1
|
Jesna PV, Devika SL, Umashankar PR. In-vivo immunocompatibility and induced regenerative potential of silk fibroin modified decellularized porcine liver scaffolds in rat subcutaneous and full-thickness abdominal wall defect models. Int J Biol Macromol 2025; 306:141804. [PMID: 40057074 DOI: 10.1016/j.ijbiomac.2025.141804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
For reconstructive surgical applications, humoral and cell-mediated immune response to scaffolds is important in determining its structural and functional integration and performance. A decellularized porcine liver matrix(DPL) mechanically augmented with impregnating silk fibroin(SF100DPL) and silk fibroin-gelatin blends(SFG5050DPL and SFG3070DPL) following citric acid crosslinking were evaluated in-vitro and in-vivo (subcutaneous and abdominal wall defect models) in comparison to unmodified DPL. Ensuring the preservation of glycosaminoglycan and the potential to induce cell migration in L929 cell line, the host immunocompatibility of the scaffolds was confirmed by implanting sub-cutaneously in rat. The modified scaffolds in the full-thickness rat abdominal wall defect model showed better integration at the defect site without any evidence of mechanical failure. The inflammatory cell response was evidently reducing with prominent neovascularization. Masson's trichrome (MT) staining and immunohistochemistry (IHC) demonstrated skeletal muscle island formation initially at the host-graft interface while extending towards the mid-graft region as time progressed. A significant decrease in the collagen III/I ratio at 90 days indicated that the neocollagen deposited at 21 days was replaced by mature collagen type I. Among the modified scaffolds evaluated, the SF100DPL and SFG5050DPL exhibited comparatively high immunocompatibility and regenerative potential that makes them suitable for various scaffold based regenerative therapies.
Collapse
Affiliation(s)
- Puthiya Veettil Jesna
- Division of In-vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Sasikumar Lolitha Devika
- Division of In-vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Payanam Ramachandra Umashankar
- Division of In-vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India.
| |
Collapse
|
2
|
Wang Z, Hu K, Jiang Y, Zhang X, Zhao P, Li X, Ding F, Liu C, Yi S, Ren Z, Liu W, Ma B. Remodeling and Regenerative Properties of Fully Absorbable Meshes for Abdominal Wall Defect Repair: A Systematic Review and Meta-Analysis of Animal Studies. ACS Biomater Sci Eng 2024; 10:3968-3983. [PMID: 38788683 DOI: 10.1021/acsbiomaterials.4c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Fully absorbable meshes can repair abdominal wall defects and effectively reduce the incidence of complications, but different types of fully absorbable meshes have different remodeling and regeneration effects. In order to investigate and compare the effects of different fully absorbable meshes on remodeling and regeneration in animals and reduce the biological risk of clinical translation, SYRCLE was adopted to evaluate the methodological quality of the included studies, and GRADE and ConQual were used to evaluate the quality of evidence. According to the inclusion and exclusion criteria, a total of 22 studies related to fully absorbable meshes were included in this systematic review. These results showed that fiber-based synthetic materials and fiber-based natural materials exhibited better restorative and regenerative effects indicated by infiltration and neovascularization, when compared with a porcine acellular dermal matrix. In addition, the human acellular dermal matrix was found to have a similar regenerative effect on the host extracellular matrix and scaffold degradation compared to the porcine acellular dermal matrix, porcine intestinal submucosa, and fiber-based natural materials, but it offered higher tensile strength than the other three. The quality of the evidence in this field was found to be poor. The reasons for downgrading were analyzed, and recommendations for future research included more rigor in study design, more transparency in result reporting, more standardization of animal models and follow-up time for better evaluation of the remodeling and regenerative performance of abdominal wall hernia repair meshes, and less biological risk in clinical translation.
Collapse
Affiliation(s)
- Zhe Wang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou 730000, China
| | - Kaiyan Hu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou 730000, China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Zhang
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Peng Zhao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Xingzhi Li
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453000, China
| | - Fengxing Ding
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Liu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shaowei Yi
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ziyu Ren
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Wenbo Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Evidence-Based Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
3
|
Xu H, Hou S, Ruan Z, Liu J. Comparing Anatomical and Functional Outcomes of Two Neovaginoplasty Techniques for Mayer-Rokitansky-Küster-Hauser Syndrome: A Ten-Year Retrospective Study with Swine Small Intestinal Submucosa and Homologous Skin Grafts. Ther Clin Risk Manag 2023; 19:557-565. [PMID: 37425345 PMCID: PMC10329436 DOI: 10.2147/tcrm.s415672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023] Open
Abstract
Objective This study aimed to compare the anatomical and functional outcomes of the modified McIndoe vaginoplasty for Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome using swine small intestinal submucosa (SIS) graft or homologous skin grafts. Methods A total of 115 patients with MRKHs who underwent neovaginoplasty between January 2012 and December 2021 were included in the study. Among them, 84 patients received vaginal reconstruction with SIS graft, whereas 31 neovaginoplasty underwent a skin graft procedure. The length and width of the neovagina were measured, and sexual satisfaction was evaluated using the Female Sexual Function Index (FSFI). The operation details, cost, and complications were also assessed. Results The SIS graft group had a significantly shorter mean operation time (61.13±7.17min) and less bleeding during the operation (38.57±9.46mL) compared to the skin graft group (92.1±9.47min and 55.81±8.28mL, respectively). The mean length and width of the neovagina in the SIS group were comparable to the skin graft group at 6 months follow-up (7.73±0.57 cm versus 7.6±0.62cm, P=0.32). The SIS group had a higher total FSFI index than the skin graft group (27.44±1.58 versus 25.33±2.16, P=0.001). Conclusion The modified McIndoe neovaginoplasty using SIS graft is a safe and effective alternative to homologous skin grafts. It results in comparable anatomical outcomes and superior sexual and functional outcomes. Overall, these results suggest that the modified McIndoe neovaginoplasty using SIS graft is preferred for MRKH patients who require vaginal reconstruction.
Collapse
Affiliation(s)
- Hui Xu
- Department of Obstetrics and Gynecology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Shuhui Hou
- Department of Obstetrics and Gynecology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Zhengyi Ruan
- Department of Obstetrics and Gynecology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Jianhua Liu
- Department of Obstetrics and Gynecology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023; 11:400-431. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.
Collapse
Affiliation(s)
| | | | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Joyce H Jang
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Kamal TR, Tyraskis A, Ghattaura H, Fitchie A, Lakhoo K. Synthetic versus Biological Patches for CDH: A Comparison of Recurrence Rates and Adverse Events, Systematic Review, and Meta-Analysis. Eur J Pediatr Surg 2022; 33:198-209. [PMID: 36027899 DOI: 10.1055/s-0042-1748530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Our systematic review aims to compare recurrence rates and complications of biological versus synthetic patches for the repair of congenital diaphragmatic herniae. METHODS Studies from January 1, 1980 to April 25, 2020, with patients under the age of 16 years and with a minimum 6-month follow-up, were included from MEDLINE, Embase, and Cochrane databases. Funnel plots for recurrence rates were constructed for biological and synthetic patches. Subgroup analysis was performed for recurrence rate at the 1-year time-point and data were gathered on individual adverse events from relevant studies. RESULTS A total of 47 studies with 986 patients (226 biological, 760 synthetic) were included. Funnel plot analysis determined overall recurrence rates of 16.7% for synthetic and 30.3% for biological patches. Subgroup analysis of 493 and 146 patients with synthetic and biological patches, respectively, showed recurrence rates of 9.9 and 26%, respectively.The most commonly used patch types-PTFE (polytetrafluoroethylene) and SIS (small intestinal submucosa)-had 11.5 and 33.3% recurrence, respectively. Adhesive bowel obstruction rates ranged from 4 to 29% in studies that systematically reported it for synthetic, and 7 to 35% for biological patches. Gastroesophageal reflux rates ranged from 25 to 48% in studies that systematically reported it for synthetic, and 21 to 42% for biological patches. Pectus deformity rates were reported as high as 80% for synthetic patches. CONCLUSION Biological patches appear to have higher recurrence rates than synthetic patches, while skeletal deformities are associated more commonly with synthetic patches. Results of biological patches are mainly using SIS and this may overestimate complications of current superior biological patches.
