1
|
Ba T, Niu R, Gao J, Li W, Dong M, Duan J, Gong Y, Wu S, Lyu Z, Liu Y, Li N. Microbiota-gut-brain-axis: a new target of acupuncture therapy for post-stroke cognitive impairment. Front Microbiol 2025; 16:1425054. [PMID: 40342596 PMCID: PMC12058749 DOI: 10.3389/fmicb.2025.1425054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025] Open
Abstract
Stroke-induced cognitive impairment is a common complication and an important risk factor for disability. Prevention and treatment of secondary stroke injuries are crucial. Modern research has found that the gut microenvironment can directly or indirectly affect neurological function and cerebral ischemic outcomes, and their crosstalk is achieved through the microbiota-gut-brain-axis (MGBA). Acupuncture, as a promising non-drug treatment, has been recommended for improving post-stroke cognitive impairment (PSCI). However, in recent years, few studies have systematically analyzed the potential mechanisms in this field, and whether acupuncture can improve PSCI through the MGBA remains to be explored. This review comprehensively summarizes literature and shows that, acupuncture, as an adjuvant therapy can play a potential important role in the treatment of PSCI by regulating the microbiota-gut-brain-axis. Acupuncture can repair intestinal epithelial barrier, regulate gut microbiota and serum metabolites, alleviate gut inflammation and neuroinflammation, and regulating HPA axis function, etc. From the studies we have included, the evidence for its effectiveness remains limited, these results should be interpreted with caution due to the low quality of evidence. Future high-quality clinical and experimental studies are needed. This review also discussed the development prospects of acupuncture in improving PSCI via the MGBA, such as genomics, personalized therapy, establishment of standards, and combination therapy, etc. providing new research ideas and scientific and reliable evidence for the application of acupuncture in PSCI.
Collapse
Affiliation(s)
- Te Ba
- Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, China
| | - Rui Niu
- Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, China
| | - Jianjun Gao
- Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, China
| | - Wenfang Li
- Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, China
| | - Mengwei Dong
- Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, China
| | | | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sinuo Wu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongxi Lyu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Liu
- Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 inflammasome and gut microbiota-brain axis: a new perspective on white matter injury after intracerebral hemorrhage. Neural Regen Res 2025; 21:01300535-990000000-00684. [PMID: 39885662 PMCID: PMC12094575 DOI: 10.4103/nrr.nrr-d-24-00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
ABSTRACT Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury. The NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in this context. This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome. These mechanisms include metabolic pathways (involving short-chain fatty acids, lipopolysaccharides, lactic acid, bile acids, trimethylamine-N-oxide, and tryptophan), neural pathways (such as the vagus nerve and sympathetic nerve), and immune pathways (involving microglia and T cells). We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage. The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood-brain barrier, inducing neuroinflammation, and interfering with nerve regeneration. Finally, we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury. Our review highlights the critical role of the gut microbiota-brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage, paving the way for exploring potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanhua Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xueqi Xiao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tong Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tian Zhou
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024; 16:2181-2217. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
4
|
Wang YN, Zhai XY, Wang Z, Gao CL, Mi SC, Tang WL, Fu XM, Li HB, Yue LF, Li PF, Xi SY. Jianpi-Huatan-Huoxue-Anshen formula ameliorates gastrointestinal inflammation and microecological imbalance in chemotherapy-treated mice transplanted with H22 hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:4209-4231. [DOI: 10.4251/wjgo.v16.i10.4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Jianpi-Huatan-Huoxue-Anshen formula [Tzu-Chi cancer-antagonizing & life-protecting II decoction (TCCL)] is a Chinese medical formula that has been clinically shown to reduce the gastrointestinal side effects of chemotherapy in cancer patients and improve their quality of life. However, its effect and mechanism on the intestinal microecology after chemotherapy are not yet clear.
AIM To discover the potential mechanisms of TCCL on gastrointestinal inflammation and microecological imbalance in chemotherapy-treated mice transplanted with hepatocellular carcinoma (HCC).
METHODS Ninety-six mice were inoculated subcutaneously with HCC cells. One week later, the mice received a large dose of 5-fluorouracil by intraperitoneal injection to establish a HCC chemotherapy model. Thirty-six mice were randomly selected before administration, and feces, ileal tissue, and ileal contents were collected from each mouse. The remaining mice were randomized into normal saline, continuous chemotherapy, Yangzheng Xiaoji capsules-treated, and three TCCL-treated groups. After treatment, feces, tumors, liver, spleen, thymus, stomach, jejunum, ileum, and colon tissues, and ileal contents were collected. Morphological changes, serum levels of IL-1β, IL-6, IL-8, IL-10, IL-22, TNF-α, and TGF-β, intestinal SIgA, and protein and mRNA expression of ZO-1, NF-κB, Occludin, MUC-2, Claudin-1, and IκB-α in colon tissues were documented. The effect of TCCL on the abundance and diversity of intestinal flora was analyzed using 16S rDNA sequencing.
RESULTS TCCL treatment improved thymus and spleen weight, thymus and spleen indexes, and body weight, decreased tumor volumes and tumor tissue cell density, and alleviated injury to gastric, ileal, and colonic mucosal tissues. Among proteins and genes associated with inflammation, IL-10, TGF-β, SIgA, ZO-1, MUC-2, and Occludin were upregulated, whereas NF-κB, IL-1β, IL-6, TNF-α, IL-22, IL-8, and IκB-α were downregulated. Additionally, TCCL increased the proportions of fecal Actinobacteria, AF12, Adlercreutzia, Clostridium, Coriobacteriaceae, and Paraprevotella in the intermediate stage of treatment, decreased the proportions of Mucipirillum, Odoribacter, RF32, YS2, and Rikenellaceae but increased the proportions of p_Deferribacteres and Lactobacillus at the end of treatment. Studies on ileal mucosal microbiota showed similar findings. Moreover, TCCL improved community richness, evenness, and the diversity of fecal and ileal mucosal flora.
CONCLUSION TCCL relieves pathological changes in tumor tissue and chemotherapy-induced gastrointestinal injury, potentially by reducing the release of pro-inflammatory factors to repair the gastrointestinal mucosa, enhancing intestinal barrier function, and maintaining gastrointestinal microecological balance. Hence, TCCL is a very effective adjuvant to chemotherapy.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Xiang-Yang Zhai
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Zheng Wang
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Chun-Ling Gao
- Department of Radiotherapy, Chenggong Hospital of Xiamen University, PLA 73rd Army Hospital, Xiamen 361003, Fujian Province, China
| | - Sui-Cai Mi
- Department of Oncology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361015, Fujian Province, China
| | - Wen-Li Tang
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Xue-Min Fu
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Huai-Bang Li
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Li-Feng Yue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Peng-Fei Li
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Sheng-Yan Xi
- Department of TCM, Xiang’an Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| |
Collapse
|
5
|
Wu H, Wang S, Xie J, Ji F, Peng W, Qian J, Shen Q, Hou G. Effects of Dietary Lycopene on the Growth Performance, Antioxidant Capacity, Meat Quality, Intestine Histomorphology, and Cecal Microbiota in Broiler Chickens. Animals (Basel) 2024; 14:203. [PMID: 38254372 PMCID: PMC10812500 DOI: 10.3390/ani14020203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The experiment aimed to investigate the effects of dietary lycopene on the growth performance, antioxidant capacity, meat quality, intestine histomorphology, and cecal microbiota in broiler chickens. We randomly divided five hundred and seventy-six one-day-old male broilers into four groups each with six replicates and 24 chickens in each replicate. The control group (CG) was fed the basal diet, and the other groups were given powder lycopene of 10, 20, and 30 mg/kg lycopene (LP10, LP20, and LP30, respectively). Compared with the control group, (1) the dietary lycopene increased (p = 0.001) the average daily gain and decreased (p = 0.033) the feed conversion ratio in the experimental groups; (2) the glutathione peroxidase enzyme contents in LP20 were higher (p =< 0.001) in myocardium; (3) the crude protein contents were higher (p = 0.007) in the group treated with 30 mg/kg dietary lycopene; (4) the jejunum villous height was higher (p = 0.040) in LP20; (5) the Unclassified-f-Ruminococcaceae relative abundance was significantly higher (p = 0.043) in LP20. In this study, adding 20 mg/kg dietary lycopene to the broiler chickens' diets improved the growth performance, antioxidant capacity, meat quality, intestine histomorphology, and cecal microbiota in broiler chickens.
