1
|
Ciaputa R, Brambilla E, Dzimira S, Nowak M, Janus-Ziółkowska I, Piotrowska A, Tomaszek A, Kandefer-Gola M, Grieco V. Immunohistochemical expression of testin protein in testicular tumours in dogs. Theriogenology 2025; 239:117375. [PMID: 40090235 DOI: 10.1016/j.theriogenology.2025.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Testin (TES), a protein localised in the cytoplasm and belonging to the LIM family of proteins, is part of the cytoskeleton localised along stress fibres and recruited to focal adhesions. It is considered a tumour suppressor protein in humans and decreased TES expression has been shown to increase cell motility and decrease cell-cell contact. In veterinary medicine, TES has only been studied in rat testes and, more recently, also in canine testes. The expression of this protein in testicular tumours is unknown. As the dog has been proposed as an animal model for the study of human testicular tumours, studies on canine TES may provide useful information for both species. Therefore, the purpose of the present study was to demonstrate the expression of TES in the most common types of canine testicular tumours. For this study, paraffin blocks of 166 canine testicular tumours (53 Sertoli cell tumours, 50 Leydig cell tumours, and 63 seminomas) were retrieved from the archive of the Department of Pathology of Wroclaw University of Environmental and Life Sciences. Sections were obtained for complete description of the tumours, confirmation of the histological diagnosis, and immunohistochemical TES antigen location. Sections from 10 normal canine testes were examined as controls. The presence of TES was also demonstrated in fresh tissue from three types of canine testicular tumour. The diagnosis was confirmed in the 166 tumours, and TES was immunohistochemically demonstrated in 98 % of them and in all 10 normal testes. All tumour types had reduced expression of TES, even if not related to the tumour growth pattern or mitotic index, demonstrating that TES expression is reduced in canine as well in human testicular tumours. However, the reduction of TES expression appeared to be moderate, and these features were consistent with the evidence that testicular tumours in dogs are often well-differentiated. A complete understanding of the function of TES in cancer processes requires further investigation, but the relative parallelism between normal and neoplastic cells in well-differentiated, mostly benign testicular tumours provides a good basis for studying TES expression in more aggressive tumours, such as prostatic or urinary tract neoplasms.
Collapse
Affiliation(s)
- Rafał Ciaputa
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland.
| | - Eleonora Brambilla
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900, Lodi, Italy; Mylav-Laboratorio Analisi La Vallonea, Passirana di Rho, 20017, Italy.
| | - Stanisław Dzimira
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland.
| | - Marcin Nowak
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland.
| | - Izabela Janus-Ziółkowska
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland.
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland.
| | - Alicja Tomaszek
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland.
| | - Małgorzata Kandefer-Gola
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland.
| | - Valeria Grieco
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900, Lodi, Italy.
| |
Collapse
|
2
|
Ciaputa R, Nowak M, Dzimira S, Brambilla E, Kandefer-Gola M, Tomaszek A, Popiel-Kopaczyk A, Dzięgiel P, Grieco V. Study on the expression of testin in the testes of dogs. J Vet Res 2023; 67:627-633. [PMID: 38130450 PMCID: PMC10730544 DOI: 10.2478/jvetres-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/03/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Testin is a protein involved in cell mobility, adhesion and colony formation. In rats, testin presence has been reported in the testes, and its possible role in spermatogenesis has been suggested. Studies in humans also suggest a possible role of testin as a cancer suppressor protein. In the dog, which represents both an important pet species and a good animal model for studying biological and pathological testicular processes, the presence of testin has never been reported. Material and Methods In the present study, the expression of testin in foetal, prepubertal, adult and aged canine testes was investigated. Testes from 5 adult and 3 aged dogs, from 2 one-month-old puppies and from 2 foetuses miscarried at the end of pregnancy were immunohistochemically examined with a commercial antibody against testin. Results Testin was intensely expressed in Sertoli cells in every testis examined. Spermatids were also positive for testin in mature dogs and in the testicular areas of the aged ones which were not atrophic. Weak expression of testin was also detected in all testes examined. Conclusion The present study, the first demonstrating the presence of testin in canine testes, provides the basis for further dog-human comparative research and for studies on the role of this protein in canine physiology, reproduction and testicular pathologies.
Collapse
Affiliation(s)
- Rafał Ciaputa
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375Wrocław, Poland
| | - Marcin Nowak
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375Wrocław, Poland
| | - Stanisław Dzimira
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375Wrocław, Poland
| | - Eleonora Brambilla
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900Lodi, Italy
| | - Małgorzata Kandefer-Gola
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375Wrocław, Poland
| | - Alicja Tomaszek
- Department of Pathology, Division of Pathomorphology and Veterinary Forensics, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375Wrocław, Poland
| | - Aneta Popiel-Kopaczyk
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wrocław Medical University, 50-368Wrocław, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wrocław Medical University, 50-368Wrocław, Poland
| | - Valeria Grieco
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900Lodi, Italy
| |
Collapse
|
3
|
Tejeda-Munoz N, Azbazdar Y, Monka J, Binder G, Dayrit A, Ayala R, O'Brien N, De Robertis EM. The PMA phorbol ester tumor promoter increases canonical Wnt signaling via macropinocytosis. eLife 2023; 12:RP89141. [PMID: 37902809 PMCID: PMC10615368 DOI: 10.7554/elife.89141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here, we show that a macropinocytosis activator, the tumor promoter phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Munoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Oncology Science, Health Stephenson Cancer Center, University of Oklahoma Health Science CenterOklahoma CityUnited States
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Alex Dayrit
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Raul Ayala
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Neil O'Brien
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
4
|
Tejeda-Muñoz N, Azbazdar Y, Monka J, Binder G, Dayrit A, Ayala R, O’Brien N, De Robertis EM. The PMA Phorbol Ester Tumor Promoter Increases Canonical Wnt Signaling Via Macropinocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543509. [PMID: 37333286 PMCID: PMC10274750 DOI: 10.1101/2023.06.02.543509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here we show that a macropinocytosis activator, the tumor promoter Phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
- Department of Oncology Science, Health Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- These authors contributed equally
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
- These authors contributed equally
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Alex Dayrit
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Raul Ayala
- Department of Medicine, David Geffen School of Medicine at UCLA
| | - Neil O’Brien
- Department of Medicine, David Geffen School of Medicine at UCLA
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| |
Collapse
|
5
|
Popiel-Kopaczyk A, Grzegrzolka J, Piotrowska A, Olbromski M, Smolarz B, Romanowicz H, Rusak A, Mrozowska M, Dziegiel P, Podhorska-Okolow M, Kobierzycki C. The Expression of Testin, Ki-67 and p16 in Cervical Cancer Diagnostics. Curr Issues Mol Biol 2023; 45:490-500. [PMID: 36661518 PMCID: PMC9857082 DOI: 10.3390/cimb45010032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Testin is a protein expressed in normal human tissues, being responsible, with other cytoskeleton proteins, for the proper functioning of cell−cell junction areas and focal adhesion plaques. It takes part in the regulation of actin filament changes during cell spreading and motility. Loss of heterozygosity in the testin-encoding gene results in altered protein expression in many malignancies, as partly described for cervical cancer. The aim of our study was the assessment of the immunohistochemical (IHC) expression of testin in cervical cancer and its analysis in regard to clinical data as well the expression of the Ki-67 antigen and p16 protein. Moreover, testin expression was assessed by Western blot (WB) in commercially available cell lines. The IHC analysis disclosed that the expression of testin inversely correlated with p16 (r = −0.2104, p < 0.0465) and Ki-67 expression (r = −0.2359, p < 0.0278). Moreover, weaker testin expression was observed in cancer cases vs. control ones (p < 0.0113). The WB analysis of testin expression in the cervical cancer cell lines corresponded to the IHC results and showed a weaker expression compared to that in the control cell line. When we compared the expression of testin in cervical cancer cell lines, we found a weaker expression in HPV-negative cell lines. In summary, we found that the intensity of testin expression and the number of positive cells inversely correlated with the expression of Ki-67 (a marker of proliferation) and p16 (a marker of cell cycle dysregulation). This study shows that the combined assessment of testin, Ki-67 and p16 expression may improve cervical cancer diagnostics.
