1
|
Mala J, Puthong S, Maekawa H, Kaneko Y, Palaga T, Komolpis K, Sooksai S. Construction and sequencing analysis of scFv antibody fragment derived from monoclonal antibody against norfloxacin (Nor155). J Genet Eng Biotechnol 2017; 15:69-76. [PMID: 30647643 PMCID: PMC6296615 DOI: 10.1016/j.jgeb.2017.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/19/2017] [Indexed: 11/20/2022]
Abstract
Norfloxacin belongs to the group of fluoroquinolone antibiotics which has been approved for treatment in animals. However, its residues in animal products can pose adverse side effects to consumer. Therefore, detection of the residue in different food matrices must be concerned. In this study, a single chain variable fragment (scFv) that recognizes norfloxacin antibiotic was constructed. The cDNA was synthesized from total RNA of hybridoma cells against norfloxacin. Genes encoding VH and VL regions of monoclonal antibody against norfloxacin (Nor155) were amplified and size of VH and VL fragments was 402 bp and 363 bp, respectively. The scFv of Nor155 was constructed by an addition of (Gly4Ser)3 as a linker between VH and VL regions and subcloned into pPICZαA, an expression vector of Pichia pastoris. The sequence of scFv Nor155 (GenBank No. AJG06891.1) was confirmed by sequencing analysis. The complementarity determining regions (CDR) I, II, and III of VH and VL were specified by Kabat method. The obtained recombinant plasmid will be useful for production of scFv antibody against norfloxacin in P. pastoris and further engineer scFv antibody against fluoroquinolone antibiotics.
Collapse
Affiliation(s)
- J. Mala
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - S. Puthong
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - H. Maekawa
- Yeast Genetic Resources Laboratory, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Y. Kaneko
- Yeast Genetic Resources Laboratory, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - T. Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - K. Komolpis
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - S. Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
High efficient expression of a functional humanized single-chain variable fragment (scFv) antibody against CD22 in Pichia pastoris. Appl Microbiol Biotechnol 2014; 98:10023-39. [PMID: 25239038 DOI: 10.1007/s00253-014-6071-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022]
Abstract
Single-chain variable fragments (scFvs) have recently emerged as attractive candidates in targeted immunotherapy of various malignancies. The anti-CD22 scFv is able to target CD22, on B cell surface and is being considered as a promising molecule in targeted immunotherapy of B cell malignancies. The recombinant anti-CD22 scFv has been successfully expressed in Escherichia coli; however, the insufficient production yield has been a major bottleneck for its therapeutic application. The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the production of a wide variety of recombinant proteins such as antibody fragments. In this study, we used the Pichia expression system to express a humanized scFv antibody against CD22. The full-length humanized scFv gene was codon optimized, cloned into the pPICZαA and expressed in GS115 strain. The maximum production level of the scFv (25 mg/L) were achieved at methanol concentration, 1 %; pH 6.0; inoculum density, OD600 = 3 and the induction time of 72 h. The correlation between scFv gene dosage and expression level was also investigated by real-time PCR, and the results confirmed the presence of such correlation up to five gene copies. Immunofluorescence and flow cytometry studies and Biacore analysis demonstrated binding to CD22 on the surface of human lymphoid cell line Raji and recombinant soluble CD22, respectively. Taken together, the presented data suggest that the Pichia pastoris can be considered as an efficient host for the large-scale production of anti-CD22 scFv as a promising carrier for targeted drug delivery in treatment of CD22(+) B cell malignancies.
Collapse
|
3
|
Weinacker D, Rabert C, Zepeda AB, Figueroa CA, Pessoa A, Farías JG. Applications of recombinant Pichia pastoris in the healthcare industry. Braz J Microbiol 2013; 44:1043-8. [PMID: 24688491 PMCID: PMC3958167 DOI: 10.1590/s1517-83822013000400004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/04/2013] [Indexed: 12/16/2022] Open
Abstract
Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry.
