4
|
Park C, Park IH, Yoo T, Kim H, Ryu S, Lee JY, Kim JM, Kim SW. Association between Childhood Trauma and Suicidal Behavior in the General Population. Chonnam Med J 2021; 57:126-131. [PMID: 34123740 PMCID: PMC8167439 DOI: 10.4068/cmj.2021.57.2.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/24/2022] Open
Abstract
This study aimed to investigate the associations between various types of childhood trauma and suicidal behavior in the general population in South Korea. This mental health survey included a total of 1,490 general citizens living in a metropolitan South Korean city who completed a questionnaire that assessed respondents' histories of childhood trauma before the age of 12 years, including bullying victimization, emotional abuse, sexual abuse, and physical abuse, as well as suicidal behavior, including current suicidal ideation and histories of suicide planning and attempts. The following psychiatric scales were administered: Hospital Anxiety and Depression Scale (HADS), Rosenberg Self-Esteem Scale (R-SES), Connor-Davidson Resilience Scale (CD-RISC), Perceived Stress Scale (PSS), and visual analogue scale of EuroQol 5D (EQ-5D). Participants who experienced any childhood trauma had significantly higher HADS and PSS scores, and significantly lower EQ-5D scores. Additionally, participants with any type of childhood trauma were significantly more likely to have current suicidal ideation and histories of planned and attempted suicide. Multivariate analyses adjusted for confounding variables indicated that bullying victimization and sexual abuse were associated significantly with all types of suicidal behavior. Physical abuse was associated significantly with histories of suicide planning and attempts. The present findings showed that any type of childhood trauma was associated with higher levels of suicidality, anxiety, depression, and perceived stress, as well as lower health-related quality of life, in the general population. In particular, associations between childhood trauma and suicidality were identified after adjustment for confounding variables.
Collapse
Affiliation(s)
- Cheol Park
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - In-Hoo Park
- Gwangju Mental Health and Welfare Commission, Gwangju, Korea
| | - Taeyoung Yoo
- Department of Psychiatry, Gwangju City Mental Hospital, Gwangju, Korea
| | - Honey Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ju-Yeon Lee
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea.,Gwangju Mental Health and Welfare Commission, Gwangju, Korea
| |
Collapse
|
5
|
Franceschi Biagioni A, Cellot G, Pati E, Lozano N, Ballesteros B, Casani R, Coimbra NC, Kostarelos K, Ballerini L. Graphene oxide prevents lateral amygdala dysfunctional synaptic plasticity and reverts long lasting anxiety behavior in rats. Biomaterials 2021; 271:120749. [PMID: 33714913 DOI: 10.1016/j.biomaterials.2021.120749] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
Engineered small graphene oxide (s-GO) sheets were previously shown to reversibly down-regulate glutamatergic synapses in the hippocampus of juvenile rats, disclosing an unexpected translational potential of these nanomaterials to target selective synapses in vivo. Synapses are anatomical specializations acting in the Central Nervous System (CNS) as functional interfaces among neurons. Dynamic changes in synaptic function, named synaptic plasticity, are crucial to learning and memory. More recently, pathological mechanisms involving dysfunctional synaptic plasticity were implicated in several brain diseases, from dementia to anxiety disorders. Hyper-excitability of glutamatergic neurons in the lateral nucleus of the amygdala complex (LA) is substantially involved in the storage of aversive memory induced by stressful events enabling post-traumatic stress disorder (PTSD). Here we translated in PTSD animal model the ability of s-GO, when stereotaxically administered to hamper LA glutamatergic transmission and to prevent the behavioral response featured in long-term aversive memory. We propose that s-GO, by interference with glutamatergic plasticity, impair LA-dependent memory retrieval related to PTSD.
Collapse
Affiliation(s)
- Audrey Franceschi Biagioni
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136, Trieste, Italy
| | - Giada Cellot
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136, Trieste, Italy
| | - Elisa Pati
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136, Trieste, Italy
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Raffaele Casani
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136, Trieste, Italy
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Kostas Kostarelos
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain; Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Oxford Rd, Manchester, M13 9PL, United Kingdom
| | - Laura Ballerini
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
6
|
Foxx CL, Heinze JD, González A, Vargas F, Baratta MV, Elsayed AI, Stewart JR, Loupy KM, Arnold MR, Flux MC, Sago SA, Siebler PH, Milton LN, Lieb MW, Hassell JE, Smith DG, Lee KAK, Appiah SA, Schaefer EJ, Panitchpakdi M, Sikora NC, Weldon KC, Stamper CE, Schmidt D, Duggan DA, Mengesha YM, Ogbaselassie M, Nguyen KT, Gates CA, Schnabel K, Tran L, Jones JD, Vitaterna MH, Turek FW, Fleshner M, Dorrestein PC, Knight R, Wright KP, Lowry CA. Effects of Immunization With the Soil-Derived Bacterium Mycobacterium vaccae on Stress Coping Behaviors and Cognitive Performance in a "Two Hit" Stressor Model. Front Physiol 2021; 11:524833. [PMID: 33469429 PMCID: PMC7813891 DOI: 10.3389/fphys.2020.524833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 (M. vaccae), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae. Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience.
Collapse
Affiliation(s)
- Christine L. Foxx
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Jared D. Heinze
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Antonio González
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Fernando Vargas
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Ahmed I. Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Jessica R. Stewart
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey M. Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Mathew R. Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - M. C. Flux
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Saydie A. Sago
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Philip H. Siebler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Lauren N. Milton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Margaret W. Lieb
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - James E. Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - David G. Smith
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kyo A. K. Lee
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Sandra A. Appiah
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Evan J. Schaefer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Morgan Panitchpakdi
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Nicole C. Sikora
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kelly C. Weldon
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Christopher E. Stamper
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Dominic Schmidt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - David A. Duggan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Yosan M. Mengesha
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mikale Ogbaselassie
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kadi T. Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Chloe A. Gates
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - K’loni Schnabel
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Linh Tran
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Joslynn D. Jones
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Martha H. Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Pieter C. Dorrestein
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
- Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO, United States
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- inVIVO Planetary Health, Worldwide Universities Network, West New York, NJ, United States
| |
Collapse
|