Collapse
Affiliation(s)
- Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Sibo Wang
- Abna Management (Shangai) Co., Ltd., Shanghai 200050, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiajun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Weiqi Peng
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jinyu Qian
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qian Shen
- Hainan Xuhuai Technology Co., Ltd., Haikou 571127, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
6
|
Araújo de Vasconcelos MH, Tavares RL, Dutra MLDV, Batista KS, D'Oliveira AB, Pinheiro RO, Pereira RDA, Lima MDS, Salvadori MGDSS, de Souza EL, Magnani M, Alves AF, Aquino JDS. Extra virgin coconut oil ( Cocos nucifera L.) intake shows neurobehavioural and intestinal health effects in obesity-induced rats. Food Funct 2023. [PMID: 37318515 DOI: 10.1039/d3fo00850a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present study aimed to evaluate the effect of E-VCO on the neurobehaviour and intestinal health parameters of obesity-induced rats, focusing on food consumption, body composition, bacterial and faecal organic acids and histological analyses in the hippocampus and colon. A total of 32 male Wistar rats were randomized into healthy (HG, n = 16) and obese groups (OG, n = 16), which consumed a control or cafeteria diet for eight weeks, respectively. After this period, they were subdivided into four groups: healthy (HG, n = 8); healthy treated with E-VCO (HGCO, n = 8); obese (OG, n = 8); obese treated with E-VCO (OGCO, n = 8), continuing for another eight weeks with their respective diets. The treated groups received 3000 mg kg-1 of E-VCO and control groups received water via gavage. Food preference, body weight gain, body composition, anxiety- and depression-like behaviour were evaluated. Bacteria and organic acids were evaluated in faeces, and histological analyses of the hippocampus and M1 and M2 macrophages in the colon were performed. E-VCO reduced energy intake (16.68%) and body weight gain (16%), although it did not reduce the fat mass of obese rats. E-VCO showed an antidepressant effect, increased lactic acid bacteria counts and modulated organic acids in obese rats. Furthermore, E-VCO protected the hippocampus from neuronal degeneration caused by the obesogenic diet, decreased the M1 macrophage and increased the M2 macrophage population in the gut. The results suggest neurobehavioural modulation and improved gut health by E-VCO, with promising effects against obesity-related comorbidities.
Collapse
Affiliation(s)
- Maria Helena Araújo de Vasconcelos
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Renata Leite Tavares
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Maria Letícia da Veiga Dutra
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Aline Barbosa D'Oliveira
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
| | - Rafael Oliveira Pinheiro
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Ramon de Alencar Pereira
- Laboratory of Leishmaniasis Pathology, Department of Pathology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Dos Santos Lima
- Laboratory of Food and Beverage Analysis, Department of Food Technology, Institute Federal of Sertão Pernambucano (IF-Sertão PE), Petrolina, Pernambuco, Brazil
| | | | - Evandro Leite de Souza
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
- Laboratory of Food Microbiology and Biochemistry, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Marciane Magnani
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
- Laboratory of Microbial Processes in Food, Department of Food Engineering, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| |
Collapse
|
7
|
Zhao L, Xiao J, Li S, Guo Y, Fu R, Hua S, Du Y, Xu S. The interaction between intestinal microenvironment and stroke. CNS Neurosci Ther 2023; 29 Suppl 1:185-199. [PMID: 37309254 PMCID: PMC10314114 DOI: 10.1111/cns.14275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Stroke is not only a major cause of disability but also the third leading cause of death, following heart disease and cancer. It has been established that stroke causes permanent disability in 80% of survivors. However, current treatment options for this patient population are limited. Inflammation and immune response are major features that are well-recognized to occur after a stroke. The gastrointestinal tract hosts complex microbial communities, the largest pool of immune cells, and forms a bidirectional regulation brain-gut axis with the brain. Recent experimental and clinical studies have highlighted the importance of the relationship between the intestinal microenvironment and stroke. Over the years, the influence of the intestine on stroke has emerged as an important and dynamic research direction in biology and medicine. AIMS In this review, we describe the structure and function of the intestinal microenvironment and highlight its cross-talk relationship with stroke. In addition, we discuss potential strategies aiming to target the intestinal microenvironment during stroke treatment. CONCLUSION The structure and function of the intestinal environment can influence neurological function and cerebral ischemic outcome. Improving the intestinal microenvironment by targeting the gut microbiota may be a new direction in treating stroke.
Collapse
Affiliation(s)
- Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Jie Xiao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Songlin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shengyu Hua
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| |
Collapse
|
8
|
Shi X, Yu L, Huang R, Bao W, Wu S, Wu Z. Identification of a 5-Methylcytosine Site (mC-7) That May Inhibit CXCL11 Expression and Regulate E. coli F18 Susceptibility in IPEC-J2 Cells. Vet Sci 2022; 9:vetsci9110600. [PMID: 36356076 PMCID: PMC9698616 DOI: 10.3390/vetsci9110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The primary pathogen causing post-weaning diarrhea in piglets is Escherichia coli F18 (E. coli F18), hence it is essential to investigate the mechanism governing E. coli F18 resistance in native pig breeds. Based on the previous RNA-seq results of the duodenum from E. coli F18-resistant and -susceptible Meishan piglets, CXCL11, an important functional gene, was preliminarily screened. In this investigation, in order to further examine the expression regulation mechanism of E. coli F18 in intestinal porcine epithelial cells (IPEC-J2) against E. coli F18 infection, CXCL11 gene expression on IPEC-J2 cells infected by E. coli F18 was detected, which was significantly downregulated (p < 0.01). Secondly, the overexpression on the IPEC-J2 cell line was successfully structured, and a relative quantification method of the PILIN, bacteria enumeration, and immunofluorescence assay indicated that the CXCL11 overexpression significantly reduced the ability of E. coli F18 to interact with IPEC-J2 in vitro. The promoter region of the CXCL11 gene was predicted to contain a CpG island (−619 ~ −380 bp) of which 13 CpG sites in the sequencing region were methylated to varying degrees, and the methylation level of one CPG site (mC-7) positively linked negatively with the expression of the CXCL11 gene (p < 0.05). Meanwhile, a dual luciferase assay detected the mutation of the mC-7 site that significantly inhibited the luciferase activity of the CXCL11 gene promoter (p < 0.01). Transcription factor prediction and expression verification indicated that mC-7 is located in the OSR1-binding domain, and that its expression level is related to E. coli F18 susceptibility. We speculated that methylation modification of the mC-7 site of the CpG island in the promoter region of the CXCL11 gene might inhibit the binding of transcription factor OSR1 with the mC-7 site, and then affect its expression level to regulate the susceptibility to E. coli F18.
Collapse
Affiliation(s)
- Xiaoru Shi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Luchen Yu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rufeng Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (Z.W.)
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (Z.W.)