Collapse
Affiliation(s)
- Tasnim Rowshan Kamal
- Medical Science Division, Green Templeton College, University of Oxford, Oxford, Oxfordshire, United Kingdom of Great Britain and Northern Ireland
| | - Athanasios Tyraskis
- Department of Paediatric Surgery, John Radcliffe Hospital, Oxford, Oxfordshire, United Kingdom of Great Britain and Northern Ireland
| | - Harmit Ghattaura
- Department of Paediatric Surgery, John Radcliffe Hospital, Oxford, Oxfordshire, United Kingdom of Great Britain and Northern Ireland
| | - Angus Fitchie
- Department of Paediatric Surgery, John Radcliffe Hospital, Oxford, Oxfordshire, United Kingdom of Great Britain and Northern Ireland
| | - Kokila Lakhoo
- Department of Paediatric Surgery, John Radcliffe Hospital, Oxford, Oxfordshire, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
6
|
Philips C, Terrie L, Thorrez L. Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Biomaterials 2022; 283:121436. [DOI: 10.1016/j.biomaterials.2022.121436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
|
7
|
Linares-Gonzalez L, Rodenas-Herranz T, Campos F, Ruiz-Villaverde R, Carriel V. Basic Quality Controls Used in Skin Tissue Engineering. Life (Basel) 2021; 11:1033. [PMID: 34685402 PMCID: PMC8541591 DOI: 10.3390/life11101033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of skin defects is often a challenging effort due to the currently limited reconstructive options. In this sense, tissue engineering has emerged as a possible alternative to replace or repair diseased or damaged tissues from the patient's own cells. A substantial number of tissue-engineered skin substitutes (TESSs) have been conceived and evaluated in vitro and in vivo showing promising results in the preclinical stage. However, only a few constructs have been used in the clinic. The lack of standardization in evaluation methods employed may in part be responsible for this discrepancy. This review covers the most well-known and up-to-date methods for evaluating the optimization of new TESSs and orientative guidelines for the evaluation of TESSs are proposed.
Collapse
Affiliation(s)
- Laura Linares-Gonzalez
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Teresa Rodenas-Herranz
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Fernando Campos
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Ricardo Ruiz-Villaverde
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Víctor Carriel
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
8
|
Hlavac N, Seroski DT, Agrawal NK, Astrab L, Liu R, Hudalla GA, Schmidt CE. Chondroitinase ABC/galectin-3 fusion proteins with hyaluronan-based hydrogels stabilize enzyme and provide targeted enzyme activity for neural applications. J Neural Eng 2021; 18. [PMID: 34082409 DOI: 10.1088/1741-2552/ac07bf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Objective. Chondroitinase ABC (ChABC) has emerged as a promising therapeutic agent for central nervous system regeneration. Despite multiple beneficial outcomes for regeneration, translation of this enzyme is challenged by poor pharmacokinetics, localization, and stability.Approach. This study explored the function andin vitroapplication of engineered ChABC fused to galectin-3 (Gal3). Two previously developed ChABC-Gal3 oligomers (monomeric and trimeric) were evaluated for functionality and kinetics, then applied to anin vitrocellular outgrowth model using dorsal root ganglia (DRGs). The fusions were combined with two formulations of hyaluronan (HA)-based scaffolds to determine the extent of active enzyme release compared to wild type (WT) ChABC.Main Results. Monomeric and trimeric ChABC-Gal3 maintained digestive capabilities with kinetic properties that were substrate-dependent for chondroitin sulfates A, B, and C. The fusions had longer half-lives at 37 °C on the order of seven fold for monomer and twelve fold for trimer compared to WT. Both fusions were also effective at restoring DRG outgrowthin vitro. To create a combination approach, two triple-component hydrogels containing modified HA were formulated to match the mechanical properties of native spinal cord tissue and to support astrocyte viability (>80%) and adhesion. The hydrogels included collagen-I and laminin mixed with either 5 mg ml-1of glycidyl methacrylate HA or 3 mg ml-1Hystem. When combined with scaffolds, ChABC-Gal3 release time was lengthened compared to WT. Both fusions had measurable enzymatic activity for at least 10 d when incorporated in gels, compared to WT that lost activity after 1 d. These longer term release products from gels maintained adequate function to promote DRG outgrowth.Significance. Results of this study demonstrated cohesive benefits of two stabilized ChABC-Gal3 oligomers in combination with HA-based scaffolds for neural applications. Significant improvements to ChABC stability and release were achieved, meriting future studies of ChABC-Gal3/hydrogel combinations to target neural regeneration.
Collapse
Affiliation(s)
- Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Dillon T Seroski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Nikunj K Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Leilani Astrab
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
9
|
Liu Z, Liu J, Liu N, Zhu X, Tang R. Tailoring electrospun mesh for a compliant remodeling in the repair of full-thickness abdominal wall defect - The role of decellularized human amniotic membrane and silk fibroin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112235. [PMID: 34225876 DOI: 10.1016/j.msec.2021.112235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/06/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Tailored electrospun meshes have been increasingly explored for abdominal wall defect repair in preclinical and clinical studies. However, the fabrication of a bioengineered mesh adapts to the intraperitoneal repair for a compliant remodeling remains a great challenge. In this study, we fabricated a functional mesh by combining polycaprolactone (PCL) with silk fibroin (SF) and decellularized human amniotic membrane (HAM) proportionally via electrospinning. SF was integrated with PCL (40:60 w/w) to regulate the structural flexibility. Micronized HAM was incorporated to PCL/SF (10:90 w/w) to provide a biocompatible milieu with functions being conferred to facilitate intraperitoneal repair. After the blend electrospinning, the PCL/SF/HAM mesh was characterized in vitro and implanted into the rat model with a full-thickness defect for a comprehensive evaluation in comparison to the PCL and PCL/SF meshes. The results demonstrated that electrospinning fabricated PCL stabilized the mechanical elongation toward approximating the native counterparts after integrating with SF. After integrating with HAM, which is coupled with diverse biomolecular compositions, the developed PCL/SF/HAM mesh provided a better microenvironment for cell proliferation and vasculogenic network over other meshes without HAM addition and possessed the functions capable of inhibiting transforming growth factor β1 (TGF-β1) expression and collagen secretion under inflammatory conditions. Moreover, the functional mesh developed less-intensive adhesion along with histologically weaker inflammatory response and foreign body reaction than the PCL and PCL/SF meshes after 90 days in vivo. During the remodeling process, the bioactive structure induced more pronounced neovascularization and remarkable incorporation of collagen and elastin fibers and contractile filaments for a mechanically sufficient and physiologically stiffness-matched healing. This tailor-made mesh expands the intraperitoneal applicability of conventional electrospun meshes for a compliant remodeling in the repair of abdominal wall defects.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Nan Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Xiaoqiang Zhu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China.
| |
Collapse
|
10
|
Liu Z, Wei N, Tang R. Functionalized Strategies and Mechanisms of the Emerging Mesh for Abdominal Wall Repair and Regeneration. ACS Biomater Sci Eng 2021; 7:2064-2082. [PMID: 33856203 DOI: 10.1021/acsbiomaterials.1c00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Meshes have been the overwhelmingly popular choice for the repair of abdominal wall defects to retrieve the bodily integrity of musculofascial layer. Broadly, they are classified into synthetic, biological and composite mesh based on their mechanical and biocompatible features. With the development of anatomical repair techniques and the increasing requirements of constructive remodeling, however, none of these options satisfactorily manages the conditional repair. In both preclinical and clinical studies, materials/agents equipped with distinct functions have been characterized and applied to improve mesh-aided repair, with the importance of mesh functionalization being highlighted. However, limited information exists on systemic comparisons of the underlying mechanisms with respect to functionalized strategies, which are fundamental throughout repair and regeneration. Herein, we address this topic and summarize the current literature by subdividing common functions of the mesh into biomechanics-matched, macrophage-mediated, integration-enhanced, anti-infective and antiadhesive characteristics for a comprehensive overview. In particular, we elaborate their effects separately with respect to host response and integration and discuss their respective advances, challenges and future directions toward a clinical alternative. From the vastly different approaches, we provide insight into the mechanisms involved and offer suggestions for personalized modifications of these emerging meshes.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Nina Wei
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| |
Collapse
|
11
|
Liu W, Xie Y, Zheng Y, He W, Qiao K, Meng H. Regulatory science for hernia mesh: Current status and future perspectives. Bioact Mater 2021; 6:420-432. [PMID: 32995670 PMCID: PMC7490592 DOI: 10.1016/j.bioactmat.2020.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022] Open
Abstract
Regulatory science for medical devices aims to develop new tools, standards and approaches to assess the safety, effectiveness, quality and performance of medical devices. In the field of biomaterials, hernia mesh is a class of implants that have been successfully translated to clinical applications. With a focus on hernia mesh and its regulatory science system, this paper collected and reviewed information on hernia mesh products and biomaterials in both Chinese and American markets. The current development of regulatory science for hernia mesh, including its regulations, standards, guidance documents and classification, and the scientific evaluation of its safety and effectiveness was first reported. Then the research prospect of regulatory science for hernia mesh was discussed. New methods for the preclinical animal study and new tools for the evaluation of the safety and effectiveness of hernia mesh, such as computational modeling, big data platform and evidence-based research, were assessed. By taking the regulatory science of hernia mesh as a case study, this review provided a research basis for developing a regulatory science system of implantable medical devices, furthering the systematic evaluation of the safety and effectiveness of medical devices for better regulatory decision-making. This was the first article reviewing the regulatory science of hernia mesh and biomaterial-based implants. It also proposed and explained the concepts of evidence-based regulatory science and technical review for the first time.
