LIC). METHODS Two hundred and sixty-four patients with or without signs of iron overload or liver disease were prospectively enrolled. Thirty-five patients underwent liver biopsy with semiquantitative iron determination (Prussian Blue staining), atomic absorption spectroscopy (AAS, n=33), or magnetic resonance imaging (MRI, n=15). RESULTS In vitro studies demonstrated a highly linear (r2=0.998) association between RTS-signal and iron concentration, with a detection limit of 0.3mM. Using an optimized algorithm, accounting for the skin-to-liver capsule distance, valid measurements could be obtained in 84% of cases. LIC-RTS showed a significant correlation with LIC-AAS (r=0.74, p<0.001), LIC-MRI (r=0.64, p<0.001) and hepatocellular iron (r=0.58, p<0.01), but not with macrophage iron (r=0.32, p=0.30). Normal LIC-RTS was 1.4mg/g dry weight. Besides hereditary and transfusional iron overload, LIC-RTS was also significantly elevated in patients with alcoholic liver disease. The areas under the receiver operating characteristic curve (AUROC) for grade 1, 2 and 3 hepatocellular iron overload were 0.72, 0.89 and 0.97, respectively, with cut-off values of 2.0, 4.0 and 5.0mg/g dry weight. Notably, the positive and negative predictive values, sensitivity, specificity and accuracy of severe hepatic iron overload (HIO) (grade ≥2) detection, were equal to AAS and superior to all serum iron markers. Depletion of hepatic iron could be efficiently monitored upon phlebotomy. CONCLUSIONS RTS allows for the rapid and non-invasive measurement of LIC. In comparison to MRI, it could be a cost-effective bedside method for LIC screening. Lay summary: Novel room-temperature susceptometer (RTS) allows for the rapid, sensitive, and non-invasive measurement of liver iron concentration. In comparison to MRI, it could be a cost-effective bedside method for liver iron concentration screening.
Collapse
Affiliation(s)
- Johannes Mueller
- Dept. of Medicine, Salem Medical Center and Center for Alcohol Research and Liver Disease, University of Heidelberg, Germany
| | - Hanna Raisi
- Dept. of Medicine, Salem Medical Center and Center for Alcohol Research and Liver Disease, University of Heidelberg, Germany
| | - Vanessa Rausch
- Dept. of Medicine, Salem Medical Center and Center for Alcohol Research and Liver Disease, University of Heidelberg, Germany
| | - Teresa Peccerella
- Dept. of Medicine, Salem Medical Center and Center for Alcohol Research and Liver Disease, University of Heidelberg, Germany
| | - David Simons
- Dept. of Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | | | - Helmut Karl Seitz
- Dept. of Medicine, Salem Medical Center and Center for Alcohol Research and Liver Disease, University of Heidelberg, Germany
| | | | | | | | - Sebastian Mueller
- Dept. of Medicine, Salem Medical Center and Center for Alcohol Research and Liver Disease, University of Heidelberg, Germany.
| |
Collapse
|
32
|
Gao W, Zhao J, Gao Z, Li H. Synergistic Interaction of Light Alcohol Administration in the Presence of Mild Iron Overload in a Mouse Model of Liver Injury: Involvement of Triosephosphate Isomerase Nitration and Inactivation. PLoS One 2017; 12:e0170350. [PMID: 28103293 PMCID: PMC5245837 DOI: 10.1371/journal.pone.0170350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022] Open
Abstract
It is well known that iron overload promotes alcoholic liver injury, but the doses of iron or alcohol used in studies are usually able to induce liver injury independently. Little attention has been paid to the coexistence of low alcohol consumption and mild iron overload when either of them is insufficient to cause obvious liver damage, although this situation is very common among some people. We studied the interactive effects and the underlining mechanism of mild doses of iron and alcohol on liver injury in a mouse model. Forty eight male Kunming mice were randomly divided into four groups: control, iron (300 mg/kg iron dextran, i.p.), alcohol (2 g/kg/day ethanol for four weeks i.g.), and iron plus alcohol group. After 4 weeks of treatment, mice were sacrificed and blood and livers were collected for biochemical analysis. Protein nitration level in liver tissue was determined by immunoprecipitation and Western blot analysis. Although neither iron overload nor alcohol consumption at our tested doses can cause severe liver injury, it was found that co-administration of the same doses of alcohol and iron resulted in liver injury and hepatic dysfunction, accompanied with elevated ratio of NADH/NAD+, reduced antioxidant ability, increased oxidative stress, and subsequent elevated protein nitration level. Further study revealed that triosephosphate isomerase, an important glycolytic enzyme, was one of the targets to be oxidized and nitrated, which was responsible for its inactivation. These data indicate that even under low alcohol intake, a certain amount of iron overload can cause significant liver oxidative damage, and the modification of triosephosphate isomerasemight be the important underlining mechanism of hepatic dysfunction.