| |
Collapse
|
9
|
Jiang ZF, Wu W, Hu HB, Li ZY, Zhong M, Zhang L. P2X7 receptor as the regulator of T-cell function in intestinal barrier disruption. World J Gastroenterol 2022; 28:5265-5279. [PMID: 36185635 PMCID: PMC9521516 DOI: 10.3748/wjg.v28.i36.5265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
The intestinal mucosa is a highly compartmentalized structure that forms a direct barrier between the host intestine and the environment, and its dysfunction could result in a serious disease. As T cells, which are important components of the mucosal immune system, interact with gut microbiota and maintain intestinal homeostasis, they may be involved in the process of intestinal barrier dysfunction. P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effects of extracellular adenosine triphosphate and is expressed by most innate or adaptive immune cells, including T cells. Current evidence has demonstrated that P2X7R is involved in inflammation and mediates the survival and differentiation of T lymphocytes, indicating its potential role in the regulation of T cell function. In this review, we summarize the available research about the regulatory role and mechanism of P2X7R on the intestinal mucosa-derived T cells in the setting of intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Zhi-Feng Jiang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Wei Wu
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Han-Bing Hu
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Zheng-Yang Li
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Center of Emergency & Intensive Care Unit, Jinshan Hospital of Fudan University, Shanghai 201508, China
| |
Collapse
|
10
|
Guidetti C, Salvini E, Viri M, Deidda F, Amoruso A, Visciglia A, Drago L, Calgaro M, Vitulo N, Pane M, Caucino AC. Randomized Double-Blind Crossover Study for Evaluating a Probiotic Mixture on Gastrointestinal and Behavioral Symptoms of Autistic Children. J Clin Med 2022; 11:jcm11185263. [PMID: 36142909 PMCID: PMC9504504 DOI: 10.3390/jcm11185263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a diagnostic challenge with a still partially uncertain etiology, in which genetic and environmental factors have now been assessed. Among the hypotheses underlying the involvement of biological and environmental factors, the gut–brain axis is of particular interest in autism spectrum disorders. Several studies have highlighted the related incidence of particular gastrointestinal symptoms (GISs) in children suffering from ASDs. Probiotics have shown success in treating several gastrointestinal dysbiotic disorders; therefore, it is plausible to investigate whether they can alleviate behavioral symptoms as well. On these bases, a randomized double-blind crossover study with a placebo was conducted, evaluating the effects of a mixture of probiotics in a group of 61 subjects aged between 24 months and 16 years old with a diagnosis of ASD. Behavioral evaluation was performed through the administration of a questionnaire including a Parenting Stress Index (PSI) test and the Vineland Adaptive Behavior Scale (VABS). The Psycho-Educational Profile and the Autism Spectrum Rating Scale (ASRS) were also evaluated. Microbial composition analyses of fecal samples of the two groups was also performed. The study showed significant improvements in GISs, communication skills, maladaptive behaviors, and perceived parental stress level after the administration of probiotics. Microbiome alpha diversity was comparable between treatment arms and no significant differences were found, although beta diversity results were significantly different in the treatment group between T0 and T1 time points. Streptococcus thermophilus, Bifidobacterium longum, Limosilactobacillus fermentum, and Ligilactobacillus salivarius species were identified as some of the most discriminant taxa positively associated with T1 samples. This preliminary study corroborates the relationship between intestinal microbiota and ASD recently described in the literature.
Collapse
Affiliation(s)
- Cristina Guidetti
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | - Elena Salvini
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | - Maurizio Viri
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | | | - Angela Amoruso
- Probiotical Research Srl, Via E. Mattei 3, 28100 Novara, Italy
| | | | - Lorenzo Drago
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Correspondence:
| | - Matteo Calgaro
- Department of Biotechnology, University of Verona, 37100 Verona, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, 37100 Verona, Italy
| | - Marco Pane
- Probiotical Research Srl, Via E. Mattei 3, 28100 Novara, Italy
| | - Anna Claudia Caucino
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| |
Collapse
|
11
|
Murata H, Barnhill LM, Bronstein JM. Air Pollution and the Risk of Parkinson's Disease: A Review. Mov Disord 2022; 37:894-904. [PMID: 35043999 PMCID: PMC9119911 DOI: 10.1002/mds.28922] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease, as well as other neurodegenerative disorders, are primarily characterized by pathological accumulation of proteins, inflammation, and neuron loss. Although there are some known genetic risk factors, most cases cannot be explained by genetics alone. Therefore, it is important to determine the environmental factors that confer risk and the mechanisms by which they act. Recent epidemiological studies have found that exposure to air pollution is associated with an increased risk for development of Parkinson's disease, although not all results are uniform. The variability between these studies is likely due to differences in what components of air pollution are measured, timing and methods used to determine exposures, and correction for other variables. There are several potential mechanisms by which air pollution could act to increase the risk for development of Parkinson's disease, including direct neuronal toxicity, induction of systemic inflammation leading to central nervous system inflammation, and alterations in gut physiology and the microbiome. Taken together, air pollution is an emerging risk factor in the development of Parkinson's disease. A number of potential mechanisms have been implicated by which it promotes neuropathology providing biological plausibility, and these mechanisms are likely relevant to the development of other neurodegenerative disorders such as Alzheimer's disease. This field is in its early stages, but a better understanding of how environmental exposures influence the pathogenesis of neurodegeneration is essential for reducing the incidence of disease and finding disease-modifying therapies. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | - Jeff M. Bronstein
- David Geffen School of Medicine at UCLA, Department of Neurology and Molecular Toxicology, 710 Westwood Plaza, Los Angeles, CA 90095
| |
Collapse
|
12
|
OUP accepted manuscript. Nutr Rev 2022; 80:2002-2016. [DOI: 10.1093/nutrit/nuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Song X, Pi S, Gao Y, Zhou F, Yan S, Chen Y, Qiao L, Dou X, Shao D, Xu C. The Role of Vasoactive Intestinal Peptide and Mast Cells in the Regulatory Effect of Lactobacillus casei ATCC 393 on Intestinal Mucosal Immune Barrier. Front Immunol 2021; 12:723173. [PMID: 34899686 PMCID: PMC8657605 DOI: 10.3389/fimmu.2021.723173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) plays an important role in the neuro-endocrine-immune system. Mast cells (MCs) are important immune effector cells. This study was conducted to investigate the protective effect of L. casei ATCC 393 on Enterotoxigenic Escherichia coli (ETEC) K88-induced intestinal mucosal immune barrier injury and its association with VIP/MC signaling by in vitro experiments in cultures of porcine mucosal mast cells (PMMCs) and in vivo experiments using VIP receptor antagonist (aVIP) drug. The results showed that compared with the ETEC K88 and lipopolysaccharides (LPS)-induced model groups, VIP pretreatment significantly inhibited the activation of MCs and the release of β-hexosaminidase (β-hex), histamine and tryptase. Pretreatment with aVIP abolished the protective effect of L. casei ATCC 393 on ETEC K88-induced intestinal mucosal immune barrier dysfunction in C57BL/6 mice. Also, with the blocking of VIP signal transduction, the ETEC K88 infection increased serum inflammatory cytokines, and the numbers of degranulated MCs in ileum, which were decreased by administration of L. casei ATCC 393. In addition, VIP mediated the regulatory effect of L. casei ATCC 393 on intestinal microbiota in mice. These findings suggested that VIP may mediate the protective effect of L.casei ATCC 393 on intestinal mucosal immune barrier dysfunction via MCs.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yueming Gao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Fengxia Zhou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yue Chen
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dongyan Shao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
14
|
Zhang X, Zhang R, Wang J, Sui N, Xu G, Yan H, Zhu Y, Xie Z, Jiang S. Construction of Recombinant Lactococcus lactis Strain Expressing VP1 Fusion Protein of Duck Hepatitis A Virus Type 1 and Evaluation of Its Immune Effect. Vaccines (Basel) 2021; 9:vaccines9121479. [PMID: 34960225 PMCID: PMC8709260 DOI: 10.3390/vaccines9121479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
With the continuous development of duck farming and the increasing breeding density, the incidence of duck hepatitis A virus type 1 (DHAV-1) has been on the rise, seriously endangering the development of duck farming. To reduce the use of antibiotics in duck breeding, susceptibility risks and mortality, and avoid virulence recovery and immune failure risk, this study aims to develop a new type of mucosal immune probiotics and make full use of molecular biology techniques, on the level of genetic engineering, to modify Lactococcus lactis (L. lactis). In this study, a secretory recombinant L. lactis named MG1363-VP1 with an enhanced Green Fluorescent Protein (eGFP) and translation enhancer T7g10L was constructed, which could express the VP1-eGFP fusion protein of DHAV-1. The animal experiment in ducklings was performed to detect the immune response and protection effect of oral microecologics by recombinant L. lactis. The results showed that oral L. lactis MG1363-VP1 significantly induced the body’s humoral immune system and mucosal immune system to produce specific anti-VP1 IgG antibodies and mucosal secretory immunoglobulin A (sIgA) for DHAV-1 in ducklings, and cytokines including interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-10 (IL-10), and interferon gamma (IFN-γ). The mortality rate was monitored simultaneously by the natural infestation in the process of production and breeding; notably, the ducklings vaccinated with L. lactis MG1363-VP1 were effectively protected against the nature infection of DHAV-1. The recombinant L. lactis MG1363-VP1 constructed in this study provides a new means of preventing and controlling DHAV-1 infection in the future.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Key Laboratory of Animal Microecological Preparations, Taian 271000, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Jingyu Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Nana Sui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Hui Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (X.Z.); (R.Z.); (J.W.); (N.S.); (G.X.); (H.Y.); (Y.Z.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
- Correspondence: ; Tel.: +86-538-8245799
| |
Collapse
|
15
|
Liu A, Chen X, Huang Z, Chen D, Yu B, Chen H, He J, Yan H, Zheng P, Yu J, Luo Y. Effects of dietary lycopene supplementation on intestinal morphology, antioxidant capability and inflammatory response in finishing pigs. Anim Biotechnol 2021; 33:563-570. [PMID: 34866548 DOI: 10.1080/10495398.2021.2009490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study, eighteen healthy Duroc × Landrace × Yorkshire barrows with initial body weight of 63.89 ± 1.15 kg were randomly allotted to three treatments and fed a basal diet or a basal diet supplemented with 100 mg/kg and 200 mg/kg lycopene, respectively. Data showed that villus height to crypt depth ratio increased with 200 mg/kg lycopene (p < 0.05) in the jejunum. In duodenum, the malondialdehyde content was decreased (p < 0.05) in 100 and 200 mg/kg lycopene groups. Furthermore, in the jejunum, dietary 100 and 200 mg/kg lycopene supplementation increased (p < 0.05) catalase activity. In the duodenum, interleukin-1β (IL-1β), nuclear factor-κB and tumor necrosis factor-α contents were decreased (p < 0.05) in 200 mg/kg lycopene group. In the jejunum, IL-1β content was reduced (p < 0.05) and IL-1β mRNA expression was down-regulated (p = 0.046) in 200 mg/kg lycopene group. Additionally, claudin-1 mRNA and protein levels in 200 mg/kg group were also increased (p < 0.05). These results indicated that dietary lycopene supplementation could maintain intestinal health, which was associated with improving intestinal morphology, enhancing tight junction function, inhibiting inflammatory response, and elevating antioxidant capacity in finishing pigs.