Collapse
Affiliation(s)
- Daniel Weinacker
- Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| | - Claudia Rabert
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Andrea B. Zepeda
- Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| | - Carolina A. Figueroa
- Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jorge G. Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Combinatorial Design of an Anticalin Directed against the Extra-Domain B for the Specific Targeting of Oncofetal Fibronectin. J Mol Biol 2013; 425:780-802. [DOI: 10.1016/j.jmb.2012.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/21/2022]
|
5
|
Highly efficient production of anti-HER2 scFv antibody variant for targeting breast cancer cells. Appl Microbiol Biotechnol 2011; 91:613-21. [DOI: 10.1007/s00253-011-3306-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/01/2011] [Accepted: 04/02/2011] [Indexed: 10/18/2022]
|
6
|
Rothdiener M, Beuttler J, Messerschmidt SKE, Kontermann RE. Antibody targeting of nanoparticles to tumor-specific receptors: immunoliposomes. Methods Mol Biol 2010; 624:295-308. [PMID: 20217604 DOI: 10.1007/978-1-60761-609-2_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunoliposomes generated by coupling of antibodies to the liposomal surface allow for an active tissue targeting, e.g., through binding to tumor cell-specific receptors. Instead of whole antibodies, single-chain Fv fragments (scFv), which represent the smallest part of an antibody containing the entire antigen-binding site, find increasing usage as targeting moiety. Here we provide protocols for the preparation of type II scFv immunoliposomes by the conventional coupling method as well as the post-insertion method. Furthermore protocols to analyze binding of these immunoliposomes to antigen-expressing cells as well as internalization through receptor-mediated endocytosis are included.
Collapse
Affiliation(s)
- Miriam Rothdiener
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | | | | | | |
Collapse
|
7
|
Rothdiener M, Müller D, Castro PG, Scholz A, Schwemmlein M, Fey G, Heidenreich O, Kontermann RE. Targeted delivery of SiRNA to CD33-positive tumor cells with liposomal carrier systems. J Control Release 2010; 144:251-8. [PMID: 20184933 DOI: 10.1016/j.jconrel.2010.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 02/09/2023]
Abstract
SiRNA molecules represent promising therapeutic molecules, e.g. for cancer therapy. However, efficient delivery into tumor cells remains a major obstacle for treatment. Here, we describe a liposomal siRNA carrier system for targeted delivery of siRNA to CD33-positive acute myeloid leukemia cells. The siRNA is directed against the t(8;21) translocation resulting in the AML1/MTG8 fusion protein. The siRNA was encapsulated in free or polyethylene imine (PEI)-complexed form into PEGylated liposomes endowed subsequently with an anti-CD33 single-chain Fv fragment (scFv) for targeted delivery. The resulting siRNA-loaded immunoliposomes (IL) and immunolipoplexes (ILP) showed specific binding and internalization by CD33-expressing myeloid leukemia cell lines (SKNO-1, Kasumi-1). Targeted delivery of AML1/MTG8 siRNA, but not of mismatch control siRNA, reduced AML1/MTG8 mRNA and protein levels and decreased leukemic clonogenicity, a hallmark of leukemic self-renewal. Although this study revealed that further modifications are necessary to increase efficacy of siRNA delivery and silencing, we were able to establish a targeted liposomal siRNA delivery system combining recombinant antibody fragments for targeted delivery with tumor cell-specific siRNA molecules as therapeutic agents.
Collapse
Affiliation(s)
- Miriam Rothdiener
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Beck A, Cochet O, Wurch T. GlycoFi's technology to control the glycosylation of recombinant therapeutic proteins. Expert Opin Drug Discov 2009; 5:95-111. [DOI: 10.1517/17460440903413504] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Toyo’oka T. Recent advances in separation and detection methods for thiol compounds in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3318-30. [DOI: 10.1016/j.jchromb.2009.03.034] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 11/28/2022]
|
10
|
Panjideh H, Coelho V, Dernedde J, Fuchs H, Keilholz U, Thiel E, Deckert PM. Production of bifunctional single-chain antibody-based fusion proteins in Pichia pastoris supernatants. Bioprocess Biosyst Eng 2008; 31:559-68. [PMID: 18253756 DOI: 10.1007/s00449-008-0203-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/16/2008] [Indexed: 11/26/2022]
Abstract
Recombinant antibody fusion constructs with heterologous functional domains are a promising approach to new therapeutic targeting strategies. However, expression of such constructs is mostly limited to cost and labor-intensive mammalian expression systems. Here we report on the employment of Pichia pastoris for the expression of heterologous antibody fusion constructs with green fluorescent protein, A33scFv::GFP, or with cytosine deaminase, A33scFv::CDy, their production in a biofermenter and a modified purification strategy. Combined, these approaches improved production yields by about thirty times over established standard protocols, with extracellular secretion of the fusion construct reaching 12.0 mg/l. Bifunctional activity of the fusion proteins was demonstrated by flow cytometry and an in-vitro cytotoxicity assay. With equal amounts of purified protein, the modified purification method lead to higher functional results. Our results demonstrate the suitability of methylotrophic Pichia expression systems and laboratory-scale bioreactors for the production of high quantities of bifunctionally active heterologous single-chain fusion proteins.