Collapse
Affiliation(s)
- Aneta Popiel-Kopaczyk
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence: or
| | - Jedrzej Grzegrzolka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Beata Smolarz
- Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | | | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
6
|
Transcriptomics of angiotensin II-induced long noncoding and coding RNAs in endothelial cells. J Hypertens 2022; 40:1303-1313. [PMID: 35762471 DOI: 10.1097/hjh.0000000000003140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II)-induced endothelial dysfunction plays an important role in the pathogenesis of cardiovascular diseases such as systemic hypertension, cardiac hypertrophy and atherosclerosis. Recently, long noncoding RNAs (lncRNAs) have been shown to play an essential role in the pathobiology of cardiovascular diseases; however, the effect of Ang II on lncRNAs and coding RNAs expression in endothelial cells has not been evaluated. Accordingly, we sought to evaluate the expression profiles of lncRNAs and coding RNAs in endothelial cells following treatment with Ang II. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and treated with Ang II (10-6 mol/l) for 24 h. The cells were then profiled for the expression of lncRNAs and mRNAs using the Arraystar Human lncRNA Expression Microarray V3.0. RESULTS In HUVECs following Ang II treatment, from a total of 30 584 lncRNA targets screened, 25 targets were significantly upregulated, while 69 were downregulated. In the same HUVECs samples, from 26 106 mRNA targets screened, 28 targets were significantly upregulated and 67 were downregulated. Of the differentially expressed lncRNAs, RP11-354P11.2 and RP11-360F5.1 were the most upregulated (11-fold) and downregulated (three-fold) lncRNAs, respectively. Assigning the differentially regulated genes into functional groups using bioinformatics reveals numerous genes involved in the nucleotide excision repair and ECM-receptor interaction. CONCLUSION This is the first study to profile the Ang II-induced differentially expressed lncRNAs and mRNAs in human endothelial cells. Our results reveal novel targets and substantially extend the list of potential candidate genes involved in Ang II-induced endothelial dysfunction and cardiovascular diseases.
Collapse
|
7
|
Zhu Y, Qiao Q. The relationship between TESTIN expression and the prognosis of colorectal cancer. Pathol Res Pract 2021; 232:153744. [PMID: 35219152 DOI: 10.1016/j.prp.2021.153744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Colorectal carcinoma (CRC) represents a most grave healthy burden worldwide. TESTIN has been confirmed as a predictive biomarker for several cancers. In the present study, we sought to assess the expression level and prognostic values of TESTIN in CRC. METHODS The levels of TESTIN mRNA and protein were detected in 132 paired CRC tissues and noncancerous ones via quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) assays, respectively. Chi-square test was adopted to analyze the association of TESTIN expression with clinicopathological profiles of CRC patients. To explore prognostic value of TESTIN, Kaplan-Meier curve and Cox regression analyses were employed. RESULTS TESTIN expression was down-regulated among CRC tissues in comparison to bordering cancer-free samples at both protein and mRNA levels (P < 0.001). Decreased TESTIN expression was closely related to poor tumor differentiation (P = 0.001) and advanced TNM stages (P = 0.001). CRC cases with low expression of TESTIN were more likely to undergo dismal overall survivals (log-rank P = 0.003). Multivariate Cox analysis unveiled that down-regulated expression of TESTIN was independently correlated with poor prognosis (HR=2.422, 95% CI=1.294-4.535, P = 0.006). CONCLUSION The down-regulation of TESTIN may predict dismal prognosis for CRC patients.
Collapse
Affiliation(s)
- Yujun Zhu
- Department of Gastroenterology, Haimen Hospital Affiliated to Nantong University, Nantong 226100, Jiangsu, China
| | - Qiao Qiao
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
8
|
Szymańska-Chabowska A, Juzwiszyn J, Jankowska-Polańska B, Tański W, Chabowski M. Chitinase 3-Like 1, Nestin, and Testin Proteins as Novel Biomarkers of Potential Clinical Use in Colorectal Cancer: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1279:1-8. [PMID: 32170669 DOI: 10.1007/5584_2020_506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Colorectal cancer is the third most commonly diagnosed cancer in males and the second most common in females. Only 10-20% of patients are diagnosed at the early stage of disease. Recently, the role of novel biomarkers of the neoplastic process in the early detection of colorectal cancer has been widely discussed. In this review, we focused on the three novel biomarkers that are of potential clinical importance in diagnosing and monitoring colorectal cancer. Chitinase 3-like 1 protein, also known as YKL-40, and nestin and testin proteins are produced by colorectal cancer cells. YKL-40 protein is a marker of proliferation, differentiation, and tissue morphogenetic changes. The level of YKL-40 is elevated in about 20% of patients with colorectal cancer. An increased expression of nestin indicates immaturity. It is a marker of angiogenesis in neoplastic processes. Testin protein is a component of cell-cell connections and focal adhesions. The protein is produced in normal human tissues, but not in tumor tissues. Downregulation of testin increases cell motility, spread, and proliferation, and decreases apoptosis. The usefulness and role of these biomarkers, both alone and combined, in the diagnostics of colorectal cancer should be further explored as early cancer detection may substantially improve treatment outcome and patient survival.