Collapse
Affiliation(s)
- Aimin Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
16
|
Yang FW, Fang B, Pang GF, Zhang M, Ren FZ. Triazophos and its metabolite diethyl phosphate have different effects on endocrine hormones and gut health in rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:566-576. [PMID: 34038317 DOI: 10.1080/03601234.2021.1922042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticide (OP) residues present in food can be metabolized into diethylphosphate (DEP) in vivo. Epidemiological studies of OPs have usually focused on these metabolites, while animal studies mainly assessed the OPs. Here, we compared the health risks of a frequently detected OP, triazophos (TAP), and its major metabolite, DEP, in rats. Levels of serum lipids and, sex hormones were measured using immunoassay kits. Gut hormones and inflammatory cytokines were assessed using a multiplexing kit, and the gut microbiota was evaluated by 16S rRNA gene sequencing. After a 24-week exposure period, both TAP and DEP significantly decreased serum levels of triglycerides, cholesterol, low-density lipoprotein cholesterol, and IL-6 (p < 0.05). However, DEP exposure had a stronger effect on serum estradiol (p < 0.05) than TAP, whereas only TAP inhibited the secretion of gut hormones. Both TAP and DEP enriched the pathogenic genera Oscillibacter, Peptococcus and Paraprevotella in the gut, and TAP also enriched enteritis-related genera Roseburia and Oscillibacter, which may affect the secretion of gut hormones. These findings indicate that the use of dialkyl phosphates as markers of OPs to examine the correlations of OP exposure with diseases may only provide partial information, especially for diseases related to gut health and the endocrine system.
Collapse
Affiliation(s)
- Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Bioconversion pathways and metabolic profile of daidzin by human intestinal bacteria using UPLC–Q-TOF/MS. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03736-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Wang C, Fang X. Inflammation and Overlap of Irritable Bowel Syndrome and Functional Dyspepsia. J Neurogastroenterol Motil 2021; 27:153-164. [PMID: 33795538 PMCID: PMC8026374 DOI: 10.5056/jnm20175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) and functional dyspepsia (FD) are common functional gastrointestinal disorders (FGIDs) and account for a large proportion of consulting patients. These 2 disorders overlap with each other frequently. The pathogenesis of IBS or FD is complicated and multi-factors related, in which infectious or non-infectious inflammation and local or systemic immune response play significant roles. There are few studies focusing on the mechanism of inflammation in patients with overlap syndrome of irritable bowel syndrome and functional dyspepsia (IBS-FD). This review focuses on current advances about the role of inflammation in the pathogenesis of IBS and FD and the possible mechanism of inflammation in IBS-FD.
Collapse
Affiliation(s)
- Congzhen Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiucai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Su L, Li D, Su J, Zhang E, Chen S, Zheng C, Luo T, Li M, Chen X, Huang G, Xie Y, Li S. Polysaccharides of Sporoderm-Broken Spore of Ganoderma lucidum Modulate Adaptive Immune Function via Gut Microbiota Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8842062. [PMID: 33859713 PMCID: PMC8009716 DOI: 10.1155/2021/8842062] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/13/2021] [Indexed: 12/26/2022]
Abstract
Ganoderma lucidum (Leyss.Fr.) Karst is one of the well-known medicinal macrofungi all over the world, and mounting researches have focused on the polysaccharides derived from the spores of G. lucidum. In the present study, BALB/c mice (n = 8-10) were administered with crude polysaccharides of G. lucidum spores (CPGS) and the refined polysaccharides of G. lucidum spores (RPGS) for 30 days to investigate their effect on the adaptive immune system. Results showed that CPGS and RPGS displayed diverse effects on the lymphocyte activity in the spleen. The splenocyte proliferation activity upon mitogen was suppressed by CPGS and RPGS, while the NK cell's tumor-killing ability was promoted by CPGS. Both CPGS and RPGS could increase the proportion of naïve T cells in thymus, but only RPGS significantly uplifted the percentage of T cells, as well as the T cell subsets, in peripheral blood, and promoted the activation by upregulating the expression of costimulatory factor CD28. Moreover, 16S sequencing results showed that the effects of CPGS and RPGS were closely related to the regulation of gut microbiota. β-diversity of the microbiome was evidently changed by CPGS and RPGS. The phytoestrogen/polysaccharide-metabolizing bacteria (Adlercreutzia, Parabacteroides, and Prevotella), and an unclassified Desulfovibrionaceae, were remarkably enriched by CPGS or RPGS, and functions involving carbohydrate metabolism, membrane transport, and lipid metabolism were regulated. Moreover, the enrichments of Adlercreutzia, Prevotella, and Desulfovibrionaceae were positively related to the immune regulation by CPGS and RPGS, while that of Parabacteroides displayed a negative correlation. These findings suggested a promising effect of the polysaccharide from sporoderm-broken spore of G. lucidum in immune regulation to promote health control.