Collapse
Affiliation(s)
- Hossein Panjideh
- Medizinische Klinik III, Hematology, Oncology und Transfusion Medicine, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Messerschmidt SKE, Kolbe A, Müller D, Knoll M, Pleiss J, Kontermann RE. Novel Single-Chain Fv′ Formats for the Generation of Immunoliposomes by Site-Directed Coupling. Bioconjug Chem 2007; 19:362-9. [DOI: 10.1021/bc700349k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sylvia K. E. Messerschmidt
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany, and Institut für Technische Biochemie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Anke Kolbe
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany, and Institut für Technische Biochemie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Dafne Müller
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany, and Institut für Technische Biochemie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Knoll
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany, and Institut für Technische Biochemie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Jürgen Pleiss
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany, and Institut für Technische Biochemie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Roland E. Kontermann
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany, and Institut für Technische Biochemie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
12
|
Jiang M, Shi W, Zhang Q, Wang X, Guo M, Cui Z, Su C, Yang Q, Li Y, Sham J, Liu X, Wu M, Qian Q. Gene therapy using adenovirus-mediated full-length anti-HER-2 antibody for HER-2 overexpression cancers. Clin Cancer Res 2006; 12:6179-85. [PMID: 17062695 DOI: 10.1158/1078-0432.ccr-06-0746] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapeutic monoclonal antibody is increasingly applied in many clinical applications, although complicated technologies and high cost still limit their wide applications. To obtain the sustained serum antibody concentration with one single injection and lower the cost of antibody protein therapy, an adenovirus-mediated full-length antibody gene therapy was developed. EXPERIMENTAL DESIGN Full-length antibody light-chain and heavy-chain sequences were linked with internal ribosome entry site and constructed into adenoviral vector under the control of cytomegalovirus promoter. Antibody expression in vitro and in vivo were tested with ELISA, and its antitumor efficacy was evaluated in SKOV-3-inoculated nude mice. RESULTS Ad5-TAb-generated anti-HER-2 antibody presented the similar binding specificity with commercial trastuzumab. A single i.v. injection of 2 x 10(9) plaque-forming units of Ad5-TAb per mouse resulted in not only a sustained over 40 microg/mL serum antibody level for at least 4 weeks but also significant tumor elimination in the ovarian cancer SKOV-3-inoculated nude mice. CONCLUSIONS An in vivo full-length antibody gene delivery system allows continuous production of a full-length antibody at high concentration after a single administration. Bioactive antibody macromolecules can be generated via gene transfer in vivo. All the data suggest that this novel adenovirus-mediated antibody gene delivery can be used for the exploitation of antibodies, without being hampered by the sophisticated antibody manufacture techniques and high cost, and, furthermore, can shorten the duration and reduce the expense of antibody developments.
Collapse
Affiliation(s)
- Minghong Jiang
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Farid SS. Established bioprocesses for producing antibodies as a basis for future planning. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 101:1-42. [PMID: 16989256 DOI: 10.1007/10_014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
In the early years of monoclonal antibody production for human therapy and diagnosis the methods used were arrived at by individual organisations. However, there is now an accumulating body of information on antibodies and fragments that have been produced by processes approved for human use. This information is becoming available at a time when the number of potential antibody-based medicines is growing sharply. The review addresses the reported production routes, their scale and the titres achieved. It identifies the performances of fed-batch and perfusion culture versus batch culture, and compares processes for the production of antibodies for diagnosis and for antibody fragments. The analysis defines the likely routes of future production in a sector where demanding regulations constrain new technology. It also indicates what levels of performance new approaches will need to meet to be competitive.