Collapse
Affiliation(s)
- Wenbo Liu
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
- Center for Medical Device Evaluation, National Medical Products Administration, Intellectual Property Publishing House Mansion, Qixiang Road, Haidian District, Beijing, China
| | - Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Wei He
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Kun Qiao
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| | - Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, China
| |
Collapse
|
12
|
Kheirjou R, Rad JS, Khosroshahi AF, Roshangar L. The useful agent to have an ideal biological scaffold. Cell Tissue Bank 2020; 22:225-239. [PMID: 33222022 DOI: 10.1007/s10561-020-09881-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
Tissue engineering which is applied in regenerative medicine has three basic components: cells, scaffolds and growth factors. This multidisciplinary field can regulate cell behaviors in different conditions using scaffolds and growth factors. Scaffolds perform this regulation with their structural, mechanical, functional and bioinductive properties and growth factors by attaching to and activating their receptors in cells. There are various types of biological extracellular matrix (ECM) and polymeric scaffolds in tissue engineering. Recently, many researchers have turned to using biological ECM rather than polymeric scaffolds because of its safety and growth factors. Therefore, selection the right scaffold with the best properties tailored to clinical use is an ideal way to regulate cell behaviors in order to repair or improve damaged tissue functions in regenerative medicine. In this review we first divided properties of biological scaffold into intrinsic and extrinsic elements and then explain the components of each element. Finally, the types of scaffold storage methods and their advantages and disadvantages are examined.
Collapse
Affiliation(s)
- Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, 33363879, Tabriz, Iran
| | - Ahad Ferdowsi Khosroshahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, 33363879, Tabriz, Iran.
| |
Collapse
|
13
|
Chen CK, Hsieh LC. Clinical outcome of exclusive endoscopic tympanoplasty with porcine small intestine submucosa in 72 patients. Clin Otolaryngol 2020; 45:938-943. [PMID: 32657525 DOI: 10.1111/coa.13607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Chin-Kuo Chen
- Department of Otolaryngology-Head and Neck Surgery and Communication Enhancement Center, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan
| | - Li-Chun Hsieh
- Department of Otolaryngology-Head and Neck Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Audiology and Speech Language Pathology, Mackay Medical College, Taipei, Taiwan
| |
Collapse
|
14
|
Li S, Su L, Li X, Yang L, Yang M, Zong H, Zong Q, Tang J, He H. Reconstruction of abdominal wall with scaffolds of electrospun poly (l-lactide-co caprolactone) and porcine fibrinogen: An experimental study in the canine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110644. [DOI: 10.1016/j.msec.2020.110644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/09/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022]
|
15
|
Laparoscopic gastric fundus tamponade: a novel adaptation of the Toupet fundoplication for large paraesophageal hernia repair. Surg Endosc 2019; 34:4803-4811. [PMID: 31741156 DOI: 10.1007/s00464-019-07256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Laparoscopic repair of large paraesophageal hiatal hernia with defects too large to close primarily or greater than 8 cm is technically challenging. The ideal repair remains unclear and is often debated. Utilizing the gastric fundus as an autologous patch to obliterate and tamponade large hiatal defects may offer a new solution. The aim of this study was to evaluate the short-term outcomes following partial posterior fundoplication with gastric fundus tamponade. METHODS Retrospective chart review and prospective patient follow up was conducted on patients who underwent laparoscopic hiatal hernia repair between 2015 and 2019 by a single surgeon. Basic demographics, pre-operative diagnoses, operative technique, and clinical outcomes were recorded. RESULTS Fifteen patients underwent the described technique for repair of large paraesophageal hiatal hernia. All procedures were completed laparoscopically with a short post-operative length of stay (mean of 3 days) and no 30-day readmissions. The majority of patients reported resolution of their pre-operative symptoms. Only one patient required surgery for emergent indications and the same patient was the only mortality in the study, which was secondary to respiratory failure, necrotizing pneumonia, and sepsis as a result of gastric volvulus and obstruction. CONCLUSION Utilizing the gastric fundus as an autologous patch to repair large hiatal hernia may be a safe and efficacious solution with good short-term outcomes. However, further studies should be conducted to elucidate long-term results.
Collapse
|
16
|
Syed O, Kim JH, Keskin-Erdogan Z, Day RM, El-Fiqi A, Kim HW, Knowles JC. SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties. Acta Biomater 2019; 99:181-195. [PMID: 31446049 DOI: 10.1016/j.actbio.2019.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Abstract
With donor organs not readily available, the need for a tissue-engineered oesophagus remains high, particularly for congenital childhood conditions such as atresia. Previous attempts have not been successful, and challenges remain. Small intestine submucosa (SIS) is an acellular matrix material with good biological properties; however, as is common with these types of materials, they demonstrate poor mechanical properties. In this work, electrospinning was performed to mechanically reinforce tubular SIS with polylactic-co-glycolic acid (PLGA) nanofibres. It was hypothesised that if attachment could be achieved between the two materials, then this would (i) improve the SIS mechanical properties, (ii) facilitate smooth muscle cell alignment to support directional growth of muscle cells and (iii) allow for the delivery of bioactive molecules (VEGF in this instance). Through a relatively simple multistage process, adhesion between the layers was achieved without chemically altering the SIS. It was also found that altering mandrel rotation speed affected the alignment of the PLGA nanofibres. SIS-PLGA scaffolds performed mechanically better than SIS alone; yield stress improvement was 200% and 400% along the longitudinal and circumferential directions, respectively. Smooth muscle cells cultured on the aligned fibres showed resultant unidirectional alignment. In vivo the SIS-PLGA scaffolds demonstrated limited foreign body reaction judged by the type and proportion of immune cells present and lack of fibrous encapsulation. The scaffolds remained intact at 4 weeks in vivo, and good cellular infiltration was observed. The incorporation of VEGF within SIS-PLGA scaffolds increased the blood vessel density of the surrounding tissues, highlighting the possible stimulation of endothelialisation by angiogenic factor delivery. Overall, the designed SIS-PLGA-VEGF hybrid scaffolds might be used as a potential matrix platform for oesophageal tissue engineering. In addition to this, achieving improved attachment between layers of acellular matrix materials and electrospun fibre layers offers the potential utility in other applications. STATEMENT OF SIGNIFICANCE: Because of its multi-layered nature and complex structure, the oesophagus tissue poses several challenges for successful clinical grafting. Therefore, it is promising to utilise tissue engineering strategies to mimic and form structural compartments for its recovery. In this context, we investigated the use of tubular small intestine submucosa (SIS) reinforced with polylactic-co-glycolic acid (PLGA) nanofibres by using electrospinning and also, amongst other parameters, the integrity of the bilayered structure created. This was carried out to facilitate smooth muscle cell alignment, support directional growth of muscle cells and allow the delivery of bioactive molecules (VEGF in this study). We evaluated this approach by using in vitro and in vivo models to determine the efficacy of this new system.
Collapse
|
17
|
Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater 2019; 95:32-49. [PMID: 30639351 PMCID: PMC6625952 DOI: 10.1016/j.actbio.2019.01.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Despite the numerous lives that have been saved since the first successful procedure in 1954, organ transplant has several shortcomings which prevent it from becoming a more comprehensive solution for medical care than it is today. There is a considerable shortage of organ donors, leading to patient death in many cases. In addition, patients require lifelong immunosuppression to prevent graft rejection postoperatively. With such issues in mind, recent research has focused on possible solutions for the lack of access to donor organs and rejections, with the possibility of using the patient's own cells and tissues for treatment showing enormous potential. Three-dimensional (3D) bioprinting is a rapidly emerging technology, which holds great promise for fabrication of functional tissues and organs. Bioprinting offers the means of utilizing a patient's cells to design and fabricate constructs for replacement of diseased tissues and organs. It enables the precise positioning of cells and biologics in an automated and high throughput manner. Several studies have shown the promise of 3D bioprinting. However, many problems must be overcome before the generation of functional tissues with biologically-relevant scale is possible. Specific focus on the functionality of bioprinted tissues is required prior to clinical translation. In this perspective, this paper discusses the challenges of functionalization of bioprinted tissue under eight dimensions: biomimicry, cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and strives to inform the reader with directions in bioprinting complex and volumetric tissues. STATEMENT OF SIGNIFICANCE: With thousands of patients dying each year waiting for an organ transplant, bioprinted tissues and organs show the potential to eliminate this ever-increasing organ shortage crisis. However, this potential can only be realized by better understanding the functionality of the organ and developing the ability to translate this to the bioprinting methodologies. Considering the rate at which the field is currently expanding, it is reasonable to expect bioprinting to become an integral component of regenerative medicine. For this purpose, this paper discusses several factors that are critical for printing functional tissues including cell density, vascularization, innervation, heterogeneity, engraftment, mechanics, and tissue-specific function, and inform the reader with future directions in bioprinting complex and volumetric tissues.