Collapse
Affiliation(s)
- Lu Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Dan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Jiyan Su
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Enqi Zhang
- Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Chaoqun Zheng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Ting Luo
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, Guangdong, China
| | - Muxia Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Xiaohong Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Shanshan Li
- Department of Traditional Chinese Medicine, The People's Hospital of Dongying, Dongying, Shandong, China
| |
Collapse
|
20
|
Xu C, Yan S, Guo Y, Qiao L, Ma L, Dou X, Zhang B. Lactobacillus casei ATCC 393 alleviates Enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction via TLRs/mast cells pathway. Life Sci 2020; 244:117281. [DOI: 10.1016/j.lfs.2020.117281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 12/16/2022]
|
21
|
Impact of endurance exercise and probiotic supplementation on the intestinal microbiota: a cross-over pilot study. Pilot Feasibility Stud 2019; 5:76. [PMID: 31198580 PMCID: PMC6556026 DOI: 10.1186/s40814-019-0459-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/13/2019] [Indexed: 02/08/2023] Open
Abstract
Background The human microbiota has a broad range of functions contributing to metabolic processes and the activities of our immune system. Its influence on health, well-being and chronic diseases are discussed in various studies. The intestinal microbiota and the mucosal integrity are influenced by diet, environment and other lifestyle factors, including physical activity. There are correlations between cardiorespiratory fitness and important markers of intestinal health. However, data linking endurance exercise to microbiota composition are sparse. Many endurance athletes take probiotics to reduce gastrointestinal symptoms linked to exercise or immunosuppression, but the longitudinal data is insufficient. This randomised, controlled cross-over pilot study will examine the impact of specific endurance training and probiotic supplementation on the intestinal microbiota and mucosa in healthy, athletic students. Objective The aim of this pilot study is to elucidate the impact of physical activity on the intestinal microbiota and mucosa with regard to the effects of a probiotic supplementation. Methods In this pilot study, thirty non-specifically trained student athletes will participate in an intervention consisting of a two-week rest (baseline) period, a four-week exercise programme and a four-week probiotic intervention using SymbioLactComp®. The exercise programme consists of three 60-min running workouts per week at 70–85% of the peak heart rate (HRpeak). Primary endpoint of this pilot study is the feasibility and practicality of the intervention as well as a sample size estimation. Furthermore, anthropometric measurements and information on nutrition and lifestyle will be obtained. The peak oxygen uptake (VO2peak) and peak heart rate (HRpeak) (determined during a shuttle run test) as well as selected blood and saliva parameters (haemogram, cytokines) will be evaluated. Changes to the intestinal microbiota will be analysed by stool diagnostics (KyberKompaktPRO®, KyberPlus®). The potential changes may include microbiota composition, bacterial metabolites and mucosa- and immune markers. Conclusion Results will be used for the design of a main randomised controlled trial with a larger collective based on feasibility, validity and sample size estimation as well as the potential effects of endurance exercise on intestinal microbiota and mucosa. Evidence-based information of an exercise-altered microbiota could be of importance for the prevention and therapy of intestinal or immune disorders. Trial registration German Clinical Trials Register: DRKS00011108. Retrospectively registered on 28 November 2016. Electronic supplementary material The online version of this article (10.1186/s40814-019-0459-9) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Yang F, Li J, Pang G, Ren F, Fang B. Effects of Diethyl Phosphate, a Non-Specific Metabolite of Organophosphorus Pesticides, on Serum Lipid, Hormones, Inflammation, and Gut Microbiota. Molecules 2019; 24:molecules24102003. [PMID: 31137755 PMCID: PMC6572208 DOI: 10.3390/molecules24102003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Organophosphorus pesticides (OPs) can be metabolized to diethyl phosphate (DEP) in the gut environment, which may affect the immune and endocrine systems and the microbiota. Correlations between OPs and diseases have been established by epidemiological studies, mainly based on the contents of their metabolites, including DEP, in the serum or urine. However, the effects of DEP require further study. Therefore, in this study, adult male rats were exposed to 0.08 or 0.13 mg/kg DEP for 20 weeks. Serum levels of hormones, lipids, and inflammatory cytokines as well as gut microbiota were measured. DEP significantly enriched opportunistic pathogens, including Paraprevotella, Parabacteroides, Alloprevotella, and Helicobacter, leading to a decrease in interleukin-6 (IL-6). Exposure to the high dose of DEP enriched the butyrate-producing genera, Alloprevotella and Intestinimonas, leading to an increase in estradiol and a resulting decrease in total triglycerides (TGs) and low-density lipoprotein cholesterol (LDL-C); meanwhile, DEP-induced increases in peptide tyrosine‒tyrosine (PYY) and ghrelin were attributed to the enrichment of short-chain fatty acid-producing Clostridium sensu stricto 1 and Lactobacillus. These findings indicate that measuring the effects of DEP is not a proxy for measuring the effects of its parent compounds.
Collapse
Affiliation(s)
- Fangwei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinwang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Guofang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
23
|
Meyer R, Fox AT, Chebar Lozinsky A, Michaelis LJ, Shah N. Non-IgE-mediated gastrointestinal allergies-Do they have a place in a new model of the Allergic March. Pediatr Allergy Immunol 2019; 30:149-158. [PMID: 30403301 DOI: 10.1111/pai.13000] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Abstract
The rise in food allergy has been described as the "second wave" of the allergy epidemic, with some developed countries reporting a prevalence of 10% of challenge-proven food allergies. Recognition of the Allergic March has played a crucial role in identifying causality in allergic conditions, linking atopic dermatitis to food allergy and food allergy to other atopic disorders, thereby highlighting opportunities in prevention and the importance of early intervention. This publication will establish the value of weaving the less well-understood, non-IgE-mediated food allergy into the Allergic March and mapping its progression through childhood and its associated co-morbidities. The proposed non-IgE-mediated Allergic March highlights the concomitant presentation of gastrointestinal symptoms and atopic dermatitis as early presenting symptoms in confirmed non-IgE-mediated allergies and the later development of atopic co-morbidities, including asthma and allergic rhinitis, similar to the IgE-mediated Allergic March. This publication highlights recent observations of a link between non-IgE-mediated food allergy in early childhood and functional gastrointestinal disorders in later life and also the reported occurrence of extra-intestinal manifestations at later ages. Although significant limitations exist in regard to the proposed evolution of the Allergic March model, the authors hope that this publication will influence the management of non-IgE-mediated gastrointestinal allergies and inform future research and interventions.
Collapse
Affiliation(s)
- Rosan Meyer
- Department Paediatrics, Imperial College, London, UK
| | - Adam T Fox
- Department of Paediatric Allergy, Evelina London Children's Hospital, London, UK
| | | | - Louise J Michaelis
- Department of Allergy and Immunology, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Neil Shah
- Department Gastroenterology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
24
|
Intestinal barrier dysfunction following traumatic brain injury. Neurol Sci 2019; 40:1105-1110. [PMID: 30771023 DOI: 10.1007/s10072-019-03739-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) can cause non-neurological injuries to other organs such as the intestine. Newer studies have shown that paracellular hyperpermeability is the basis of intestinal barrier dysfunction following TBI. Ischemia-reperfusion injury, inflammatory response, abnormal release of neurotransmitters and hormones, and malnutrition contribute to TBI-induced intestinal barrier dysfunction. Several interventions that may protect intestinal barrier function and promote the recovery of TBI have been proposed, but relevant studies are still limited. This review is to clarify the established mechanisms of intestinal barrier dysfunction following TBI and to describe the possible strategies to reduce or prevent intestinal barrier dysfunction.
Collapse
|
25
|
Li J, Tang M, Xue Y. Review of the effects of silver nanoparticle exposure on gut bacteria. J Appl Toxicol 2018; 39:27-37. [PMID: 30247756 DOI: 10.1002/jat.3729] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022]
Abstract
Gut bacteria are involved in regulating several important physiological functions in the host, and intestinal dysbacteriosis plays an important role in several human diseases, including intestinal, metabolic and autoimmune disorders. Although silver nanoparticles (AgNPs) are increasingly being incorporated into medical and consumer products due to their unique physicochemical properties, studies have indicated their potential to affect adversely the gut bacteria. In this review, we focus on the biotoxicological effects of AgNPs entering the gastrointestinal tract and the relationship of these effects with important nanoscale properties. We discuss in detail the mechanisms underlying the bactericidal toxicity effects of AgNPs and explore the relationships between AgNPs, gut bacteria and disease. Finally, we highlight the need to focus on the negative effects of AgNPs usage to facilitate appropriate development of these particles.
Collapse
Affiliation(s)
- Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| |
Collapse
|
26
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
27
|
Ewald DR, Sumner SCJ. Human microbiota, blood group antigens, and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1413. [PMID: 29316320 PMCID: PMC5902424 DOI: 10.1002/wsbm.1413] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022]
Abstract
Far from being just "bugs in our guts," the microbiota interacts with the body in previously unimagined ways. Research into the genome and the microbiome has revealed that the human body and the microbiota have a long-established but only recently recognized symbiotic relationship; homeostatic balance between them regulates body function. That balance is fragile, easily disturbed, and plays a fundamental role in human health-our very survival depends on the healthy functioning of these microorganisms. Increasing rates of cardiovascular, autoimmune, and inflammatory diseases, as well as epidemics in obesity and diabetes in recent decades are believed to be explained, in part, by unintended effects on the microbiota from vaccinations, poor diets, environmental chemicals, indiscriminate antibiotic use, and "germophobia." Discovery and exploration of the brain-gut-microbiota axis have provided new insights into functional diseases of the gut, autoimmune and stress-related disorders, and the role of probiotics in treating certain affective disorders; it may even explain some aspects of autism. Research into dietary effects on the human gut microbiota led to its classification into three proposed enterotypes, but also revealed the surprising role of blood group antigens in shaping those populations. Blood group antigens have previously been associated with disease risks; their subsequent association with the microbiota may reveal mechanisms that lead to development of nutritional interventions and improved treatment modalities. Further exploration of associations between specific enteric microbes and specific metabolites will foster new dietary interventions, treatment modalities, and genetic therapies, and inevitably, their application in personalized healthcare strategies. This article is categorized under: Laboratory Methods and Technologies > Metabolomics Translational, Genomic, and Systems Medicine > Translational Medicine Physiology > Mammalian Physiology in Health and Disease.