Collapse
Affiliation(s)
- Suzanne S Farid
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London, UK.
| |
Collapse
|
14
|
Hu S, Li L, Qiao J, Guo Y, Cheng L, Liu J. Codon optimization, expression, and characterization of an internalizing anti-ErbB2 single-chain antibody in Pichia pastoris. Protein Expr Purif 2006; 47:249-57. [PMID: 16403645 DOI: 10.1016/j.pep.2005.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/10/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
Anti-ErbB2 antibodies are used as convenient tools in exploration of ErbB2 functional mechanisms and in treatment of ErbB2-overexpressing tumors. When we employed the yeast Pichia pastoris to express an anti-ErbB2 single-chain antibody (scFv) derived from the tumor-inhibitory monoclonal antibody A21, the yield did not exceed 1-2 mg/L in shake flask cultures. As we considered that the poor codon usage bias may be one limiting factor leading to the inefficient translation and scFv production, we designed and synthesized the full-length scFv gene by choosing the P. pastoris preferred codons while keeping the G+C content at relatively low level. Codon optimization increased the scFv expression level 3- to 5-fold and up to 6-10 mg/L. Northern blotting further confirmed that the increase of scFv expression was mainly due to the enhancement of translation efficiency. Investigation of culture conditions revealed that the maximal cell growth and scFv expression were achieved at pH 6.5-7.0 with 2% casamino acids after 72 h methanol induction. Secreted scFv was easily purified (>95% homogeneous product) from culture supernatants in one step by using Ni2+ chelating affinity chromatography. The yield was approximately 10-15 mg/L. Functional studies showed that the A21 scFv could be internalized with high efficiency after binding to the ErbB2-overexpressing cells, suggesting this regent may prove especially useful for ErbB2-targeted immunotherapy.
Collapse
Affiliation(s)
- Siyi Hu
- Laboratory of Molecular and Cellular Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Expression in Pichia pastoris of a recombinant scFv form of MAb 107, an anti human CD11b integrin antibody. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Marty C, Langer-Machova Z, Sigrist S, Schott H, Schwendener RA, Ballmer-Hofer K. Isolation and characterization of a scFv antibody specific for tumor endothelial marker 1 (TEM1), a new reagent for targeted tumor therapy. Cancer Lett 2005; 235:298-308. [PMID: 15953677 DOI: 10.1016/j.canlet.2005.04.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/20/2005] [Accepted: 04/25/2005] [Indexed: 11/16/2022]
Abstract
Tumor endothelial marker 1 (TEM1) is a protein predominantly expressed on the cell surface of endothelial cells in newly developing blood vessels and on tumor cells. It is therefore ideally suited as a target for anti-angiogenic tumor therapy. Using phage display technology a single chain antibody fragment (scFv-CM6) was isolated that specifically binds to the extracellular part of TEM1. Antibody specificity was determined in ELISA, by Western analysis, fluorescence microscopy and flow cytometry performed with TEM1-expressing cells. ScFv-CM6 was further functionalized and coupled to liposomes. Such immunoliposomes loaded with the cytotoxic drug N4-octadecyl-1-beta-D-arabinofuranosylcytosine-(5'-5')-3'-C-ethinylcytidine showed increased binding affinity and up to 80% higher cytotoxic activity towards TEM1-expressing IMR-32 tumor cells compared with control liposomes.
Collapse
Affiliation(s)
- Cornelia Marty
- Paul Scherrer Institut, Biomolecular Research, Molecular Cell Biology, OFLC-102, CH-5232 Villigen, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Menrad A, Menssen HD. ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin Ther Targets 2005; 9:491-500. [PMID: 15948669 DOI: 10.1517/14728222.9.3.491] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemotherapeutic agents for the treatment of solid cancers do not discriminate between malignant and normal tissue, but rather depend on the increased proliferation of tumour cells versus benign cells. To reach therapeutically active concentrations in the tumour, large doses of these rather unspecific compounds have to be given to the patient, often resulting in severe side effects. Therefore, the goal of modern cancer research is the development of highly selective compounds which are able to discriminate between tumour tissue and normal tissue. One promising approach in this direction is antibody-mediated targeted cancer therapy which may either block an important receptor-ligand interaction or deliver a therapeutically active molecule to an otherwise nonfunctional target. A prerequisite for such an approach is the tumour-selective expression of the respective target structure. This review discusses extra domain-B fibronectin as a promising target which is associated with tumour angiogenesis and tumour growth for the development of novel antibody-mediated therapies.