Collapse
Affiliation(s)
- Ashley N Leberfinger
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Shantanab Dinda
- Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yang Wu
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Srinivas V Koduru
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Veli Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Ceyhan Engineering Faculty, Cukurova University, Ceyhan, Adana 01950, Turkey
| | - Dino J Ravnic
- Department of Surgery, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
18
|
Powers SA, Burleson LK, Hannan JL. Managing female pelvic floor disorders: a medical device review and appraisal. Interface Focus 2019; 9:20190014. [PMID: 31263534 DOI: 10.1098/rsfs.2019.0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Pelvic floor disorders (PFDs) will affect most women during their lifetime. Sequelae such as pelvic organ prolapse, stress urinary incontinence, chronic pain and dyspareunia significantly impact overall quality of life. Interventions to manage or eliminate symptoms from PFDs aim to restore support of the pelvic floor. Pessaries have been used to mechanically counteract PFDs for thousands of years, but do not offer a cure. By contrast, surgically implanted grafts or mesh offer patients a more permanent resolution but have been in wide use within the pelvis for less than 30 years. In this perspective review, we provide an overview of the main theories underpinning PFD pathogenesis and the animal models used to investigate it. We highlight the clinical outcomes of mesh and grafts before exploring studies performed to elucidate tissue level effects and bioengineering considerations. Considering recent turmoil surrounding transvaginal mesh, the role of pessaries, an impermanent method, is examined as a means to address patients with PFDs.
Collapse
Affiliation(s)
- Shelby A Powers
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mailstop 634, Greenville, NC 27834-4354, USA
| | - Lindsey K Burleson
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mailstop 634, Greenville, NC 27834-4354, USA
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mailstop 634, Greenville, NC 27834-4354, USA
| |
Collapse
|
19
|
KC P, Hong Y, Zhang G. Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen Biomater 2019; 6:185-199. [PMID: 31404421 PMCID: PMC6683951 DOI: 10.1093/rb/rbz017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Decellularized extracellular matrix (dECM) derived from myocardium has been widely explored as a nature scaffold for cardiac tissue engineering applications. Cardiac dECM offers many unique advantages such as preservation of organ-specific ECM microstructure and composition, demonstration of tissue-mimetic mechanical properties and retention of biochemical cues in favor of subsequent recellularization. However, current processes of dECM decellularization and recellularization still face many challenges including the need for balance between cell removal and extracellular matrix preservation, efficient recellularization of dECM for obtaining homogenous cell distribution, tailoring material properties of dECM for enhancing bioactivity and prevascularization of thick dECM. This review summarizes the recent progresses of using dECM scaffold for cardiac repair and discusses its major advantages and challenges for producing biomimetic cardiac patch.
Collapse
Affiliation(s)
- Pawan KC
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Room 301L, 260 S Forge Street, Akron, OH, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Room 240, Arlington, TX, USA
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Room 301L, 260 S Forge Street, Akron, OH, USA
| |
Collapse
|
20
|
Resistance of Synthetic and Biologic Surgical Meshes to Methicillin-Resistant Staphylococcus aureus Biofilm: An In Vitro Investigation. Int J Biomater 2019; 2019:1063643. [PMID: 31001340 PMCID: PMC6436333 DOI: 10.1155/2019/1063643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/16/2019] [Indexed: 11/17/2022] Open
Abstract
Surgical meshes have become the standard procedure for a variety of surgical applications with 20 million meshes being implanted each year. The popularity of mesh usage among surgeons is backed by the multiple studies that support its functionality as a tool for improving surgical outcomes. However, their use has also been associated with infectious surgical complications and many surgeons have turned to biologic meshes. While there have been several studies investigating synthetic meshes, there is limited data comparing synthetic and biologic meshes in vitro in an infection model. This study evaluates the in vitro susceptibility of both synthetic and biologic meshes to single-species methicillin-resistant Staphylococcus aureus (MRSA) biofilms. This research compares biofilm biomass, average thickness, and coverage between the three meshes through florescent in situ hybridization (FISH), confocal scanning microscopy (CSLM), and image analysis. We also report the varying levels of planktonic and attached bacteria through sonication and cfu counts. While the data illustrates increased biofilm formation on biologic mesh in vitro, the study must further be investigated in vivo to confirm the study observations.
Collapse
|
21
|
Roth J, Tharappel J, Wennergren J, Lee E, Madabhushi V, Plymale M. A comparative analysis of ventral hernia repair with a porcine hepatic-derived matrix and porcine dermal matrix. INTERNATIONAL JOURNAL OF ABDOMINAL WALL AND HERNIA SURGERY 2019. [DOI: 10.4103/ijawhs.ijawhs_20_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Joddar B, Kumar SA, Kumar A. A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype. Cell Biochem Biophys 2018; 76:187-195. [PMID: 28942575 PMCID: PMC5866207 DOI: 10.1007/s12013-017-0828-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, 500W University Avenue, El Paso, TX, 79968, USA.
| | - Shweta Anil Kumar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Alok Kumar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
23
|
Saxena AK. Surgical perspectives regarding application of biomaterials for the management of large congenital diaphragmatic hernia defects. Pediatr Surg Int 2018; 34:475-489. [PMID: 29610961 DOI: 10.1007/s00383-018-4253-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
Abstract
This review focuses on the surgical viewpoints on patch repairs in neonates with large congenital diaphragmatic hernia defects. The main focus is on the various biomaterials that have been employed to date with regard to their source of origins, degradation properties as well as tissue integration characteristics. Further focus is on the present knowledge on patch integration when biomaterials are placed in the diaphragmatic defect. The review will also look at the present evidence on the biomechanical characteristics of the most commonly used biomaterials and compares these materials to diaphragmatic tissue to offer more insight on the present practice of patch repairs in large defects. Since tissue engineering and regenerative medicine has offered another dimension to diaphragmatic replacement, a detailed overview of this technology will be undertaken with regard to cell sourcing, scaffolds, in vitro versus in vivo implants as well as quality of tissue produced, to explore the limitations and the feasibility facing the scientific community in its clinical implementation of skeletal muscle-engineered tissue beyond laboratory research for diaphragmatic replacement.
Collapse
Affiliation(s)
- Amulya K Saxena
- Department of Pediatric Surgery, Chelsea Children's Hospital, Chelsea and Westminster Hospital NHS Foundation Trust, Imperial College London, London, UK.
| |
Collapse
|
24
|
Costa A, Naranjo JD, Londono R, Badylak SF. Biologic Scaffolds. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025676. [PMID: 28320826 DOI: 10.1101/cshperspect.a025676] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix are commonly used for the repair and functional reconstruction of injured and missing tissues. These naturally occurring bioscaffolds are manufactured by the removal of the cellular content from source tissues while preserving the structural and functional molecular units of the remaining extracellular matrix (ECM). The mechanisms by which these bioscaffolds facilitate constructive remodeling and favorable clinical outcomes include release or creation of effector molecules that recruit endogenous stem/progenitor cells to the site of scaffold placement and modulation of the innate immune response, specifically the activation of an anti-inflammatory macrophage phenotype. The methods by which ECM biologic scaffolds are prepared, the current understanding of in vivo scaffold remodeling, and the associated clinical outcomes are discussed in this article.
Collapse
Affiliation(s)
- Alessandra Costa
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219
| | - Juan Diego Naranjo
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219
| | - Ricardo Londono
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219.,School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
25
|
Abstract
Most body wall injuries in small animals are caused by bite wounds or vehicular trauma. Penetrating gunshot wounds are less common. Bite wounds are characterized by massive trauma to the body wall with associated defects, but fewer internal injuries, whereas gunshot wounds are associated with a high number of internal injuries. Vehicular accident injuries are caused by blunt force trauma and can lead to both body wall defects and internal organ damage. Impalement injuries are rare and are typically associated with internal damage. Exploratory surgery, herniorrhaphy, and aggressive wound management are recommended in the treatment of these injuries.