Collapse
Affiliation(s)
- D Rose Ewald
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081
| | - Susan CJ Sumner
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081
| |
Collapse
|
28
|
Rosenfeld CS. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Front Cell Infect Microbiol 2017; 7:396. [PMID: 28936425 PMCID: PMC5596107 DOI: 10.3389/fcimb.2017.00396] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome consists of over 103–104 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs), heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of MissouriColumbia, MO, United States.,Biomedical Sciences, University of MissouriColumbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of MissouriColumbia, MO, United States.,Genetics Area Program, University of MissouriColumbia, MO, United States
| |
Collapse
|
29
|
Javurek AB, Suresh D, Spollen WG, Hart ML, Hansen SA, Ellersieck MR, Bivens NJ, Givan SA, Upendran A, Kannan R, Rosenfeld CS. Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles. Sci Rep 2017; 7:2822. [PMID: 28588204 PMCID: PMC5460200 DOI: 10.1038/s41598-017-02880-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Due to their antimicrobial properties, silver nanoparticles (AgNPs) are being used in non-edible and edible consumer products. It is not clear though if exposure to these chemicals can exert toxic effects on the host and gut microbiome. Conflicting studies have been reported on whether AgNPs result in gut dysbiosis and other changes within the host. We sought to examine whether exposure of Sprague-Dawley male rats for two weeks to different shapes of AgNPs, cube (AgNC) and sphere (AgNS) affects gut microbiota, select behaviors, and induces histopathological changes in the gastrointestinal system and brain. In the elevated plus maze (EPM), AgNS-exposed rats showed greater number of entries into closed arms and center compared to controls and those exposed to AgNC. AgNS and AgNC treated groups had select reductions in gut microbiota relative to controls. Clostridium spp., Bacteroides uniformis, Christensenellaceae, and Coprococcus eutactus were decreased in AgNC exposed group, whereas, Oscillospira spp., Dehalobacterium spp., Peptococcaeceae, Corynebacterium spp., Aggregatibacter pneumotropica were reduced in AgNS exposed group. Bacterial reductions correlated with select behavioral changes measured in the EPM. No significant histopathological changes were evident in the gastrointestinal system or brain. Findings suggest short-term exposure to AgNS or AgNC can lead to behavioral and gut microbiome changes.
Collapse
Affiliation(s)
- Angela B Javurek
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Dhananjay Suresh
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - William G Spollen
- Department of Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Marcia L Hart
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah A Hansen
- Office of Animal Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Mark R Ellersieck
- Department of Agriculture Experimental Station-Statistics, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Scott A Givan
- Department of Informatics Research Core Facility, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65211, USA
| | - Anandhi Upendran
- Department of MU-institute of Clinical and Translational Sciences (MU-iCATS), University of Missouri, Columbia, MO, 65211, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211, USA.
| | - Raghuraman Kannan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211, USA.
- Department of Radiology, University of Missouri, Columbia, MO, 65211, USA.
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
30
|
Devant M, Penner GB, Marti S, Quintana B, Fábregas F, Bach A, Arís A. Behavior and inflammation of the rumen and cecum in Holstein bulls fed high-concentrate diets with different concentrate presentation forms with or without straw supplementation. J Anim Sci 2017; 94:3902-3917. [PMID: 27898891 DOI: 10.2527/jas.2016-0594] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Twenty-four individually housed Holstein bulls (395 ± 7.3 kg BW and 252 ± 3.1 d age) were exposed to a 2 × 2 factorial design (meal vs. pellets; with vs. without straw) to evaluate the effect of concentrate form and provision of straw in finishing diets on behavior and expression of rumen and cecum epithelium genes related to inflammation and behavior. Concentrate and straw consumption were recorded monthly and behavior (self-grooming, social, oral nonnutritive, tongue rolling, eating, drinking, ruminating, and lying) was recorded every two weeks. Bulls were slaughtered after 64 d of exposure to treatments, lesions on the rumen and liver were assessed, and samples of the rumen and cecum were collected. Straw supplementation tended ( = 0.08) to increase concentrate intake (8.0 vs. 7.4 ± 0.26 kg/d), increased ( < 0.01) the proportion of time ruminating (9.4 vs. 3.1 ± 1.02%), and decreased ( < 0.01) the occurrence of oral nonnutritive behaviors (0.52 vs. 1.34 ± 0.123 times/15 min) relative to bulls deprived of straw. Provision of straw increased ruminal pH, but the magnitude of the change was greater when the concentrate was provided as meal compared with pellets (interaction, < 0.05). When straw was not supplemented, all rumen samples had papillae fusion, whereas only 16.7% of bulls fed pellets and straw had papillae fusions (interaction, < 0.05). Vacuole grading of the rumen papillae was less ( < 0.01) in bulls provided straw compared with bulls without straw. For the ruminal epithelium, straw provision tended to increase the relative expression ratio of (which stimulates peptide YY, PYY, and serotonin secretion; = 0.06) and α (which modulates immune reactions and behavior; = 0.09) and increased and (tight junction proteins; < 0.05), along with β and (proinflammatory cytokines; < 0.01) and ( < 0.01) in the rumen. Moreover, it also tended to increase the relative gene expression ratio of β (an antimicrobial peptide; = 0.10) and ( = 0.10). Bulls fed pellets had a decreased ruminal relative expression ratio of α ( < 0.05). Bulls without straw had increased ( < 0.05) the cecum relative expression ratio of β. In conclusion, the lack of straw supplementation in bulls fed high-concentrate diets modifies behavior and affects rumen macroscopic morphology and expression of epithelial genes that could be related to behavior and inflammation.
Collapse
|
31
|
Lee KN, Lee OY. The Role of Mast Cells in Irritable Bowel Syndrome. Gastroenterol Res Pract 2016; 2016:2031480. [PMID: 28115927 PMCID: PMC5225338 DOI: 10.1155/2016/2031480] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, but its treatment is unsatisfactory as its pathophysiology is multifactorial. The putative factors of IBS pathophysiology are visceral hypersensitivity and intestinal dysmotility, also including psychological factors, dysregulated gut-brain axis, intestinal microbiota alterations, impaired intestinal permeability, and mucosal immune alterations. Recently, mucosal immune alterations have received much attention with the role of mast cells in IBS. Mast cells are abundant in the intestines and function as intestinal gatekeepers at the interface between the luminal environment in the intestine and the internal milieu under the intestinal epithelium. As a gatekeeper at the interface, mast cells communicate with the adjacent cells such as epithelial, neuronal, and other immune cells throughout the mediators released when they themselves are activated. Many studies have suggested that mast cells play a role in the pathophysiology of IBS. This review will focus on studies of the role of mast cell in IBS and the limitations of studies and will also consider future directions.
Collapse
Affiliation(s)
- Kang Nyeong Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Oh Young Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, Rosenfeld CS. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes 2016; 7:471-485. [PMID: 27624382 PMCID: PMC5103659 DOI: 10.1080/19490976.2016.1234657] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gut dysbiosis may result in various diseases, such as metabolic and neurobehavioral disorders. Exposure to endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE), especially during development, may also increase the risk for such disorders. An unexplored possibility is that EDC-exposure might alter the gut microbial composition. Gut flora and their products may thus be mediating factors for the disease-causing effects of these chemicals. To examine the effects of EDCs on the gut microbiome, female and male monogamous and biparental California mice (Peromyscus californicus) were exposed to BPA (50 mg/kg feed weight) or EE (0.1 ppb) or control diet from periconception through weaning. 16s rRNA sequencing was performed on bacterial DNA isolated from fecal samples, and analyses performed for P0 and F1 males and females. Both BPA and EE induced generational and sex-dependent gut microbiome changes. Many of the bacteria, e.g. Bacteroides, Mollicutes, Prevotellaceae, Erysipelotrichaceae, Akkermansia, Methanobrevibacter, Sutterella, whose proportions increase with exposure to BPA or EE in the P0 or F1 generation are associated with different disorders, such as inflammatory bowel disease (IBD), metabolic disorders, and colorectal cancer. However, the proportion of the beneficial bacterium, Bifidobacterium, was also elevated in fecal samples of BPA- and EE-exposed F1 females. Intestinal flora alterations were also linked to changes in various metabolic and other pathways. Thus, BPA and EE exposure may disrupt the normal gut flora, which may in turn result in systemic effects. Probiotic supplementation might be an effective means to mitigate disease-promoting effects of these chemicals.