Collapse
Affiliation(s)
- Wanxia Gao
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, P. R. China
- Basis medical college, Hubei University of Science and Technology, Xianning, P. R. China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, P. R. China
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan, P. R. China
| | - Hailing Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
33
|
Milic S, Mikolasevic I, Orlic L, Devcic E, Starcevic-Cizmarevic N, Stimac D, Kapovic M, Ristic S. The Role of Iron and Iron Overload in Chronic Liver Disease. Med Sci Monit 2016; 22:2144-2151. [PMID: 27332079 PMCID: PMC4922827 DOI: 10.12659/msm.896494] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
The liver plays a major role in iron homeostasis; thus, in patients with chronic liver disease, iron regulation may be disturbed. Higher iron levels are present not only in patients with hereditary hemochromatosis, but also in those with alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C viral infection. Chronic liver disease decreases the synthetic functions of the liver, including the production of hepcidin, a key protein in iron metabolism. Lower levels of hepcidin result in iron overload, which leads to iron deposits in the liver and higher levels of non-transferrin-bound iron in the bloodstream. Iron combined with reactive oxygen species leads to an increase in hydroxyl radicals, which are responsible for phospholipid peroxidation, oxidation of amino acid side chains, DNA strain breaks, and protein fragmentation. Iron-induced cellular damage may be prevented by regulating the production of hepcidin or by administering hepcidin agonists. Both of these methods have yielded successful results in mouse models.
Collapse
Affiliation(s)
- Sandra Milic
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
- Department of Nephrology, Dialysis and Kidney Transplantation, UHC Rijeka, Rijeka, Croatia
| | - Lidija Orlic
- Department of Nephrology, Dialysis and Kidney Transplantation, UHC Rijeka, Rijeka, Croatia
| | - Edita Devcic
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
| | | | - Davor Stimac
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
| | - Miljenko Kapovic
- Department of Biology and Medical Genetics, Faculty of Medicine, Rijeka, Croatia
| | - Smiljana Ristic
- Department of Biology and Medical Genetics, Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
34
|
Neuman MG, Malnick S, Maor Y, Nanau RM, Melzer E, Ferenci P, Seitz HK, Mueller S, Mell H, Samuel D, Cohen LB, Kharbanda KK, Osna NA, Ganesan M, Thompson KJ, McKillop IH, Bautista A, Bataller R, French SW. Alcoholic liver disease: Clinical and translational research. Exp Mol Pathol 2015; 99:596-610. [PMID: 26342547 DOI: 10.1016/j.yexmp.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 02/05/2023]
Abstract
The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical research, translational research, pathogenesis and therapies. A special accent is placed on alcohol misuse, as alcohol is a legally commercialized and taxable product. Drinking alcohol, particularly from a young age, is a major health problem. Alcoholism is known to contribute to morbidity and mortality. A systematic literature search was performed in order to obtain updated data (2008-2015). The review is focused on genetic polymorphisms of alcohol metabolizing enzymes and the role of cytochrome p450 2E1 and iron in ALD. Alcohol-mediated hepatocarcinogenesis is also discussed in the presence or absence of co-morbidities such as viral hepatitis C as well as therapeutic the role of innate immunity in ALD-HCV. Moreover, emphasis was placed on alcohol and drug interactions, as well as liver transplantation for end-stage ALD. Finally, the time came to eradicate alcohol-induced liver and intestinal damage by using betaine.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Stephen Malnick
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | - Yaakov Maor
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada
| | - Ehud Melzer
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | | | - Helmut K Seitz
- University of Heidelberg, Heidelberg, Germany; Department of Medicine, Gastroenterology and Hepatology, Centre for Alcohol Research, Salem Medical Centre, Heidelberg, Germany
| | - Sebastian Mueller
- University of Heidelberg, Heidelberg, Germany; Department of Medicine, Gastroenterology and Hepatology, Centre for Alcohol Research, Salem Medical Centre, Heidelberg, Germany
| | - Haim Mell
- Israel Antidrug and Alcohol Authority, Jerusalem, Israel
| | - Didier Samuel
- Liver Transplant Unit, Research Inserm-Paris XI Unit 785, Centre Hepatobiliaire, Hopital Paul Brousse, Villejuif, Paris, France
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre and Department of Internal Medicine, University of Toronto, Toronto, Canada
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Abraham Bautista
- Office of Extramural Activities, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|