Collapse
Affiliation(s)
- Marije Risselada
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, Lynn Hall, 625 Harrison Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
26
|
Liang R, Knight K, Easley D, Palcsey S, Abramowitch S, Moalli PA. Towards rebuilding vaginal support utilizing an extracellular matrix bioscaffold. Acta Biomater 2017; 57:324-333. [PMID: 28487243 PMCID: PMC5639927 DOI: 10.1016/j.actbio.2017.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/15/2022]
Abstract
As an alternative to polypropylene mesh, we explored an extracellular matrix (ECM) bioscaffold derived from urinary bladder matrix (MatriStem™) in the repair of vaginal prolapse. We aimed to restore disrupted vaginal support simulating application via transvaginal and transabdominal approaches in a macaque model focusing on the impact on vaginal structure, function, and the host immune response. In 16 macaques, after laparotomy, the uterosacral ligaments and paravaginal attachments to pelvic side wall were completely transected (IACUC# 13081928). 6-ply MatriStem was cut into posterior and anterior templates with a portion covering the vagina and arms simulating uterosacral ligaments and paravaginal attachments, respectively. After surgically exposing the correct anatomical sites, in 8 animals, a vaginal incision was made on the anterior and posterior vagina and the respective scaffolds were passed into the vagina via these incisions (transvaginal insertion) prior to placement. The remaining 8 animals underwent the same surgery without vaginal incisions (transabdominal insertion). Three months post implantation, firm tissue bands extending from vagina to pelvic side wall appeared in both MatriStem groups. Experimental endpoints examining impact of MatriStem on the vagina demonstrated that vaginal biochemical and biomechanical parameters, smooth muscle thickness and contractility, and immune responses were similar in the MatriStem no incision group and sham-operated controls. In the MatriStem incision group, a 41% decrease in vaginal stiffness (P=0.042), a 22% decrease in collagen content (P=0.008) and a 25% increase in collagen subtypes III/I was observed vs. Sham. Active MMP2 was increased in both Matristem groups vs. Sham (both P=0.002). This study presents a novel application of ECM bioscaffolds as a first step towards the rebuilding of vaginal support. STATEMENT OF SIGNIFICANCE Pelvic organ prolapse is a common condition related to failure of the supportive soft tissues of the vagina; particularly at the apex and mid-vagina. Few studies have investigated methods to regenerate these failed structures. The overall goal of the study was to determine the feasibility of utilizing a regenerative bioscaffold in prolapse applications to restore apical (level I) and lateral (level II) support to the vagina without negatively impacting vaginal structure and function. The significance of our findings is two fold: 1. Implantation of properly constructed extracellular matrix grafts promoted rebuilding of level I and level II support to the vagina and did not negatively impact the overall functional, morphological and biochemical properties of the vagina. 2. The presence of vaginal incisions in the transvaginal insertion of bioscaffolds may compromise vaginal structural integrity in the short term.
Collapse
Affiliation(s)
- Rui Liang
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology, Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Katrina Knight
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Deanna Easley
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Stacy Palcsey
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Steven Abramowitch
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Pamela A Moalli
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology, Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Li M, Zhang C, Cheng M, Gu Q, Zhao J. Small intestinal submucosa: A potential osteoconductive and osteoinductive biomaterial for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:149-156. [DOI: 10.1016/j.msec.2017.02.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 02/10/2017] [Indexed: 01/13/2023]
|
28
|
Scott JB, Ward CL, Corona BT, Deschenes MR, Harrison BS, Saul JM, Christ GJ. Achieving Acetylcholine Receptor Clustering in Tissue-Engineered Skeletal Muscle Constructs In vitro through a Materials-Directed Agrin Delivery Approach. Front Pharmacol 2017; 7:508. [PMID: 28123368 PMCID: PMC5225105 DOI: 10.3389/fphar.2016.00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/08/2016] [Indexed: 11/23/2022] Open
Abstract
Volumetric muscle loss (VML) can result from trauma, infection, congenital anomalies, or surgery, and produce permanent functional and cosmetic deficits. There are no effective treatment options for VML injuries, and recent advances toward development of muscle constructs lack the ability to achieve innervation necessary for long-term function. We sought to develop a proof-of-concept biomaterial construct that could achieve acetylcholine receptor (AChR) clustering on muscle-derived cells (MDCs) in vitro. The approach consisted of the presentation of neural (Z+) agrin from the surface of microspheres embedded with a fibrin hydrogel to muscle cells (C2C12 cell line or primary rat MDCs). AChR clustering was spatially restricted to areas of cell (C2C12)-microsphere contact when the microspheres were delivered in suspension or when they were incorporated into a thin (2D) fibrin hydrogel. AChR clusters were observed from 16 to 72 h after treatment when Z+ agrin was adsorbed to the microspheres, and for greater than 120 h when agrin was covalently coupled to the microspheres. Little to no AChR clustering was observed when agrin-coated microspheres were delivered from specially designed 3D fibrin constructs. However, cyclic stretch in combination with agrin-presenting microspheres led to dramatic enhancement of AChR clustering in cells cultured on these 3D fibrin constructs, suggesting a synergistic effect between mechanical strain and agrin stimulation of AChR clustering in vitro. These studies highlight a strategy for maintaining a physiological phenotype characterized by motor endplates of muscle cells used in tissue engineering strategies for muscle regeneration. As such, these observations may provide an important first step toward improving function of tissue-engineered constructs for treatment of VML injuries.
Collapse
Affiliation(s)
- John B Scott
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University Biomedical Engineering, Winston-SalemNC, USA
| | - Catherine L Ward
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; US Army Institute for Surgical Research, San AntonioTX, USA
| | - Benjamin T Corona
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; US Army Institute for Surgical Research, San AntonioTX, USA
| | - Michael R Deschenes
- Department of Neuroscience, College of William and Mary, Williamsburg VA, USA
| | - Benjamin S Harrison
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University Biomedical Engineering, Winston-SalemNC, USA
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford OH, USA
| | - George J Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; Department of Biomedical Engineering and Department of Orthopaedic Surgery, University of Virginia, CharlottesvilleVA, USA
| |
Collapse
|
29
|
Liang X, Zhang L, Lv Y. Treatment of total pelvic organ prolapse using a whole biological patch: A pilot study of 17 patients. J Obstet Gynaecol Res 2016; 43:164-172. [PMID: 27762472 DOI: 10.1111/jog.13155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/07/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Xianghua Liang
- Department of Obstetrics and Gynecology; Beijing Jishuital Hospital; Beijing China
| | - Lili Zhang
- Department of Obstetrics and Gynecology; Beijing Jishuital Hospital; Beijing China
| | - Yanwei Lv
- Department of Beijing Research Institute of Traumatology and Orthopaedics; Beijing Jishuitan Hospital; Beijing China
| |
Collapse
|
30
|
Badylak SF, Dziki JL, Sicari BM, Ambrosio F, Boninger ML. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration. Biomaterials 2016; 103:128-136. [PMID: 27376561 DOI: 10.1016/j.biomaterials.2016.06.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022]
|
31
|
Dziki JL, Wang DS, Pineda C, Sicari BM, Rausch T, Badylak SF. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype. J Biomed Mater Res A 2016; 105:138-147. [DOI: 10.1002/jbm.a.35894] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Jenna L. Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Derek S. Wang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Catalina Pineda
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Brian M. Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Theresa Rausch
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh; Pittsburgh Pennsylvania
| |
Collapse
|
32
|
Costa A, Naranjo JD, Turner NJ, Swinehart IT, Kolich BD, Shaffiey SA, Londono R, Keane TJ, Reing JE, Johnson SA, Badylak SF. Mechanical strength vs. degradation of a biologically-derived surgical mesh over time in a rodent full thickness abdominal wall defect. Biomaterials 2016; 108:81-90. [PMID: 27619242 DOI: 10.1016/j.biomaterials.2016.08.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
The use of synthetic surgical mesh materials has been shown to decrease the incidence of hernia recurrence, but can be associated with undesirable effects such as infection, chronic discomfort, and adhesion to viscera. Surgical meshes composed of extracellular matrix (i.e., biologically-derived mesh) are an alternative to synthetic meshes and can reduce some of these undesirable effects but are less frequently used due to greater cost and perceived inadequate strength as the mesh material degrades and is replaced by host tissue. The present study assessed the temporal association between mechanical properties and degradation of biologic mesh composed of urinary bladder matrix (UBM) in a rodent model of full thickness abdominal wall defect. Mesh degradation was evaluated for non-chemically crosslinked scaffolds with the use of (14)C-radiolabeled UBM. UBM biologic mesh was 50% degraded by 26 days and was completely degraded by 90 days. The mechanical properties of the UBM biologic mesh showed a rapid initial decrease in strength and modulus that was not proportionately associated with its degradation as measured by (14)C. The loss of strength and modulus was followed by a gradual increase in these values that was associated with the deposition of new, host derived connective tissue. The strength and modulus values were comparable to or greater than those of the native abdominal wall at all time points.
Collapse
Affiliation(s)
- A Costa
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - J D Naranjo
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - N J Turner
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - I T Swinehart
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - B D Kolich
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - S A Shaffiey
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Londono
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - T J Keane
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - J E Reing
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - S A Johnson
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - S F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Rosen M, Roselli EE, Faber C, Ratliff NB, Ponsky JL, Smedira NG. Small Intestinal Submucosa Intracardiac Patch: An Experimental Study. Surg Innov 2016; 12:227-31. [PMID: 16224643 DOI: 10.1177/155335060501200307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this experimental study, small intestinal submucosa was implanted as an atrial prosthesis in calves. Echocardiography and histology showed this to be an impermeable prosthesis that develops a neointimal nonthrombogenic surface making it safe for repair of defects in a low-pressure system. Further study with small intestinal submucosa in an intracardiac position is warranted.