Collapse
Affiliation(s)
- Anna Szymańska-Chabowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Jan Juzwiszyn
- Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Beata Jankowska-Polańska
- Division of Nursing in Internal Medicine, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Tański
- Department of Internal Medicine, Fourth Military Teaching Hospital, Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland. .,Department of Surgery, Fourth Military Teaching Hospital, Wroclaw, Poland.
| |
Collapse
|
9
|
Liu X, Zhang L, Han J, Yang L, Cui J, Che S, Cao B, Song Y. A comparative analysis of gene expression induced by the embryo in the caprine endometrium. Vet Med Sci 2019; 6:196-203. [PMID: 31782264 PMCID: PMC7196676 DOI: 10.1002/vms3.221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/05/2019] [Accepted: 10/19/2019] [Indexed: 12/25/2022] Open
Abstract
Transcriptomics is an established powerful tool to identify potential mRNAs and ncRNAs (non‐coding RNAs) for endometrial receptivity. In this study, the goat endometrium at estrus day 5 (ED5) and estrus day 15 (ED15) were selected to systematically analyse the differential expressed genes (DEGs) what were induced by the embryo. There were 1,847 genes which were significantly differential expressed in endometrium induced by the embryo at ED5, and 1,346 at ED15 (p‐value < .05). Secreted phosphoprotein 1 (SPP) was the responsive genes for embryo in the goat endometrium during estrus cycle, neurotensis (NTS) and pleiotrophin (PTN) were the responsive genes for embryo in the goat endometrium at ED5, Testin (TES) and Phosphate and Tension Homology Deleted on Chromsome ten (PTEN) at ED15. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analysis revealed cytoplasm and Endocytosis were indispensable for the endometrium development in dairy goat. In a word, this resulting view of the transcriptome greatly uncovered the global trends in mRNAs expression induced by the embryo in the endometrium of dairy goats.
Collapse
Affiliation(s)
- Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jincheng Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lichun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Abstract
Testin is a protein expressed in almost all normal human tissues. It locates in the cytoplasm along stress fibers being recruited to focal adhesions. Together with zyxin and vasodilator stimulated protein it forms complexes with various cytoskeleton proteins such as actin, talin and paxilin. They jointly play significant role in cell motility and adhesion. In addition, their involvement in the cell cycle has been demonstrated. Expression of testin protein level correlates positively with percentage of cells in G1 phase, while overexpression can induce apoptosis and decreased colony forming ability. Decreased testin expression associate with loss by cells epithelial morphology and gain migratory and invasive properties of mesenchymal cells. Latest reports indicate that TES is a tumor suppressor gene which can contribute to cancerogenesis but the mechanism of loss TES gene expression is still unknown. Some authors point out hypermethylation of the CpG island as a main factor, however loss of heterozygosity may also play an important role [4, 5]. The altered expression of testin was found in malignant neoplasm, i.a. ovarian, lung, head and neck squamous cell cancer, breast, endometrial, colorectal, prostate and gastric cancers [1-9]. Testin participate in the processes of tumor growth, angiogenesis, and metastasis [10]. Many researchers stated involvement of testin in tumor progression, what suggest its potential usage in immunotherapy [7, 11]. Understanding the molecular functions of testin may be crucial in development personalized treatment. In the present manuscript up-to-date review of literature can be found.
Collapse
Affiliation(s)
- Aneta Popiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.
- Wroclaw Medical University, Wroclaw, Poland.
| | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
11
|
Gao L, Liu Y, Guo S, Xiao L, Liang C, Wang X. Testin protects against cardiac hypertrophy by targeting a calcineurin-dependent signalling pathway. J Cell Mol Med 2018; 23:328-339. [PMID: 30467953 DOI: 10.1111/jcmm.13934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/01/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple organs express testin (TES), including the heart. Nevertheless, current understanding of the influence of TES on cardiovascular diseases, especially on cardiac hypertrophy and its etiology, is insufficient. This study investigated the influence of TES on cardiac hypertrophy and its etiology. Murine models with excessive TES expression specific to the heart were constructed with an adeno-associated virus expression system. Cardiac hypertrophy was stimulated through aortic banding (AB). The severity of cardiac hypertrophy was evaluated through molecular, echocardiographic, pathological, and hemodynamic examination. The findings of our study revealed that TES expression was remarkably suppressed not only in failing human hearts but also in mouse hearts with cardiac hypertrophy. It was discovered that excessive TES expression driven by an adeno-associated viral vector noticeably inhibited hypertrophy triggered by angiotensin II (Ang II) in cultivated cardiomyocytes from newborn rats. It was also revealed that TES knockdown via AdshTES caused the reverse phenotype in cardiomyocytes. Furthermore, it was proved that excessive TES expression attenuated the ventricular dilation, cardiac hypertrophy, dysfunction, and fibrosis triggered by AB in mice. It was discovered that TES directly interacted with calcineurin and suppressed its downstream signalling pathway. Moreover, the inactivation of calcineurin with cyclosporin A greatly offset the exacerbated hypertrophic response triggered by AB in TES knockdown mice. Overall, the findings of our study suggest that TES serves as a crucial regulator of the hypertrophic reaction by hindering the calcineurin-dependent pathway in the heart.
Collapse
Affiliation(s)
- Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sen Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Zhang L, Liu X, Ma X, Liu Y, Che S, Cui J, An X, Cao B, Song Y. Testin was regulated by circRNA3175-miR182 and inhibited endometrial epithelial cell apoptosis in pre-receptive endometrium of dairy goats. J Cell Physiol 2018; 233:6965-6974. [PMID: 29693265 DOI: 10.1002/jcp.26614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Circular RNAs (circRNAs) in various tissues and cell types from mammalian sources have been studied. However, present knowledge on circRNAs in the development of pre-receptive endometrium (PE) in dairy goats is limited. In the pre-receptive endometrium of dairy goats, higher circRNA3175 (ciR3175) levels, lower miR-182 levels and higher Testin (TES) levels were detected. And ciR3175 could decreased the miR-182 levels by acting as a miRNA sponge, and miR-182 could down-regulated the expression level of TES via the predicted target site in endometrial epithelial cells (EECs) in vitro. Via this way, ciR3175 functioned as a competing endogenous RNAs (ceRNA) that sequestered miR-182, thereby protecting TES transcripts from miR-182-mediated suppression in EECs in vitro. Further, TES inhibited EECs apoptosis by decreasing the expression level of BCL-2/BAX via the MAPK pathway. Thus, a ciR3175-miR182-TES pathway in the endometrium was identified in EECs, and the modulation of which could emerge as a potential target in regulating the pre-receptive endometrium development in dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xingna Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
13
|
Li H, Huang K, Gao L, Wang L, Niu Y, Liu H, Wang Z, Wang L, Wang G, Wang J. TES inhibits colorectal cancer progression through activation of p38. Oncotarget 2018; 7:45819-45836. [PMID: 27323777 PMCID: PMC5216763 DOI: 10.18632/oncotarget.9961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 05/29/2016] [Indexed: 02/06/2023] Open
Abstract
The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Sala S, Van Troys M, Medves S, Catillon M, Timmerman E, Staes A, Schaffner-Reckinger E, Gevaert K, Ampe C. Expanding the Interactome of TES by Exploiting TES Modules with Different Subcellular Localizations. J Proteome Res 2017; 16:2054-2071. [DOI: 10.1021/acs.jproteome.7b00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Sala
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | | | - Sandrine Medves
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Laboratory of Experimental Cancer Research, LIH, 1445 Strassen, Luxembourg
| | - Marie Catillon
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Evy Timmerman
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - An Staes
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - Elisabeth Schaffner-Reckinger
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
15
|
Feng W, Chakraborty A. Fragility Extraordinaire: Unsolved Mysteries of Chromosome Fragile Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:489-526. [PMID: 29357071 DOI: 10.1007/978-981-10-6955-0_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome fragile sites are a fascinating cytogenetic phenomenon now widely implicated in a slew of human diseases ranging from neurological disorders to cancer. Yet, the paths leading to these revelations were far from direct, and the number of fragile sites that have been molecularly cloned with known disease-associated genes remains modest. Moreover, as more fragile sites were being discovered, research interests in some of the earliest discovered fragile sites ebbed away, leaving a number of unsolved mysteries in chromosome biology. In this review we attempt to recount some of the early discoveries of fragile sites and highlight those phenomena that have eluded intense scrutiny but remain extremely relevant in our understanding of the mechanisms of chromosome fragility. We then survey the literature for disease association for a comprehensive list of fragile sites. We also review recent studies addressing the underlying cause of chromosome fragility while highlighting some ongoing debates. We report an observed enrichment for R-loop forming sequences in fragile site-associated genes than genomic average. Finally, we will leave the reader with some lingering questions to provoke discussion and inspire further scientific inquiries.