Collapse
Affiliation(s)
- Andreas Menrad
- Department of AntiAngiogenesis Research, Schering AG, Corporate Business Area Oncology, Germany.
| | | |
Collapse
|
18
|
Rahbarizadeh F, Rasaee MJ, Forouzandeh M, Allameh AA. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris. Mol Immunol 2005; 43:426-35. [PMID: 16337485 DOI: 10.1016/j.molimm.2005.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
The methylotrophic yeast Pichia pastoris has become a highly popular expression host system for the recombinant production of a wide variety of proteins, such as antibody fragments. Camelids produce functional antibodies devoid of light chains and constant heavy-chain domain (CH1). The antigen binding fragments of such heavy chain antibodies are therefore comprised in one single domain, the so-called VH of the camelid heavy chain antibody (VHH). To test the feasibility of expressing VHHs in the yeast, which on account of their small size and antigen recognition properties would have a major impact on antibody engineering strategies, we constructed two VHH genes encoding the single-domain antibody fragments with specificity for a cancer associated mucin, MUC1. The recombinant strains of the yeast P. pastoris were developed which secrete single-domain antibody fragment to the culture supernatant as a biologically active protein. Supplementation of medium with sorbitol (in pre-induction phase) and casamino acid or EDTA (in induction phase) provided ideal condition of increasing the yield of VHH production compared to culture condition devoid of above recipe. The secreted protein was purified following a 80% ammonium sulfate precipitation step, followed by a affinity chromatography column. The specific activity in enzyme-linked immunosorbant assay (ELISA) of the purified yeast VHH was higher than that of a bacterial periplasmic counterpart. These results reaffirm that the yeast P. pastoris is a suitable host for high level and correctly folded production of VHH antibody fragments with potential in vivo diagnostic and therapeutic applications. This is the first report of expression of VHH in P. pastoris.
Collapse
Affiliation(s)
- Fatemeh Rahbarizadeh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, IR Iran
| | | | | | | |
Collapse
|
19
|
Li J, Ji J, Holmes LM, Burgin KE, Barton LB, Yu X, Wagner TE, Wei Y. Fusion protein from RGD peptide and Fc fragment of mouse immunoglobulin G inhibits angiogenesis in tumor. Cancer Gene Ther 2004; 11:363-70. [PMID: 15044960 DOI: 10.1038/sj.cgt.7700707] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Targeting tumor vasculature represents an interesting approach for the treatment of solid tumors. The alpha v beta 3 integrins have been found to be specifically associated with angiogenesis in tumors. By using bacteriophage display technology, Ruoslahti et al found that a group of peptides containing the RGD (Arg-Gly-Asp) motif have high-binding affinity to the alpha v beta 3 integrins in tumors. In this study, we designed a fusion protein containing the RGD sequence and the Fc fragment of mouse IgG in order to target the Fc portion of IgG to the tumor vasculature to elicit an antiangiogenesis immune response. In vivo angiogenesis and tumor studies demonstrated that the fusion protein (RGD/mFc) inhibited tumor angiogenesis and tumor growth and improved overall survival. This approach may generate new therapeutic agents for solid tumor treatment.
Collapse
Affiliation(s)
- Jinhua Li
- Oncology Research Institute, Greenville Hospital System, Greenville, SC 29605, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cunha AE, Clemente JJ, Gomes R, Pinto F, Thomaz M, Miranda S, Pinto R, Moosmayer D, Donner P, Carrondo MJT. Methanol induction optimization for scFv antibody fragment production inPichia pastoris. Biotechnol Bioeng 2004; 86:458-67. [PMID: 15112298 DOI: 10.1002/bit.20051] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fibronectin splice variant ED B (extracellular domain B) is a promising marker for angiogenesis in growing solid tumors. Currently, recombinant antibodies against ED B are being investigated concerning their potential use, for either therapeutic or diagnostic purposes. Single-chain antibody fragments directed against the ED B can be efficiently expressed in Pichia pastoris; thus, a recombinant strain of the methylotropic yeast P. pastoris was used for this work. Three different forms of scFv antibody fragment are found in the supernatant from this fermentation: covalent homodimer, associative homodimer, and monomer. Both homodimeric forms can be converted to the monomeric form (under reducing conditions) and be efficiently radiolabeled, whereas the monomeric form of scFv already present in the supernatant cannot. It was also found that the fraction of protein in the monomeric form is highly dependent on the mode of induction rather than scFv concentration. This suggests that the monomeric form of the scFv present in the supernatant might be a result of events occurring at the expression, secretion, or folding level. A high cell density fermentation protocol was developed by optimizing methanol induction, yielding the highest scFv antibody fragment production rate and product quality; cell concentration at the induction point and specific methanol uptake rate were found to be the most important control variables. A decrease in specific methanol uptake rate led to a higher specific production rate for the scFv antibody fragment (5.4 microg g(cell) h(-1)). Product quality, i.e., percentage of product in a homodimeric form, also increased with the decrease in methanol uptake rate. Furthermore, the volumetric productivity depended on cell concentration at the induction point, increasing with the increase of cell concentration up to 320 g L(-1) wet cell weight (WCW). The reduction of the methanol feeding rate for induction, and consequently of the oxygen uptake rate, have important consequences for optimizing product titers and quality and thus on the scale-up of this production process; hence one of the major limitations upon high cell density cultivation in bioreactors is keeping the high oxygen transfer rate required. From the results obtained, a scale-up strategy was developed based on the available oxygen transfer rates at larger scales, allowing the definition of the optimum biomass concentration for induction and methanol feeding strategy for maximization of product titer and quality.