Collapse
Affiliation(s)
- Michael Rosen
- Cleveland Clinic Foundation Department of General Surgery, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
34
|
Xuan S, Lee CU, Chen C, Doyle AB, Zhang Y, Guo L, John VT, Hayes D, Zhang D. Thermoreversible and Injectable ABC Polypeptoid Hydrogels: Controlling the Hydrogel Properties through Molecular Design. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2016; 28:727-737. [PMID: 27458325 PMCID: PMC4957709 DOI: 10.1021/acs.chemmater.5b03528] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A series of ABC triblock copolypeptoids [i.e., poly(N-allyl glycine)-b-poly(N-methyl glycine)-b-poly(N-decyl glycine) (AMD)] with well-defined structure and varying composition have been synthesized by sequential primary amine-initiated ring-opening polymerization of the corresponding N-substituted N-carboxyanhydride monomers (Al-NCA, Me-NCA, and De-NCA). The ABC block copolypeptoids undergo sol-to-gel transitions with increasing temperature in water and biological media at low concentrations (2.5-10 wt %). The sol-gel transition is rapid and fully reversible with a narrow transition window, evidenced by the rheological measurements. The gelation temperature (Tgel) and mechanical stiffness of the hydrogels are highly tunable: Tgel in the 26.2-60.0 °C range, the storage modulus (G') and Young's modulus (E) in the 0.2-780 Pa and 0.5-2346 Pa range, respectively, at the physiological temperature (37 °C) can be readily accessed by controlling the block copolypeptoid composition and the polymer solution concentration. The hydrogel is injectable through a 24 gauge syringe needle and maintains their shape upon in contact with surfaces or water baths that are kept above the sol-gel transition temperature. The hydrogels exhibit minimal cytotoxicity toward human adipose derived stem cells (hASCs), evidenced from both alamarBlue and PicoGreen assays. Furthermore, quantitative PCR analysis revealed significant up-regulation of the Col2a1 gene and down-regulation of ANGPT1 gene, suggesting that the hydrogel exhibit biological activity in inducing chondrogenesis of hASCs. It was also demonstrated that the hydrogel can be used to quantitatively encapsulate water-soluble enzymes (e.g., horseradish peroxidase) by manipulating the sol-gel transition. The enzymatic activity of HRP remain unperturbed after encapsulation at 37 °C for up to 7 d, suggesting that the hydrogel does not adversely affect the enzyme structure and thereby the enzymatic activity. These results suggest that the polypeptoid hydrogel a promising synthetic platform for tissue engineering or protein storage applications.
Collapse
Affiliation(s)
- Sunting Xuan
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Chang-Uk Lee
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Cong Chen
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Andrew B. Doyle
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yueheng Zhang
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Li Guo
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Vijay T. John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Daniel Hayes
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
35
|
Wu X, Wang Y, Zhu C, Tong X, Yang M, Yang L, Liu Z, Huang W, Wu F, Zong H, Li H, He H. Preclinical animal study and human clinical trial data of co-electrospun poly(L-lactide-co-caprolactone) and fibrinogen mesh for anterior pelvic floor reconstruction. Int J Nanomedicine 2016; 11:389-97. [PMID: 26893556 PMCID: PMC4745856 DOI: 10.2147/ijn.s88803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Synthetic and biological materials are commonly used for pelvic floor reconstruction. In this study, host tissue response and biomechanical properties of mesh fabricated from co-electrospun poly(l-lactide-co-caprolactone) (PLCL) and fibrinogen (Fg) were compared with those of polypropylene mesh (PPM) in a canine abdominal defect model. Macroscopic, microscopic, histological, and biomechanical evaluations were performed over a 24-week period. The results showed that PLCL/Fg mesh had similar host tissue responses but better initial vascularization and graft site tissue organization than PPM. The efficacy of the PLCL/Fg mesh was further examined in human pelvic floor reconstruction. Operation time, intraoperative blood loss, and pelvic organ prolapse quantification during 6-month follow-up were compared for patients receiving PLCL/Fg mesh versus PPM. According to the pelvic organ prolapse quantification scores, the anterior vaginal wall 3 cm proximal to the hymen point (Aa point), most distal edge of the cervix or vaginal cuff scar point (C point), and posterior fornix point (D point) showed significant improvement (P<0.01) at 1, 3, and 6 months for both groups compared with preoperatively. At 6 months, improvements at the Aa point in the PLCL/Fg group were significantly more (P<0.005) than the PPM group, indicating that, while both materials improve the patient symptoms, PLCL/Fg mesh resulted in more obvious improvement.
Collapse
Affiliation(s)
- Xujun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Shanghai Pine & Power Biotech Co. Ltd., Tongji University, Shanghai, People's Republic of China
| | - Yuru Wang
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, Tongji University, Shanghai, People's Republic of China
| | - Cancan Zhu
- Shanghai Pine & Power Biotech Co. Ltd., Tongji University, Shanghai, People's Republic of China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, Tongji University, Shanghai, People's Republic of China
| | - Ming Yang
- Shanghai Pine & Power Biotech Co. Ltd., Tongji University, Shanghai, People's Republic of China
| | - Li Yang
- Shanghai Pine & Power Biotech Co. Ltd., Tongji University, Shanghai, People's Republic of China
| | - Zhang Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Shanghai Pine & Power Biotech Co. Ltd., Tongji University, Shanghai, People's Republic of China
| | - Weihong Huang
- Shanghai Pine & Power Biotech Co. Ltd., Tongji University, Shanghai, People's Republic of China
| | - Feng Wu
- Shanghai Pine & Power Biotech Co. Ltd., Tongji University, Shanghai, People's Republic of China
| | - Honghai Zong
- Shanghai Pine & Power Biotech Co. Ltd., Tongji University, Shanghai, People's Republic of China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, Tongji University, Shanghai, People's Republic of China
| | - Hongbing He
- Shanghai Pine & Power Biotech Co. Ltd., Tongji University, Shanghai, People's Republic of China; Section of Tissue Engineering, Institute of Peripheral Vascular Surgery, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Dearth CL, Slivka PF, Stewart SA, Keane TJ, Tay JK, Londono R, Goh Q, Pizza FX, Badylak SF. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury. Acta Biomater 2016; 31:50-60. [PMID: 26612417 DOI: 10.1016/j.actbio.2015.11.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022]
Abstract
Extracellular matrix (ECM) has been used as a biologic scaffold material to both reinforce the surgical repair of soft tissue and serve as an inductive template to promote a constructive tissue remodeling response. Success of such an approach is dependent on macrophage-mediated degradation and remodeling of the biologic scaffold. Macrophage phenotype during these processes is a predictive factor of the eventual remodeling outcome. ECM scaffolds have been shown to promote an anti-inflammatory or M2-like macrophage phenotype in vitro that includes secretion of downstream products of cycolooxygenases 1 and 2 (COX1/2). The present study investigated the effect of a common COX1/2 inhibitor (Aspirin) on macrophage phenotype and tissue remodeling in a rodent model of ECM scaffold treated skeletal muscle injury. Inhibition of COX1/2 reduced the constructive remodeling response by hindering myogenesis and collagen deposition in the defect area. The inhibited response was correlated with a reduction in M2-like macrophages in the defect area. The effects of Aspirin on macrophage phenotype were corroborated using an established in vitro macrophage model which showed a reduction in both ECM induced prostaglandin secretion and expression of a marker of M2-like macrophages (CD206). These results raise questions regarding the common peri-surgical administration of COX1/2 inhibitors when biologic scaffold materials are used to facilitate muscle repair/regeneration. STATEMENT OF SIGNIFICANCE COX1/2 inhibitors such as nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely administered post-surgically for analgesic purposes. While COX1/2 inhibitors are important in pain management, they have also been shown to delay or diminish the healing process, which calls to question their clinical use for treating musculotendinous injuries. The present study aimed to investigate the influence of a common NSAID, Aspirin, on the constructive remodeling response mediated by an ECM scaffold (UBM) in a rat skeletal muscle injury model. The COX1/2 inhibitor, Aspirin, was found to mitigate the ECM scaffold-mediated constructive remodeling response both in an in vitro co-culture system and an in vivo rat model of skeletal muscle injury. The results presented herein provide data showing that NSAIDs may significantly alter tissue remodeling outcomes when a biomaterial is used in a regenerative medicine/tissue engineering application. Thus, the decision to prescribe NSAIDs to manage the symptoms of inflammation post-ECM scaffold implantation should be carefully considered.