Collapse
Affiliation(s)
- Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
16
|
Wang M, Wang Q, Peng WJ, Hu JF, Wang ZY, Liu H, Huang LN. Testin is a tumor suppressor in non-small cell lung cancer. Oncol Rep 2016; 37:1027-1035. [PMID: 28000866 DOI: 10.3892/or.2016.5316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/14/2016] [Indexed: 11/05/2022] Open
Abstract
The Testin gene was previously identified in the fragile chromosomal region FRA7G at 7q31.2. It has been implicated in several types of cancers including prostate, ovarian, breast and gastric cancer. In the present study, we investigated the function of the candidate tumor-suppressor Testin gene in non-small cell lung cancer (NSCLC). In NSCLC cell lines, we observed lower expression of Testin compared to that noted in normal human bronchial epithelial cells. MTT assays, flow cytometry, clonogenic assay and invasion assay showed that the overexpression of the Testin gene inhibited cancer cell proliferation, invasion and colony formation. In tumor xenograft models, Testin markedly inhibited lung cancer cell xenograft formation and growth in athymic nude mice. Taken together, these data suggest that Testin plays an important role in the development and progression of NSCLC. Testin may be an effective novel target in NSCLC prevention and treatment.
Collapse
Affiliation(s)
- Ming Wang
- Department of Respiratory and Critical Care Medicine, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Qian Wang
- Department of Respiration, The People's Hospital of Lingbi, Suzhou, Anhui 234000, P.R. China
| | - Wen-Jia Peng
- Department of Epidemiology and Health Statistics, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jun-Feng Hu
- Department of Respiratory and Critical Care Medicine, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Zu-Yi Wang
- Department of Cardiothoracic Surgery of the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hao Liu
- Department of Pharmacy, Engineering Technology Research Center of Biochemical Pharmaceuticals, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Li-Nian Huang
- Department of Respiratory and Critical Care Medicine, Anhui Provincial Key Laboratory of Clinical Basic Research on Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
17
|
Steponaitis G, Kazlauskas A, Skiriute D, Valiulyte I, Skauminas K, Tamasauskas A, Vaitkiene P. Testin ( TES) as a candidate tumour suppressor and prognostic marker in human astrocytoma. Oncol Lett 2016; 12:3305-3311. [PMID: 27899997 PMCID: PMC5103931 DOI: 10.3892/ol.2016.5077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023] Open
Abstract
Astrocytomas are one of the most common brain tumours; however, the current methods used to characterize these tumours are inadequate. The establishment of molecular markers may identify variables required to improve tumour characterization and subtyping, and may aid to specify targets for improved treatment with essential prognostic value for patient survival. One such candidate is testin (TES), which was reported to have prognostic value for glioblastoma patients. However, the role of TES protein in gliomagenesis is currently unknown. In the present study, the methylation status of the TES promoter was investigated in post-operative astrocytoma tumours of different malignancy grade, and its association with the survival of astrocytoma patients was evaluated. In addition, the expression of TES protein was investigated in the same set of astrocytoma tumours tissue, and the association of protein expression with glioma patients survival was evaluated. The methylation status of TES was assessed by methylation-specific polymerase chain reaction in 138 different grade astrocytoma samples. Western blot analysis was used to characterize the expression pattern of TES in 86 different grade astrocytoma specimens: 13 of pathological grade I, 31 of pathological grade II, 17 of pathological grade III and 25 of pathological grade IV (glioblastoma). Statistical analyses were conducted to investigate the association between tumour molecular pattern, patient clinical variables and overall survival. The methylation analysis of the TES promoter exhibited a distinct profile between astrocytomas of different malignancy grade (P<0.001). Furthermore, gene promoter methylation was significantly associated with patients' age, survival and pathological grade (P<0.001). The protein expression level of TES was significantly lower in glioblastoma (grade IV astrocytoma) than in lower grade (II–III) astrocytoma tissue (P=0.028 and P=0.04, respectively). Additionally, short overall survival of patients was markedly associated with low TES protein expression (P=0.007). However, no association between TES methylation and TES protein expression was noticed. The present study demonstrated that decreased expression of TES may be important in tumour progression and prognosis in human astrocytomas. TES may be a useful marker for predicting the clinical outcome of astrocytoma patients.
Collapse
Affiliation(s)
- Giedrius Steponaitis
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Arunas Kazlauskas
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Daina Skiriute
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Indre Valiulyte
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Kestutis Skauminas
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Arimantas Tamasauskas
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| | - Paulina Vaitkiene
- Laboratory of Neuro-Oncology and Genetics, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania
| |
Collapse
|
18
|
Weeks RJ, Ludgate JL, LeMée G, Morison IM. TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells. PLoS One 2016; 11:e0151341. [PMID: 26985820 PMCID: PMC4795691 DOI: 10.1371/journal.pone.0151341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/07/2016] [Indexed: 12/22/2022] Open
Abstract
Background Childhood acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Despite high cure rates, side effects and late consequences of the intensive treatments are common. Unquestionably, the identification of new therapeutic targets will lead to safer, more effective treatments. We identified TES promoter methylation and transcriptional silencing as a very common molecular abnormality in childhood ALL, irrespective of molecular subtype. The aims of the present study were to demonstrate that TES promoter methylation is aberrant, to determine the effects of TES re-expression in ALL, and to determine if those effects are mediated via TP53 activity. Methods Normal fetal and adult tissue DNA was isolated and TES promoter methylation determined by Sequenom MassARRAY. Quantitative RT-PCR and immunoblot were used to confirm re-expression of TES in ALL cell lines after 5’-aza-2’-deoxycytidine (decitabine) exposure or transfection with TES expression plasmids. The effects of TES re-expression on ALL cells were investigated using standard cell proliferation, cell death and cell cycle assays. Results In this study, we confirm that the TES promoter is unmethylated in normal adult and fetal tissues. We report that decitabine treatment of ALL cell lines results in demethylation of the TES promoter and attendant expression of TES mRNA. Re-expression of TESTIN protein in ALL cells using expression plasmid transfection results in rapid cell death or cell cycle arrest independent of TP53 activity. Conclusions These results suggest that TES is aberrantly methylated in ALL and that re-expression of TESTIN has anti-leukaemia effects which point to novel therapeutic opportunities for childhood ALL.