Collapse
Affiliation(s)
- A E Cunha
- Instituto de Biologia Experimental e Tecnológica (IBET), Apartado 12, P-2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shi X, Karkut T, Chamankhah M, Alting-Mees M, Hemmingsen SM, Hegedus D. Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expr Purif 2003; 28:321-30. [PMID: 12699697 DOI: 10.1016/s1046-5928(02)00706-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A Pichia pastoris system was used to express a single-chain antibody (scFv) targeted against Mamestra configurata (bertha armyworm) serpins. To improve scFv production we examined parameters such as proteinase activity, temperature, cell density, osmotic stress, medium composition, pH, and reiterative induction. P. pastoris was found to express several proteases; however, adjustment of medium pH to limit their activity did not correlate with increased scFv recovery. Induction medium pH values of 6.5-8.0 were most conducive to scFv production, despite significant differences in cell growth rates. Increasing inoculum density limited growth potential but gave rise to higher levels of scFv production. Three factors, medium composition, pre-induction osmotic stress, and temperature, had the greatest effects on protein production. Supplementation of the induction medium with arganine, casamino acids, or EDTA increased scFv production several fold, as did cultivation under osmotic stress conditions during pre-induction biomass accumulation. Incubation at 15 versus 30 degrees C extended the period whereby cells were capable of producing scFv from 1 to 7 days. Under optimal conditions, yeast cultures yielded 25 mg/L of functional scFv and could be subject to five reiterative inductions.
Collapse
Affiliation(s)
- Xianzong Shi
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
| | | | | | | | | | | |
Collapse
|
22
|
Nie YZ, He FT, Li ZK, Wu KC, Cao YX, Chen BJ, Fan DM. Identification of tumor associated single-chain Fv by panning and screening antibody phage library using tumor cells. World J Gastroenterol 2002; 8:619-23. [PMID: 12174367 PMCID: PMC4656309 DOI: 10.3748/wjg.v8.i4.619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the feasibility of panning and screening phage-displaying recombinant single-chain variable fragment (ScFv) of anti-tumor monoclonal antibodies for fixed whole cells as the carriers of mAb-binding antigens.
METHODS: The recombinant phage displaying libraries for anti-colorectal tumor mAb MC3Ab, MC5Ab and anti-gastric tumor mAb MGD1 was constructed. Panning and screening were carried out by means of modified fixation of colorectal and gastric tumor cells expressed the mAb-binding antigens. Concordance of binding specificity to tumor cells between phage clones and parent antibodies was analyzed. The phage of positive clones was identified with competitive ELISA, and infected by E. coli HB2151 to express soluble ScFv.
RESULTS: The ratio of positive clones to MC3-ScF-MC5-ScFv and MGD1-ScFv were 60%, 24% and 30%. MC3-ScFv had Mr 32000 confirmed by Western blot. The specificity to antigen had no difference between 4 positive recombinant phage antibodies and MC3Ab.
CONCLUSION: The modified process of fixing whole tumor cells is efficient, convenient and feasible to pan and screen the phage-displaying ScFv of anti-tumor monoclonal antibodies.