Collapse
|
37
|
Keane TJ, Dziki J, Castelton A, Faulk DM, Messerschmidt V, Londono R, Reing JE, Velankar SS, Badylak SF. Preparation and characterization of a biologic scaffold and hydrogel derived from colonic mucosa. J Biomed Mater Res B Appl Biomater 2015; 105:291-306. [DOI: 10.1002/jbm.b.33556] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 10/11/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Timothy J. Keane
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania 15219
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania 15213
| | - Jenna Dziki
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania 15219
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania 15213
| | - Arthur Castelton
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania 15219
| | - Denver M. Faulk
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania 15219
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania 15213
| | | | - Ricardo Londono
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania 15219
| | - Janet E. Reing
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania 15219
| | - Sachin S. Velankar
- Department of Chemical and Petroleum Engineering; University of Pittsburgh; Pittsburgh Pennsylvania 15213
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine; Pittsburgh Pennsylvania 15219
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania 15213
- Department of Surgery; University of Pittsburgh; Pittsburgh Pennsylvania 15219
| |
Collapse
|
38
|
Long-term outcomes of cruroplasty reinforcement with composite versus biologic mesh for gastroesophageal reflux disease. Surg Endosc 2015; 30:2865-72. [DOI: 10.1007/s00464-015-4570-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
|
39
|
An in vivo analysis of Miromesh--a novel porcine liver prosthetic created by perfusion decellularization. J Surg Res 2015; 201:29-37. [PMID: 26850181 DOI: 10.1016/j.jss.2015.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/27/2015] [Accepted: 10/02/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Bioprosthetics derived from human or porcine dermis and intestinal submucosa have dense, homogenous, aporous collagen structures that potentially limit cellular penetration, undermining the theoretical benefit of a "natural" collagen scaffold. We hypothesized that Miromesh-a novel prosthetic derived from porcine liver by perfusion decellularization-provides a more optimal matrix for tissue ingrowth. METHODS Thirty rats underwent survival surgery that constituted the creation of a 4 × 1 cm abdominal defect and simultaneous bridged repair. Twenty rats were bridged with Miromesh, and 10 rats were bridged with non-cross-linked porcine dermis (Strattice). Ten Miromesh and all 10 Strattice were rinsed in vancomycin solution and inoculated with 10(4) colony-forming units of green fluorescent protein-labeled Staphylococcus aureus (GFP-SA) after implantation. Ten Miromesh controls were neither soaked nor inoculated. No animals received systemic antibiotics. All animals were euthanized at 90 d and underwent an examination of their gross appearance before being sectioned for quantitative bacterial culture and histologic grading. A pathologist scored specimens (0-4) for cellular infiltration, acute inflammation, chronic inflammation, granulation tissue, foreign body reaction, and fibrous capsule formation. RESULTS All but one rat repaired with Strattice survived until the 90-d euthanization. All quantitative bacterial cultures for inoculated specimens were negative for GFP-SA. Of nine Strattice explants, none received a cellular infiltration score >0, consistent with a poor tissue-mesh interface observed grossly. Of 10 Miromesh explants also inoculated with GFP-SA, seven of 10 demonstrated cellular infiltration with an average score of +2.7 ± 0.8, whereas sterile Miromesh implants received an average score of 0.8 ± 1.0. Two inoculated Miromesh implants demonstrated acute inflammation and infection on histology. CONCLUSIONS A prosthetic generated from porcine liver by perfusion decellularization provides a matrix for superior cellular infiltration compared with non-cross-linked porcine dermis.
Collapse
|
40
|
Reprint of: Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater 2015; 23 Suppl:S17-26. [PMID: 26235342 DOI: 10.1016/j.actbio.2015.07.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/11/2008] [Accepted: 09/15/2008] [Indexed: 01/27/2023]
Abstract
Biological scaffold materials derived from the extracellular matrix (ECM) of intact mammalian tissues have been successfully used in a variety of tissue engineering/regenerative medicine applications both in preclinical studies and in clinical applications. Although it is recognized that the materials have constructive remodeling properties, the mechanisms by which functional tissue restoration is achieved are not well understood. There is evidence to support essential roles for both the structural and functional characteristics of the biological scaffold materials. This paper provides an overview of the composition and structure of selected ECM scaffold materials, the effects of manufacturing methods upon the structural properties and resulting mechanical behavior of the scaffold materials, and the in vivo degradation and remodeling of ECM scaffolds with an emphasis on tissue function.
Collapse
|
41
|
Berger K, Faro J, Faro S. Repair of a recurrent rectovaginal fistula with a biological graft. Int Urogynecol J 2015; 26:1071-3. [DOI: 10.1007/s00192-015-2701-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/18/2015] [Indexed: 11/30/2022]
|
42
|
Gigliobianco G, Roman Regueros S, Osman NI, Bissoli J, Bullock AJ, Chapple CR, MacNeil S. Biomaterials for pelvic floor reconstructive surgery: how can we do better? BIOMED RESEARCH INTERNATIONAL 2015; 2015:968087. [PMID: 25977927 PMCID: PMC4419215 DOI: 10.1155/2015/968087] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/19/2014] [Indexed: 12/21/2022]
Abstract
Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are major health issues that detrimentally impact the quality of life of millions of women worldwide. Surgical repair is an effective and durable treatment for both conditions. Over the past two decades there has been a trend to enforce or reinforce repairs with synthetic and biological materials. The determinants of surgical outcome are many, encompassing the physical and mechanical properties of the material used, and individual immune responses, as well surgical and constitutional factors. Of the current biomaterials in use none represents an ideal. Biomaterials that induce limited inflammatory response followed by constructive remodelling appear to have more long term success than biomaterials that induce chronic inflammation, fibrosis and encapsulation. In this review we draw upon published animal and human studies to characterize the changes biomaterials undergo after implantation and the typical host responses, placing these in the context of clinical outcomes.
Collapse
Affiliation(s)
| | | | - Nadir I. Osman
- Material Science Engineering, University of Sheffield, Sheffield S1 3JD, UK
- Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | - Julio Bissoli
- Hospital das Clínicas da Faculdade de Medicina, Universidade de Sao Paulo, 05410-020 São Paulo, Brazil
| | - Anthony J. Bullock
- Material Science Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | | | - Sheila MacNeil
- Material Science Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
43
|
Mochizuki Y, Ochi M. Clinical results of arthroscopic polyglycolic acid sheet patch graft for irreparable rotator cuff tears. ASIA-PACIFIC JOURNAL OF SPORT MEDICINE ARTHROSCOPY REHABILITATION AND TECHNOLOGY 2015; 2:31-35. [PMID: 29264237 PMCID: PMC5730641 DOI: 10.1016/j.asmart.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 09/28/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023]
Abstract
The high retear rates after surgery for irreparable rotator cuff tears can be explained by the healing capacity potential of tendons and the native rotator cuff enthesis characterised by complex morphological structures, called direct insertion. Many experimental researches have focused on biologically augmenting the rotator cuff reconstruction and improving tendon–bone healing of the rotator cuff. The results of the experimental study showed that the polyglycolic acid sheet scaffold material allows for the regeneration of not only tendon-to-tendon, but also tendon-to-bone interface in an animal model. We performed a clinical study of the arthroscopic polyglycolic acid sheet patch graft used for the repair of irreparable rotator cuff tears. One-year clinical results of the repair of irreparable rotator cuff tears by arthroscopic patch graft with a polyglycolic acid sheet demonstrated improved shoulder function and a significantly lower retear rate, compared with patients treated with a fascia lata patch.
Collapse
Affiliation(s)
- Yu Mochizuki
- Hiroshima Prefectural Hospital, Ujina-Knada, Minami-Ku, Hiroshima, Japan
| | | |
Collapse
|
44
|
Hunter JD, Cannon JA. Biomaterials: so many choices, so little time. What are the differences? Clin Colon Rectal Surg 2014; 27:134-9. [PMID: 25435822 DOI: 10.1055/s-0034-1394087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The use of biologic mesh has increased greatly in recent years in response to the need for a solution in managing contaminated hernias. Multiple different meshes are commercially available, and are derived from a variety of sources, including human dermis as well as animal sources. For a mesh to be effective, it must be resistant to infection, have adequate tensile strength for hernia repair, and be well tolerated by the host. To achieve this end, biologic meshes go through an intense processing that varies from one product to the next. In this article, the authors review the types of mesh available, how they are processed, and examine these characteristics in terms of their strengths and weaknesses in application to surgical technique.