Collapse
Affiliation(s)
- Robert J. Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- * E-mail:
| | - Jackie L. Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gwenn LeMée
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ian M. Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Abstract
Background: The expression of TES, a novel tumor suppressor gene, is found to be down-regulated in the left anterior descending aorta of patients with coronary artery disease (CAD) compared with non-CAD subjects. This study aimed to investigate the expression of TES during the development of atherosclerosis in rabbits. Methods: Thirty-two New Zealand rabbits were randomly divided into a normal diet (ND) and high-fat diet (HFD) groups. Body weight and serum lipid levels were measured at 0, 4, and 12 weeks after diet treatment. The degree of atherosclerosis in thoracic aortas was analyzed by histological examinations. The expression of Testin in the tissue samples was inspected via immunohistochemical and immunofluorescence confocal microscopy. Real time-polymerase chain reaction and Western blot analysis were performed to evaluate the expression of TES/Testin at mRNA and protein levels in the aortic tissues. Results: After 12 weeks postenrollment, rabbits in HFD group had a higher level of serum lipids and atherosclerotic plaque compared to ND group (P < 0.05). Testin expression was detected at high levels in the endothelium and a weak expression on the subendothelium area. The expression of TES mRNA was markedly reduced by 10-fold in the aortic tissues in the HFD group compared with the ND group (P = 0.015), and the protein level was also significantly decreased in the HFD group (P < 0.05). Conclusions: Reduced TES/Testin expression is associated with the development of atherosclerosis, implicating a potentially important role in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Guang-Ping Li
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease (Key Lab-TIC), Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
20
|
Dong R, Pu H, Wang Y, Yu J, Lian K, Mao C. TESTIN was commonly hypermethylated and involved in the epithelial-mesenchymal transition of endometrial cancer. APMIS 2015; 123:394-400. [PMID: 25720371 DOI: 10.1111/apm.12361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/01/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Ruofan Dong
- Department of Reproductive Center; First Affiliated Hospital of Soochow University; Suzhou Jiangsu Province China
- Department of Obstetrics and Gynecology; The Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi; Wuxi Jiangsu Province China
| | - Hong Pu
- Department of Obstetrics and Gynecology; The Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi; Wuxi Jiangsu Province China
| | - Yuan Wang
- Department of Obstetrics and Gynecology; The Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi; Wuxi Jiangsu Province China
| | - Jinjin Yu
- Department of Obstetrics and Gynecology; The Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi; Wuxi Jiangsu Province China
| | - Kuixian Lian
- Department of Obstetrics and Gynecology; Affiliated Hospital of Binzhou Medical College; Binzhou Shandong Province China
| | - Caiping Mao
- Department of Reproductive Center; First Affiliated Hospital of Soochow University; Suzhou Jiangsu Province China
| |
Collapse
|
21
|
The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines. Sci Rep 2015; 5:8428. [PMID: 25673149 PMCID: PMC4325331 DOI: 10.1038/srep08428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 11/08/2022] Open
Abstract
In epithelial cells, miRNA-199a-5p/-3p and Brm, a catalytic subunit of the SWI/SNF complex were previously shown to form a double-negative feedback loop through EGR1, by which human cancer cell lines tend to fall into either of the steady states, types 1 [miR-199a(−)/Brm(+)/EGR1(−)] and 2 [miR-199a(+)/Brm (−)/EGR1(+)]. We show here, that type 2 cells, unlike type 1, failed to form colonies in soft agar, and that CD44, MET, CAV1 and CAV2 (miR-199a targets), all of which function as plasma membrane sensors and can co-localize in caveolae, are expressed specifically in type 1 cells. Single knockdown of any of them suppressed anchorage-independent growth of type 1 cells, indicating that the miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth. Importantly, two coherent feedforward loops are integrated into this axis, supporting the robustness of type 1-specific gene expression and exemplifying how the miRNA-target gene relationship can be stably sustained in a variety of epithelial tumors.
Collapse
|
22
|
Bai Y, Zhang QG, Wang XH. Downregulation of TES by hypermethylation in glioblastoma reduces cell apoptosis and predicts poor clinical outcome. Eur J Med Res 2014; 19:66. [PMID: 25498217 PMCID: PMC4279594 DOI: 10.1186/s40001-014-0066-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/17/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gliomas are the most common human brain tumors. Glioblastoma, also known as glioblastoma multiform (GBM), is the most aggressive, malignant, and lethal glioma. The investigation of prognostic and diagnostic molecular biomarkers in glioma patients to provide direction on clinical practice is urgent. Recent studies demonstrated that abnormal DNA methylation states play a key role in the pathogenesis of this kind of tumor. In this study, we want to identify a novel biomarker related to glioma initiation and find the role of the glioma-related gene. METHODS We performed a methylation-specific microarray on the promoter region to identify methylation gene(s) that may affect outcome of GBM patients. Normal and GBM tissues were collected from Tiantan Hospital. Genomic DNA was extracted from these tissues and analyzed with a DNA promoter methylation microarray. Testis derived transcript (TES) protein expression was analyzed by immunohistochemistry in paraffin-embedded patient tissues. Western blotting was used to detect TES protein expression in the GBM cell line U251 with or without 5-aza-dC treatment. Cell apoptosis was evaluated by flow cytometry analysis using Annexin V/PI staining. RESULTS We found that the TES promoter was hypermethylated in GBM compared to normal brain tissues under DNA promoter methylation microarray analysis. The GBM patients with TES hypermethylation had a short overall survival (P <0.05, log-rank test). Among GBM samples, reduced TES protein level was detected in 33 (89.2%) of 37 tumor tissues by immunohistochemical staining. Down regulation of TES was also correlated with worse patient outcome (P <0.05, log-rank test). Treatment on the GBM cell line U251 with 5-aza-dC can greatly increase TES expression, confirming the hypermethylation of TES promoter in GBM. Up-regulation of TES prompts U251 apoptosis significantly. This study demonstrated that both TES promoter hypermethylation and down-regulated protein expression significantly correlated with worse patient outcome. Treatment on the GBM cell line (U251) with 5-aza-dC can highly release TES expression resulting in significant apoptosis in these cells. CONCLUSIONS Our findings suggest that the TES gene is a novel tumor suppressor gene and might represent a valuable prognostic marker for glioblastoma, indicating a potential target for future GBM therapy.