Collapse
Affiliation(s)
- Yong-Zhan Nie
- Institute of Digestive Diseases,Xijing Hospital, Fourth Military Medical University, Changle West Road, Xi'an 710032,Shannxi Province China
| | | | | | | | | | | | | |
Collapse
|
23
|
Woo JH, Liu YY, Mathias A, Stavrou S, Wang Z, Thompson J, Neville DM. Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris. Protein Expr Purif 2002; 25:270-82. [PMID: 12135560 DOI: 10.1016/s1046-5928(02)00009-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bivalent anti-human anti-T cell immunotoxin A-dmDT390-bisFv(G(4)S) was developed for treatment of T cell leukemia, autoimmune diseases, and tolerance induction for transplantation. The multi-domain structure of the bivalent immunotoxin hinders efficient production in Escherichia coli and most eukaryotes are sensitive to the toxin. However, Pichia pastoris has a tolerance to levels of DT (diphtheria toxin) that were previously observed to intoxicate wild type eukaryotic cells, including Saccharomyces cerevisiae. This tolerance has permitted the optimization of the secreted expression of A-dmDT390-bisFv(G(4)S) in P. pastoris under the control of AOX1 (alcohol oxidase 1) promoter. The original DNA sequence of A-dmDT390-bisFv(G(4)S) was not expressed in P. pastoris because of several AT-rich regions, which induce an early termination of transcription. After DNA rebuilding for abolishing AT-rich regions and codon optimization, the immunotoxin could be expressed up to 10mg/L in the shake flask culture. No differences in the expression levels of immunotoxin were observed by using different secretional signal sequences, Mut(s) (methanol utilization slow phenotype) or Mut(+) (methanol utilization plus phenotype) phenotypes. Buffered complex medium (pH 7.0) having 1% casamino acids provided the highest expression in shake flask culture and PMSF (phenylmethylsulfonyl fluoride) in the range of 1 to 3mM further improved the expression level presumably by inhibiting protein degradation. The immunotoxin was purified by DEAE (diethylaminoethyl) Sepharose ion exchange chromatography and Protein L affinity chromatography. The immunotoxin purified from P. pastoris culture was as fully functional as that expressed in a toxin resistant mutant CHO (Chinese hamster ovary) cell line. Our results demonstrate that P. pastoris is an ideal system for expression of toxin-based fusion proteins.
Collapse
Affiliation(s)
- Jung Hee Woo
- Section on Biophysical Chemistry, Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 36 RM 1B08, 36 Convent Drive, Bethesda, MD 20892-4034, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Marty C, Odermatt B, Schott H, Neri D, Ballmer-Hofer K, Klemenz R, Schwendener RA. Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br J Cancer 2002; 87:106-12. [PMID: 12085265 PMCID: PMC2364274 DOI: 10.1038/sj.bjc.6600423] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2001] [Revised: 04/17/2002] [Accepted: 04/23/2002] [Indexed: 12/03/2022] Open
Abstract
We prepared small unilamellar liposomes derivatised with single chain antibody fragments specific for the ED-B domain of B-fibronectin. This extracellular matrix associated protein is expressed around newly forming blood vessels in the vicinity of many types of tumours. The single chain antibody fragments were functionalised by introduction of C-terminal cysteines and linked to liposomes via maleimide groups located at the terminal ends of poly(ethylene glycol) modified phospholipids. The properties of these anti-ED-B single chain antibody fragments-liposomes were analysed in vitro on ED-B fibronectin expressing Caco-2 cells and in vivo by studying their biodistribution and their therapeutic potential in mice bearing subcutanous F9 teratocarcinoma tumours. Radioactively labelled ((114m)Indium) single chain antibody fragments-liposomes accumulated in the tumours at 2-3-fold higher concentrations during the first 2 h after i.v. injection compared to unmodified liposomes. After 6-24 h both liposome types were found in similar amounts (8-10% injected dose g(-1)) in the tumours. Animals treated i.v. with single chain antibody fragments-liposomes containing the new cytotoxic agent 2'-deoxy-5-fluorouridylyl-N(4)-octadecyl-1-beta-D-arabinofuranosylcytosine (30 mg kg(-1) per dose, five times every 24 h) showed a reduction of tumour growth by 62-90% determined on days 5 and 8, respectively, compared to animals receiving control liposomes. Histological analysis revealed a marked reduction of F9 tumour cells and excessive deposition of fibronectin in the extracellular matrix after treatment with single chain antibody fragments-2-dioxy-5-fluorouridylyl-N(4)-octadecyl-1-beta-D-arabinofuranosylcytosine-liposomes. Single chain antibody fragments-liposomes targeted to ED-B fibronectin positive tumours therefore represent a promising and versatile novel drug delivery system for the treatment of tumours.
Collapse
Affiliation(s)
- C Marty
- Department of Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|