Collapse
Affiliation(s)
- John D Hunter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jamie A Cannon
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
45
|
Osman NI, Roman S, Bullock AJ, Chapple CR, MacNeil S. The effect of ascorbic acid and fluid flow stimulation on the mechanical properties of a tissue engineered pelvic floor repair material. Proc Inst Mech Eng H 2014; 228:867-75. [PMID: 25313023 DOI: 10.1177/0954411914549393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Synthetic non-degradable meshes used in pelvic floor surgery can cause serious complications such as tissue erosion. A repair material composed of an autologous oral fibroblast seeded degradable polylactic acid scaffold may be a viable alternative. The aims of this study were to investigate the effects of media supplementation with additives (ascorbic acid-2-phosphate, glycolic acid and 17-β-oestradiol) on the mechanical properties of these scaffolds. Oral fibroblasts were isolated from buccal mucosa. The effects of the three additives were initially compared in two-dimensional culture to select the most promising collagen stimulating additive. Sterile electrospun scaffolds were seeded with 500,000 oral fibroblasts and fixed in 6-well plates and subjected to ascorbic acid-2-phosphate (the best performing additive) and/or mechanical stimulation. Mechanical stimulation by fluid shear stress was induced by rocking scaffolds on a platform shaker for 1 h/day for 10 of 14 days of culture. In two-dimensional culture, ascorbic acid-2-phosphate (concentrations from 0.02 mM to 0.04 M) and glycolic acid (10 µM) led to significantly greater total collagen production, but ascorbic acid-2-phosphate at 0.03 mM produced the greatest stimulation (of the order of >100%). In three-dimensional culture, mechanical stimulation alone gave non-significant increases in stiffness and strength. Ascorbic acid-2-phosphate (0.03 mM) significantly increased collagen production in the order 280% in both static and mechanically stimulated scaffolds (p < 0.0001). There was no additional effect of mechanical stimulation. Dense collagen I fibres were observed with ascorbic acid-2-phosphate supplementation. Uniaxial tensiometry showed that strength (p < 0.01) and stiffness (p <0.05) both improved significantly. A combination of ascorbic acid-2-phosphate and mechanical stimulation led to further non-signficant increases in strength and stiffness. In conclusion, a pelvic floor repair material with improved mechanical properties can be developed by supplementing culture media with ascorbic acid-2-phosphate to increase collagen I production. Future studies will assess the change in mechanical properties after implantation in an animal model.
Collapse
Affiliation(s)
- Nadir I Osman
- Kroto Research Institute, The University of Sheffield, Sheffield, UK Department of Urology, Royal Hallamshire Hospital, Sheffield, UK
| | - Sabiniano Roman
- Kroto Research Institute, The University of Sheffield, Sheffield, UK
| | - Anthony J Bullock
- Kroto Research Institute, The University of Sheffield, Sheffield, UK
| | | | - Sheila MacNeil
- Kroto Research Institute, The University of Sheffield, Sheffield, UK
| |
Collapse
|
46
|
Abstract
Regenerative medicine has recently been established as an emerging interdisciplinary field focused on the repair; replacement or regeneration of cells, tissues and organs. It involves various disciplines, which are focused on different aspects of the regeneration process such as cell biology, gene therapy, bioengineering, material science and pharmacology. In this article, we will outline progress on tissue engineering of specific tissues and organs relevant to paediatric surgery.
Collapse
Affiliation(s)
- Panagiotis Maghsoudlou
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - Luca Urbani
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, 30 Guilford St, London WC1N 1EH, UK
| | - Paolo De Coppi
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, 30 Guilford St, London WC1N 1EH, UK.
| |
Collapse
|
47
|
Abstract
With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community.
Collapse
Affiliation(s)
- Timothy J Keane
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
48
|
Functional outcomes of posterior vaginal wall repair and prespinous colpopexy with biological small intestinal submucosal (SIS) graft. Arch Gynecol Obstet 2014; 290:711-6. [DOI: 10.1007/s00404-014-3254-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
49
|
Ciampi P, Scotti C, Nonis A, Vitali M, Di Serio C, Peretti GM, Fraschini G. The benefit of synthetic versus biological patch augmentation in the repair of posterosuperior massive rotator cuff tears: a 3-year follow-up study. Am J Sports Med 2014; 42:1169-75. [PMID: 24634447 DOI: 10.1177/0363546514525592] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuff repair typically results in a satisfactory, although variable, clinical outcome. However, anatomic failure of the repaired tendon often occurs. HYPOTHESIS Patch augmentation can improve the results of open rotator cuff repair by supporting the healing process, protecting the suture, and reducing friction in the subacromial space. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS A total of 152 patients with a posterosuperior massive rotator cuff tear were treated by open repair only (control group; n = 51; mean age, 67.06 ± 4.42 years), open repair together with collagen patch augmentation (collagen group; n = 49; mean age, 66.53 ± 5.17 years), or open repair together with polypropylene patch augmentation (polypropylene group; n = 52; mean age, 66.17 ± 5.44 years) and were retrospectively studied. Patients were evaluated preoperatively and after 36 months with a visual analog scale (VAS) and the University of California, Los Angeles (UCLA) shoulder rating scale and by measuring elevation of the scapular plane and strength with a dynamometer. The VAS and UCLA scores were also obtained 2 months postoperatively. Tendon integrity was assessed after 1 year by ultrasound. Patients were homogeneous as per the preoperative assessment. RESULTS After 2 months, results (mean ± standard deviation) for the control, collagen, and polypropylene groups, respectively, were as follows: VAS scores were 6.96 ± 1.11, 6.46 ± 1.02, and 4.92 ± 0.90, while UCLA scores were 11.29 ± 1.46, 11.40 ± 1.51, and 19.15 ± 1.99. After 36 months, the mean scores for the respective groups were 3.66 ± 1.05, 4.06 ± 1.02, and 3.28 ± 1.10 for the VAS and 14.88 ± 1.98, 14.69 ± 1.99, and 24.61 ± 3.22 for the UCLA scale. In addition, after 36 months, elevation on the scapular plane was 140.68° ± 9.84°, 140.61° ± 12.48°, and 174.71° ± 8.18°, and abduction strength was 8.73 ± 0.54 kg, 9.03 ± 0.60 kg, and 13.79 ± 0.64 kg for the control, collagen, and polypropylene groups, respectively. The retear rate after 12 months was 41% (21/51) for the control group, 51% (25/49) for the collagen group, and 17% (9/52) for the polypropylene group. In particular, the reduced 12-month retear rate and the increased UCLA scores, abduction strength, and elevation at 3-year follow-up were statistically significant for patients treated with a polypropylene patch compared with those treated with repair only or with a collagen patch. CONCLUSION Polypropylene patch augmentation of rotator cuff repair was demonstrated to significantly improve the 36-month outcome in terms of function, strength, and retear rate.
Collapse
Affiliation(s)
- Pietro Ciampi
- Giuseppe M. Peretti, Department of Biomedical Sciences for Health, University of Milan, Via R. Galeazzi 4, 20161 Milan, Italy. and Gianfranco Fraschini, Department of Orthopaedics and Traumatology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy (e-mail: )
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu Z, Feng X, Wang H, Ma J, Liu W, Cui D, Gu Y, Tang R. Carbon nanotubes as VEGF carriers to improve the early vascularization of porcine small intestinal submucosa in abdominal wall defect repair. Int J Nanomedicine 2014; 9:1275-86. [PMID: 24648727 PMCID: PMC3956480 DOI: 10.2147/ijn.s58626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Insufficient early vascularization in biological meshes, resulting in limited host tissue incorporation, is thought to be the primary cause for the failure of abdominal wall defect repair after implantation. The sustained release of exogenous angiogenic factors from a biocompatible nanomaterial might be a way to overcome this limitation. In the study reported here, multiwalled carbon nanotubes (MWNT) were functionalized by plasma polymerization to deliver vascular endothelial growth factor165 (VEGF165). The novel VEGF165-controlled released system was incorporated into porcine small intestinal submucosa (PSIS) to construct a composite scaffold. Scaffolds incorporating varying amounts of VEGF165-loaded functionalized MWNT were characterized in vitro. At 5 weight percent MWNT, the scaffolds exhibited optimal properties and were implanted in rats to repair abdominal wall defects. PSIS scaffolds incorporating VEGF165-loaded MWNT (VEGF–MWNT–PSIS) contributed to early vascularization from 2–12 weeks postimplantation and obtained more effective collagen deposition and exhibited improved tensile strength at 24 weeks postimplantation compared to PSIS or PSIS scaffolds, incorporating MWNT without VEGF165 loading (MWNT–PSIS).
Collapse
Affiliation(s)
- Zhengni Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Hernia and Abdominal Wall Disease Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xueyi Feng
- Department of General Surgery, Lu'an People's Hospital, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Province Anhui, People's Republic of China
| | - Huichun Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Hernia and Abdominal Wall Disease Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jun Ma
- Department of General Surgery, Shanghai Ninth People's Hospital, Hernia and Abdominal Wall Disease Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Bio-X Center, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, Hernia and Abdominal Wall Disease Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rui Tang
- Department of General Surgery, Shanghai Ninth People's Hospital, Hernia and Abdominal Wall Disease Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|