Collapse
Affiliation(s)
- Yu Bai
- Department of Blood transfusion, The Central Hospital of China Aerospace Corporation, Beijing, 100049, China.
| | - Quan-Geng Zhang
- Department of Immunology, Capital Medical University, Beijing, 100069, China.
| | - Xin-Hua Wang
- Department of Blood transfusion, The Central Hospital of China Aerospace Corporation, Beijing, 100049, China.
| |
Collapse
|
23
|
Yongbin Y, Jinghua L, Zhanxue Z, Aimin Z, Youchao J, Yanhong S, Manjing J. TES was epigenetically silenced and suppressed the epithelial–mesenchymal transition in breast cancer. Tumour Biol 2014; 35:11381-9. [DOI: 10.1007/s13277-014-2472-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/07/2014] [Indexed: 11/28/2022] Open
|
24
|
Gu Z, Ding G, Liang K, Zhang H, Guo G, Zhang L, Cui J. TESTIN suppresses tumor growth and invasion via manipulating cell cycle progression in endometrial carcinoma. Med Sci Monit 2014; 20:980-7. [PMID: 24929083 PMCID: PMC4067424 DOI: 10.12659/msm.890544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The TESTIN gene was demonstrated to be a tumor suppressor in prostate and breast cancer through inhibiting tumor growth and invasion. Herein, we aimed to investigate the detailed functions of TESTIN in the highly sexual hormone (estrogen)-dependent malignancy, endometrial carcinoma. MATERIAL AND METHODS TESTIN mRNA and protein expression were measured by qRT-PCR, Western blot and immunohistochemistry. Upregulation of TESTIN was achieved by transfecting the pcDNA3.1-TESTIN plasmids into AN3CA cells. Knockdown of TESTIN was achieved by transfecting the shRNA-TESTIN into Ishikawa cells. MTT assay, colony formation assay, and Transwell assay were used to investigate the effects of TESTIN on cellular proliferation and invasion. The apoptotic status and cell cycle were analyzed using flow cytometry. MMP2 secretion was determined by ELISA assay. The xenograft assay was used to investigate the functions of TESTIN in nude mice. RESULTS Compared to the non-malignant adjacent endometrium, 54% of tumor samples presented downregulation of TESTIN (P<0.001). Loss of TESTIN protein was correlated with advanced tumor stage (P=0.047), high grade (P=0.034), and lymphatic vascular space invasion (P=0.036). In vitro, overexpression of TESTIN suppressed cell proliferation, induced dramatic G1 arrest, and inhibited tumor invasion through blocking the secretion of MMP2. Loss of TESTIN accelerated cellular proliferation, promoted cell cycle progression, and enhanced tumor invasion by increasing the secretion of MMP2. Consistently, TESTIN could significantly delay the growth of xenografts in nude mice. CONCLUSIONS TESTIN was commonly downregulated in human endometrial carcinoma and was associated with poor prognostic markers. Moreover, TESTIN significantly inhibited tumor growth and invasion via arresting cell cycle in in vitro and in vivo experiments. Therefore, we propose that TESTIN might be a prognostic marker and therapeutic target for endometrial carcinoma.
Collapse
Affiliation(s)
- Zhenpeng Gu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Guofeng Ding
- Department of Infectious Diseases, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Kuixiang Liang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Hongtao Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Guanghong Guo
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Lili Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| | - Jinxiu Cui
- Department of Obstetrics and Gynecology, Affiliated Hospital of Binzhou Medical College, Binzhou, China (mainland)
| |
Collapse
|
25
|
Furukawa D, Chijiwa T, Matsuyama M, Mukai M, Matsuo EI, Nishimura O, Kawai K, Suemizu H, Hiraoka N, Nakagohri T, Yasuda S, Nakamura M. Zinc finger protein 185 is a liver metastasis-associated factor in colon cancer patients. Mol Clin Oncol 2014; 2:709-713. [PMID: 25054034 DOI: 10.3892/mco.2014.298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/25/2014] [Indexed: 01/03/2023] Open
Abstract
LIM domain proteins are involved in several fundamental biological processes, including cell lineage specification, cytoskeleton organization and organ development. Zinc finger protein 185 (ZNF185) is one of the LIM domain proteins considered to be involved in the regulation of cellular differentiation and/or proliferation. However, the detailed functions and properties of ZNF185 in the multistep process of cancer biology have not yet been elucidated. In this study, we analyzed the association between ZNF185 and the clinicopathological characteristics of colon cancer, such as patient age and gender, histological type, lymphatic and venous involvement, T and N status, liver metastasis and stage. ZNF185 protein expression was immunohistochemically analyzed and ZNF185 was detected in the cancer cells of 78 of the 87 colon cancer patients. The correlation between ZNF185 and histological type was significant (P=0.010, G-test). ZNF185 expression was also significantly correlated with liver metastasis (P=0.030, G-test). A multivariate analysis using the Cox proportional hazards model was performed among cause-specific survival rate, ZNF185 expression and clinicopathological characteristics. Histological type, liver metastasis and ZNF185 expression were found to be independent prognostic indicators (P=0.028, P<0.0001 and P=0.036, respectively). Therefore, ZNF185 expression was found to be an independent indicator of liver metastasis and prognosis in patients with colon cancer.
Collapse
Affiliation(s)
- Daisuke Furukawa
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Tsuyoshi Chijiwa
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Masahiro Matsuyama
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masaya Mukai
- Department of Surgery, Tokai University Hachioji Hospital, Hachioji, Tokyo 192-0032, Japan
| | - Ei-Ichi Matsuo
- Global Application Development Center, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Osamu Nishimura
- The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan
| | - Kenji Kawai
- Pathological Analysis Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Toshio Nakagohri
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Seiei Yasuda
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masato Nakamura
- Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
26
|
Guihard S, Peyrouze P, Cheok MH. Pharmacogenomic considerations of xenograft mouse models of acute leukemia. Pharmacogenomics 2013; 13:1759-72. [PMID: 23171339 DOI: 10.2217/pgs.12.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The use of combination chemotherapy to cure acute lymphoblastic leukemia in children and acute myeloid leukemia in adults emerged for acute myeloid leukemia in the 1960s and for acute lymphoblastic leukemia in the 1980s as a paradigm for curing any disseminated cancer. This article summarizes recent developments and considerations in the use of acute leukemia xenografts established in immunodeficient mice to elucidate the genetic and genomic basis of acute leukemia pathogenesis and treatment response.
Collapse
Affiliation(s)
- Soizic Guihard
- Jean-Pierre Aubert Research Center, INSERM U837, Institute for Cancer Research, 1 Place de Verdun, F-59045 Lille Cedex, France
| | | | | |
Collapse
|
27
|
Sarti M, Pinton S, Limoni C, Carbone GM, Pagani O, Cavalli F, Catapano CV. Differential expression of testin and survivin in breast cancer subtypes. Oncol Rep 2013; 30:824-32. [PMID: 23715752 DOI: 10.3892/or.2013.2502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/17/2013] [Indexed: 11/06/2022] Open
Abstract
Testin (TES) is a putative tumour-suppressor gene downregulated in various types of cancers. Survivin is a nodal protein involved in multiple signalling pathways, tumour maintenance and inhibition of apoptosis. Previous studies indicate that TES and survivin can functionally interact and modulate cell death and proliferation in breast cancer cells. The aim of the present study was to investigate the expression and prognostic relevance of TES and survivin in breast cancer subtypes examining a large cohort of breast cancer patients. We determined the expression of TES and survivin by immunohistochemistry (IHC) in tissue samples from 242 breast cancer patients diagnosed between 1981 and 2009. The expression of these proteins was compared with clinical and pathological data. There was a significant association of nuclear survivin overexpression and TES downregulation with triple-negative tumours [P=0.009; univariate odds ratio (OR), 3.20; 95% CI, 1.34-7.66] (P=0.018; multivariate OR, 2.90; 95% CI, 1.20‑6.97). A further significant correlation was observed between TES downregulation and the luminal B subtype (P=0.019, univariate OR: 2.90; 95% CI, 1.19‑7.06) (P=0.032, multivariate OR, 2.67; 95% CI, 1.09-6.65), independent of survivin expression. Our results demonstrated a statistically significant association between TES downregulation and highly aggressive breast tumour subtypes, such as triple-negative and luminal B tumours, along with the prognostic relevance of nuclear expression of survivin. To our knowledge, this is the first demonstration of such an association.