Collapse
Affiliation(s)
- Angela B. Javurek
- Bond Life Sciences Center, University of Missouri, Columbia, MO USA,Biomedical Sciences, University of Missouri, Columbia, MO USA
| | - William G. Spollen
- Bond Life Sciences Center, University of Missouri, Columbia, MO USA,Informatics Research Core Facility, University of Missouri, Columbia, MO USA
| | - Sarah A. Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, MO USA,Biomedical Sciences, University of Missouri, Columbia, MO USA,Animal Sciences, University of Missouri, Columbia, MO USA
| | | | | | - Scott A. Givan
- Bond Life Sciences Center, University of Missouri, Columbia, MO USA,Informatics Research Core Facility, University of Missouri, Columbia, MO USA,Molecular Microbiology and Immunology, University of Missouri, Columbia, MO USA
| | - Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO USA,Biomedical Sciences, University of Missouri, Columbia, MO USA,Genetics Area Program, University of Missouri, Columbia, MO USA,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO USA,CONTACT Cheryl S. Rosenfeld, DVM, PhD Biomedical Sciences and Bond Life Sciences Center, University of Missouri, 440F Bond Life Sciences Center, 1201 E. Rollins Rd., Columbia, MO 65211
| |
Collapse
|
33
|
Oriá RB, Murray-Kolb LE, Scharf RJ, Pendergast LL, Lang DR, Kolling GL, Guerrant RL. Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. Nutr Rev 2016; 74:374-86. [PMID: 27142301 DOI: 10.1093/nutrit/nuw008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota undergoes active remodeling in the first 6 to 18 months of life, during which time the characteristics of the adult microbiota are developed. This process is strongly influenced by the early diet and enteric pathogens. Enteric infections and malnutrition early in life may favor microbiota dysbiosis and small intestinal bacterial overgrowth, resulting in intestinal barrier dysfunction and translocation of intestinal bacterial products, ultimately leading to low-grade, chronic, subclinical systemic inflammation. The leaky gut-derived low-grade systemic inflammation may have profound consequences on the gut-liver-brain axis, compromising normal growth, metabolism, and cognitive development. This review examines recent data suggesting that early-life enteric infections that lead to intestinal barrier disruption may shift the intestinal microbiota toward chronic systemic inflammation and subsequent impaired cognitive development.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA.
| | - Laura E Murray-Kolb
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca J Scharf
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Pendergast
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R Lang
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Glynis L Kolling
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Richard L Guerrant
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Pigrau M, Rodiño-Janeiro BK, Casado-Bedmar M, Lobo B, Vicario M, Santos J, Alonso-Cotoner C. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome. Neurogastroenterol Motil 2016; 28:463-86. [PMID: 26556786 DOI: 10.1111/nmo.12717] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. PURPOSE We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome.
Collapse
Affiliation(s)
- M Pigrau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - B K Rodiño-Janeiro
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Casado-Bedmar
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - B Lobo
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Vicario
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - J Santos
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - C Alonso-Cotoner
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
35
|
Karakuła-Juchnowicz H, Szachta P, Opolska A, Morylowska-Topolska J, Gałęcka M, Juchnowicz D, Krukow P, Lasik Z. The role of IgG hypersensitivity in the pathogenesis and therapy of depressive disorders. Nutr Neurosci 2016; 20:110-118. [PMID: 25268936 DOI: 10.1179/1476830514y.0000000158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depressive episodes are associated not only with changes in neurotransmission in the central nervous system, but also may lead to structural changes in the brain through neuroendocrine, inflammatory, and immunological mechanisms. The aim of this article is to present a new hypothesis connecting the inflammatory theory of depression with IgG food hypersensitivity and leaky gut syndrome. This new potential pathway that may mediate the pathogenesis of depression implies the existence of subsequent developmental stages. Overproduction of zonulin triggered, for example, by gliadin through activation of the epidermal growth factor receptor and protease-activated receptor causes loosening of the tight junction barrier and an increase in permeability of the gut wall ('leaky gut'). This results in a process allowing larger molecules that would normally stay in the gut to cross into the bloodstream and in the induction of IgG-dependent food sensitivity. This condition causes an increased immune response and consequently induces the release of proinflammatory cytokines, which in turn may lead to the development of depressive symptoms. It seems advisable to assess the intestinal permeability using as a marker, for example, zonulin and specific IgG concentrations against selected nutritional components in patients with depression. In the case of increased IgG concentrations, the implementation of an elimination-rotation diet may prove to be an effective method of reducing inflammation. This new paradigm in the pathogenesis of depressive disorders linking leaky gut, IgG-dependent food sensitivity, inflammation, and depression is promising, but still needs further studies to confirm this theory.
Collapse
Affiliation(s)
| | | | - Aneta Opolska
- c Department of Dietetics Higher School of Social Sciences , Lublin , Poland
| | | | | | | | - Paweł Krukow
- a Department of Clinical Neuropsychiatry Medical University , Lublin , Poland
| | - Zofia Lasik
- b Institute for Microecology , Poznań , Poland
| |
Collapse
|
36
|
Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut 2016; 65:155-68. [PMID: 26194403 DOI: 10.1136/gutjnl-2015-309151] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Functional gastrointestinal disorders (FGIDs) are characterized by chronic complaints arising from disorganized brain-gut interactions leading to dysmotility and hypersensitivity. The two most prevalent FGIDs, affecting up to 16-26% of worldwide population, are functional dyspepsia and irritable bowel syndrome. Their etiopathogenic mechanisms remain unclear, however, recent observations reveal low-grade mucosal inflammation and immune activation, in association with impaired epithelial barrier function and aberrant neuronal sensitivity. These findings come to challenge the traditional view of FGIDs as pure functional disorders, and relate the origin to a tangible organic substrate. The mucosal inflammatory infiltrate is dominated by mast cells, eosinophils and intraepithelial lymphocytes in the intestine of FGIDs. It is well established that mast cell activation can generate epithelial and neuro-muscular dysfunction and promote visceral hypersensitivity and altered motility patterns in FGIDs, postoperative ileus, food allergy and inflammatory bowel disease. This review will discuss the role of mucosal mast cells in the gastrointestinal tract with a specific focus on recent advances in disease mechanisms and clinical management in irritable bowel syndrome and functional dyspepsia.
Collapse
Affiliation(s)
- Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, Leuven, Belgium
| | - Maria Vicario
- Neuro-immuno-gastroenterology Laboratory, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Javier Santos
- Neuro-immuno-gastroenterology Laboratory, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
37
|
Tao JH, Zhao M, Wang DG, Yang C, Du LY, Qiu WQ, Jiang S. Biotransformation and metabolic profile of catalpol with human intestinal microflora by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1009-1010:163-9. [DOI: 10.1016/j.jchromb.2015.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/05/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
|
38
|
Tshala-Katumbay D, Mwanza JC, Rohlman DS, Maestre G, Oriá RB. A global perspective on the influence of environmental exposures on the nervous system. Nature 2015; 527:S187-92. [PMID: 26580326 PMCID: PMC4772865 DOI: 10.1038/nature16034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Economic transitions in the era of globalization warrant a fresh look at the neurological risks associated with environmental change. These are driven by industrial expansion, transfer and mobility of goods, climate change and population growth. In these contexts, risk of infectious and non-infectious diseases are shared across geographical boundaries. In low- and middle-income countries, the risk of environmentally mediated brain disease is augmented several fold by lack of infrastructure, poor health and safety regulations, and limited measures for environmental protection. Neurological disorders may occur as a result of direct exposure to chemical and/or non-chemical stressors, including but not limited to, ultrafine particulate matters. Individual susceptibilities to exposure-related diseases are modified by genetic, epigenetic and metagenomic factors. The existence of several uniquely exposed populations, including those in the areas surrounding the Niger Delta or north western Amazon oil operations; those working in poorly regulated environments, such as artisanal mining industries; or those, mostly in sub-Saharan Africa, relying on cassava as a staple food, offers invaluable opportunities to advance the current understanding of brain responses to environmental challenges. Increased awareness of the brain disorders that are prevalent in low- and middle-income countries and investments in capacity for further environmental health-related research are positive steps towards improving human health.