Collapse
Affiliation(s)
- Manuela Sarti
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Stricker SH, Feber A, Engström PG, Carén H, Kurian KM, Takashima Y, Watts C, Way M, Dirks P, Bertone P, Smith A, Beck S, Pollard SM. Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes Dev 2013; 27:654-69. [PMID: 23512659 PMCID: PMC3613612 DOI: 10.1101/gad.212662.112] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/20/2013] [Indexed: 02/06/2023]
Abstract
Epigenetic changes are frequently observed in cancer. However, their role in establishing or sustaining the malignant state has been difficult to determine due to the lack of experimental tools that enable resetting of epigenetic abnormalities. To address this, we applied induced pluripotent stem cell (iPSC) reprogramming techniques to invoke widespread epigenetic resetting of glioblastoma (GBM)-derived neural stem (GNS) cells. GBM iPSCs (GiPSCs) were subsequently redifferentiated to the neural lineage to assess the impact of cancer-specific epigenetic abnormalities on tumorigenicity. GiPSCs and their differentiating derivatives display widespread resetting of common GBM-associated changes, such as DNA hypermethylation of promoter regions of the cell motility regulator TES (testis-derived transcript), the tumor suppressor cyclin-dependent kinase inhibitor 1C (CDKN1C; p57KIP2), and many polycomb-repressive complex 2 (PRC2) target genes (e.g., SFRP2). Surprisingly, despite such global epigenetic reconfiguration, GiPSC-derived neural progenitors remained highly malignant upon xenotransplantation. Only when GiPSCs were directed to nonneural cell types did we observe sustained expression of reactivated tumor suppressors and reduced infiltrative behavior. These data suggest that imposing an epigenome associated with an alternative developmental lineage can suppress malignant behavior. However, in the context of the neural lineage, widespread resetting of GBM-associated epigenetic abnormalities is not sufficient to override the cancer genome.
Collapse
Affiliation(s)
- Stefan H. Stricker
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
- Samantha Dickson Brain Cancer Unit
| | - Andrew Feber
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Pär G. Engström
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Helena Carén
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Kathreena M. Kurian
- Department of Neuropathology, Frenchay Hospital, Bristol BS16 1LE, United Kingdom
| | - Yasuhiro Takashima
- Wellcome Trust-Medical Research Council Stem Cell Institute
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Colin Watts
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Michael Way
- Lincoln's Inn Fields Laboratories, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | - Peter Dirks
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Paul Bertone
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute
- Genome Biology Unit
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Stephan Beck
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Steven M. Pollard
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
- Samantha Dickson Brain Cancer Unit
| |
Collapse
|
29
|
Zhu J, Li X, Kong X, Moran MS, Su P, Haffty BG, Yang Q. Testin is a tumor suppressor and prognostic marker in breast cancer. Cancer Sci 2012; 103:2092-101. [PMID: 22957844 DOI: 10.1111/cas.12020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/23/2012] [Accepted: 09/01/2012] [Indexed: 12/11/2022] Open
Abstract
The testin (TES) gene was previously identified in the fragile chromosomal region FRA7G at 7q31.2. In the present study, we aimed to investigate the candidate tumor suppressor function of TES and explore its correlations to clinicopathologic features and prognosis in breast cancer. In clinical samples, we showed that the expression of TES decreased gradually from normal through ductal hyperplasia without atypia, atypical ductal hyperplasia, and ductal carcinoma in situ, to invasive ductal carcinoma. To explore the possible tumor suppressing function of TES, the expression of TES in breast cancer cells was manipulated by ectopic expression or by RNAi. We revealed that ectopic TES expression significantly inhibited cell proliferation, invasive ability, and angiogenesis, whereas knockdown of TES by RNAi enhanced cell proliferation, invasive ability, and angiogenesis. In an animal model, TES markedly inhibited breast cancer cell xenograft formation in athymic nude mice and reduced breast cancer cell metastasis to lung. Moreover, we revealed that TES inhibited the invasion and angiogenesis of breast cancer partially through miR-29b-mediated MMP-2 inhibition. Using the tissue microarray of breast cancer from Yale University, we found that lower TES expression was an independent prognostic factor for shorter overall survival and disease-free survival with univariate and multivariate analyses. Taken together, these data suggest that TES, as a valuable marker of breast cancer prognosis, plays an important role in the development and progression of breast cancer. TES may be an effective novel target in breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 2012; 48:612-26. [PMID: 23063526 DOI: 10.1016/j.molcel.2012.08.033] [Citation(s) in RCA: 649] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/15/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022]
Abstract
Widespread changes in gene expression drive tumorigenesis, yet our knowledge of how aberrant epigenomic and transcriptome profiles arise in cancer cells is poorly understood. Here, we demonstrate that metabolic transformation plays an important role. Butyrate is the primary energy source of normal colonocytes and is metabolized to acetyl-CoA, which was shown to be important not only for energetics but also for HAT activity. Due to the Warburg effect, cancerous colonocytes rely on glucose as their primary energy source, so butyrate accumulated and functioned as an HDAC inhibitor. Although both mechanisms increased histone acetylation, different target genes were upregulated. Consequently, butyrate stimulated the proliferation of normal colonocytes and cancerous colonocytes when the Warburg effect was prevented from occurring, whereas it inhibited the proliferation of cancerous colonocytes undergoing the Warburg effect. These findings link a common metabolite to epigenetic mechanisms that are differentially utilized by normal and cancerous cells because of their inherent metabolic differences.
Collapse
Affiliation(s)
- Dallas R Donohoe
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
31
|
Mruk DD, Cheng CY. Rat and mouse testicular testin is different from the human tumor suppressor gene TESTIN (Tes). SPERMATOGENESIS 2012; 2:305. [PMID: 23248773 PMCID: PMC3521754 DOI: 10.4161/spmg.22790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Common fragile sites: genomic hotspots of DNA damage and carcinogenesis. Int J Mol Sci 2012; 13:11974-11999. [PMID: 23109895 PMCID: PMC3472787 DOI: 10.3390/ijms130911974] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/09/2012] [Accepted: 09/05/2012] [Indexed: 01/08/2023] Open
Abstract
Genomic instability, a hallmark of cancer, occurs preferentially at specific genomic regions known as common fragile sites (CFSs). CFSs are evolutionarily conserved and late replicating regions with AT-rich sequences, and CFS instability is correlated with cancer. In the last decade, much progress has been made toward understanding the mechanisms of chromosomal instability at CFSs. However, despite tremendous efforts, identifying a cancer-associated CFS gene (CACG) remains a challenge and little is known about the function of CACGs at most CFS loci. Recent studies of FATS (for Fragile-site Associated Tumor Suppressor), a new CACG at FRA10F, reveal an active role of this CACG in regulating DNA damage checkpoints and suppressing tumorigenesis. The identification of FATS may inspire more discoveries of other uncharacterized CACGs. Further elucidation of the biological functions and clinical significance of CACGs may be exploited for cancer biomarkers and therapeutic benefits.