Collapse
Affiliation(s)
- Desire Tshala-Katumbay
- Department of Neurology, Oregon Health &Science University, Portland, Oregon, 97239, USA.,National Institute of Biomedical Research, 1197 Kinshasa I, Congo.,Department of Neurology, University of Kinshasa, 825 Kinshasa XI, Congo
| | - Jean-Claude Mwanza
- Department of Ophthalmology, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - Diane S Rohlman
- Occupational and Environmental Health, The University of Iowa, Iowa 52242, USA.,Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon, 97239, USA
| | - Gladys Maestre
- G. H. Sergievsky Center, Columbia University Medical Center, New York, New York 10032, USA
| | - Reinaldo B Oriá
- Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza 60020, Brazil
| |
Collapse
|
39
|
Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, Feng W, McClain CJ, Zhang HG. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 2015; 4:28713. [PMID: 26610593 PMCID: PMC4662062 DOI: 10.3402/jev.v4.28713] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN)–mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant–derived nanoparticles.
Collapse
Affiliation(s)
- Xiaoying Zhuang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Zhong-Bin Deng
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Jingyao Mu
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Lifeng Zhang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Donald Miller
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Wenke Feng
- Division of Gastroenterology, Department of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Division of Gastroenterology, Department of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA.,Robley Rex Louisville Veterans Administration Medical Center, Louisville, KY, USA
| | - Huang-Ge Zhang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA.,Robley Rex Louisville Veterans Administration Medical Center, Louisville, KY, USA;
| |
Collapse
|
40
|
Rosenfeld CS. Microbiome Disturbances and Autism Spectrum Disorders. Drug Metab Dispos 2015; 43:1557-71. [PMID: 25852213 DOI: 10.1124/dmd.115.063826] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/06/2015] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders (ASDs) are considered a heterogenous set of neurobehavioral diseases, with the rates of diagnosis dramatically increasing in the past few decades. As genetics alone does not explain the underlying cause in many cases, attention has turned to environmental factors as potential etiological agents. Gastrointestinal disorders are a common comorbidity in ASD patients. It was thus hypothesized that a gut-brain link may account for some autistic cases. With the characterization of the human microbiome, this concept has been expanded to include the microbiota-gut-brain axis. There are mounting reports in animal models and human epidemiologic studies linking disruptive alterations in the gut microbiota or dysbiosis and ASD symptomology. In this review, we will explore the current evidence that gut dysbiosis in animal models and ASD patients correlates with disease risk and severity. The studies to date have surveyed how gut microbiome changes may affect these neurobehavioral disorders. However, we harbor other microbiomes in the body that might impact brain function. We will consider microbial colonies residing in the oral cavity, vagina, and the most recently discovered one in the placenta. Based on the premise that gut microbiota alterations may be causative agents in ASD, several therapeutic options have been tested, such as diet modulations, prebiotics, probiotics, synbiotics, postbiotics, antibiotics, fecal transplantation, and activated charcoal. The potential benefits of these therapies will be considered. Finally, the possible mechanisms by which changes in the gut bacterial communities may result in ASD and related neurobehavioral disorders will be examined.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, Thompson Center for Autism and Neurobehavioral Disorders, Genetics Area Program, and Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
41
|
Yuan S, Chen QP. Th17 cells and intestinal mucosal immunity. Shijie Huaren Xiaohua Zazhi 2015; 23:3094-3100. [DOI: 10.11569/wcjd.v23.i19.3094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T helper cell 17 (Th17) cells are identified as a new subset of T helper cells. Their differentiation is associated with a variety of cytokines and transcription factors, and they can secrete a variety of cytokines, such as interleukin (IL)-17 and IL-22, both of which can promote inflammation in the intestinal mucosa barrier and have a protective effect on organs. Probiotics
have been confirmed to have anti-inflammatory effects in the intestinal tract, the role of which may be associated with inhibiting Th17 cell activity. However, the stable number of Th17 cells requires the presence of intestinal symbiotic microbita. This paper will review the differentiation of Th17 cells and their role in intestinal mucosal immunity.
Collapse
|
42
|
Tuning the Brain-Gut Axis in Health and Disease. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-014-0004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability. J Neurogastroenterol Motil 2015; 21:33-50. [PMID: 25537677 PMCID: PMC4288093 DOI: 10.5056/jnm14084] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022] Open
Abstract
The interface between the intestinal lumen and the mucosa is the location where the majority of ingested immunogenic particles face the scrutiny of the vast gastrointestinal immune system. Upon regular physiological conditions, the intestinal micro-flora and the epithelial barrier are well prepared to process daily a huge amount of food-derived antigens and non-immunogenic particles. Similarly, they are ready to prevent environmental toxins and microbial antigens to penetrate further and interact with the mucosal-associated immune system. These functions promote the development of proper immune responses and oral tolerance and prevent disease and inflammation. Brain-gut axis structures participate in the processing and execution of response signals to external and internal stimuli. The brain-gut axis integrates local and distant regulatory networks and super-systems that serve key housekeeping physiological functions including the balanced functioning of the intestinal barrier. Disturbance of the brain-gut axis may induce intestinal barrier dysfunction, increasing the risk of uncontrolled immunological reactions, which may indeed trigger transient mucosal inflammation and gut disease. There is a large body of evidence indicating that stress, through the brain-gut axis, may cause intestinal barrier dysfunction, mainly via the systemic and peripheral release of corticotropin-releasing factor. In this review, we describe the role of stress and corticotropin-releasing factor in the regulation of gastrointestinal permeability, and discuss the link to both health and pathological conditions.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Marc Pigrau
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Beatriz Lobo
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - María Vicario
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Javier Santos
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| |
Collapse
|
44
|
Tang HM, Tu X, Chai YN, Zhang QY, Huang YS, Zhang Q. Contents of amino acid neurotransmitters and expression of γ-aminobutyric acid receptor in two subtypes of irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2014; 22:4559-4565. [DOI: 10.11569/wcjd.v22.i30.4559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the feasibility of using in vivo cerebral microdialysis and high performance liquid chromatography (HPLC) to determine the contents of glutamate (Glu), glycine (Gly), γ-aminobutyric acid (γ-GABA) and taurine (Tau), and to observe the protein expression of γ-aminobutyric acid receptor A (GABAAα1) in irritable bowel syndrome with diarrhea (IBS-D) and irritable bowel syndrome with constipation (IBS-C) to investigate the preliminary pathogenesis of these two subtypes.
METHODS: Using in vitro relative recovery and in vivo relative loss ratio as monitoring indicators, the feasibility of using cerebral microdialysis and HPLC to determine the contents of Glu, Gly, Tau and γ-GABA was first explored. IBS-C was induced by cold water administration and IBS-D by folium sennae combined with restraint. Cerebral microdialysis and HPLC were then used to determine the contents of Glu, Gly, Tau and γ-GABA in the rat brain. Western blot was used to detect the expression of GABAAα1 protein in brain tissue.
RESULTS: In vivo cerebral microdialysis and HPLC were feasible for determining the contents of Glu and γ-GABA; the in vitro relative recovery rates were 21.6% and 24.5%, respectively; in vivo relative loss rates were 41.8% and 32.5%. Compared with rats in the normal group, the ratio of Glu/γ-GABA in the IBS-C and IBS-D groups significantly increased (P < 0.05). GABAAα1 protein expression in both IBS-C and IBS-D groups were significantly higher than that in the normal group (P < 0.05). In addition, GABAAα1 protein expression in the IBS-D group was significantly higher than that in the IBS-C group (P < 0.05).
CONCLUSION: The pathogenesis of IBS-C and IBS-D may be related with Glu/GABA ratio and GABAAα1 in the brain.
Collapse
|