Collapse
|
33
|
Boëda B, Knowles PP, Briggs DC, Murray-Rust J, Soriano E, Garvalov BK, McDonald NQ, Way M. Molecular recognition of the Tes LIM2-3 domains by the actin-related protein Arp7A. J Biol Chem 2011; 286:11543-54. [PMID: 21278383 PMCID: PMC3064208 DOI: 10.1074/jbc.m110.171264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/15/2010] [Indexed: 11/06/2022] Open
Abstract
Actin-related proteins (Arps) are a highly conserved family of proteins that have extensive sequence and structural similarity to actin. All characterized Arps are components of large multimeric complexes associated with chromatin or the cytoskeleton. In addition, the human genome encodes five conserved but largely uncharacterized "orphan" Arps, which appear to be mostly testis-specific. Here we show that Arp7A, which has 43% sequence identity with β-actin, forms a complex with the cytoskeletal proteins Tes and Mena in the subacrosomal layer of round spermatids. The N-terminal 65-residue extension to the actin-like fold of Arp7A interacts directly with Tes. The crystal structure of the 1-65(Arp7A)·LIM2-3(Tes)·EVH1(Mena) complex reveals that residues 28-49 of Arp7A contact the LIM2-3 domains of Tes. Two alanine residues from Arp7A that occupy equivalent apolar pockets in both LIM domains as well as an intervening GPAK linker that binds the LIM2-3 junction are critical for the Arp7A-Tes interaction. Equivalent occupied apolar pockets are also seen in the tandem LIM domain structures of LMO4 and Lhx3 bound to unrelated ligands. Our results indicate that apolar pocket interactions are a common feature of tandem LIM domain interactions, but ligand specificity is principally determined by the linker sequence.
Collapse
Affiliation(s)
- Batiste Boëda
- From the Cell Motility and
- the Cell Polarity and Migration Group, CNRS 2582, Institut Pasteur, 75724 Paris, France, and
| | - Phillip P. Knowles
- Structural Biology Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - David C. Briggs
- Structural Biology Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Judith Murray-Rust
- Structural Biology Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Erika Soriano
- Structural Biology Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Boyan K. Garvalov
- the Institute of Neuropathology, Justus Liebig University, Aulweg 123, 35392 Giessen, Germany
| | - Neil Q. McDonald
- Structural Biology Laboratories, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
- the Institute of Structural and Molecular Biology, University College London and Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | | |
Collapse
|
34
|
Common fragile site tumor suppressor genes and corresponding mouse models of cancer. J Biomed Biotechnol 2010; 2011:984505. [PMID: 21318118 PMCID: PMC3035048 DOI: 10.1155/2011/984505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/23/2010] [Indexed: 12/20/2022] Open
Abstract
Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected by chromosomal fragility. The two most active fragile sites in the human genome are FRA3B and FRA16D where the tumor suppressor genes FHIT and WWOX are located, respectively. The best approach to study tumorigenic effects of altered tumor suppressors located at CFSs in vivo is to generate mouse models in which these genes are inactivated. This paper summarizes our present knowledge on mouse models of cancer generated by knocking out tumor suppressors of CFS.
Collapse
|
35
|
Ma H, Weng D, Chen Y, Huang W, Pan K, Wang H, Sun J, Wang Q, Zhou Z, Wang H, Xia J. Extensive analysis of D7S486 in primary gastric cancer supports TESTIN as a candidate tumor suppressor gene. Mol Cancer 2010; 9:190. [PMID: 20626849 PMCID: PMC2915979 DOI: 10.1186/1476-4598-9-190] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 07/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High frequency of loss of heterozygosity (LOH) was found at D7S486 in primary gastric cancer (GC). And we found a high frequency of LOH region on 7q31 in primary GC from China, and identified D7S486 to be the most frequent LOH locus. This study was aimed to determine what genes were affected by the LOH and served as tumor suppressor genes (TSGs) in this region. Here, a high-throughput single nucleotide polymorphisms (SNPs) microarray fabricated in-house was used to analyze the LOH status around D7S486 on 7q31 in 75 patients with primary GC. Western blot, immunohistochemistry, and RT-PCR were used to assess the protein and mRNA expression of TESTIN (TES) in 50 and 140 primary GC samples, respectively. MTS assay was used to investigate the effect of TES overexpression on the proliferation of GC cell lines. Mutation and methylation analysis were performed to explore possible mechanisms of TES inactivation in GC. RESULTS LOH analysis discovered five candidate genes (ST7, FOXP2, MDFIC, TES and CAV1) whose frequencies of LOH were higher than 30%. However, only TES showed the potential to be a TSG associated with GC. Among 140 pairs of GC samples, decreased TES mRNA level was found in 96 (68.6%) tumor tissues when compared with matched non-tumor tissues (p < 0.001). Also, reduced TES protein level was detected in 36 (72.0%) of all 50 tumor tissues by Western blot (p = 0.001). In addition, immunohistochemical staining result was in agreement with that of RT-PCR and Western blot. Down regulation of TES was shown to be correlated with tumor differentiation (p = 0.035) and prognosis (p = 0.035, log-rank test). Its overexpression inhibited the growth of three GC cell lines. Hypermethylation of TES promoter was a frequent event in primary GC and GC cell lines. However, no specific gene mutation was observed in the coding region of the TES gene. CONCLUSIONS Collectively, all results support the role of TES as a TSG in gastric carcinogenesis and that TES is inactivated primarily by LOH and CpG island methylation.
Collapse
Affiliation(s)
- Haiqing Ma
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Weeks RJ, Kees UR, Song S, Morison IM. Silencing of TESTIN by dense biallelic promoter methylation is the most common molecular event in childhood acute lymphoblastic leukaemia. Mol Cancer 2010; 9:163. [PMID: 20573277 PMCID: PMC3224738 DOI: 10.1186/1476-4598-9-163] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Aberrant promoter DNA methylation has been reported in childhood acute lymphoblastic leukaemia (ALL) and has the potential to contribute to its onset and outcome. However, few reports demonstrate consistent, prevalent and dense promoter methylation, associated with tumour-specific gene silencing. By screening candidate genes, we have detected frequent and dense methylation of the TESTIN (TES) promoter. RESULTS Bisulfite sequencing showed that 100% of the ALL samples (n = 20) were methylated at the TES promoter, whereas the matched remission (n = 5), normal bone marrow (n = 6) and normal PBL (n = 5) samples were unmethylated. Expression of TES in hyperdiploid, TEL-AML+, BCR-ABL+, and E2A-PBX+ subtypes of B lineage ALL was markedly reduced compared to that in normal bone marrow progenitor cells and in B cells. In addition TES methylation and silencing was demonstrated in nine out of ten independent B ALL propagated as xenografts in NOD/SCID mice. CONCLUSION In total, 93% of B ALL samples (93 of 100) demonstrated methylation with silencing or reduced expression of the TES gene. Thus, TES is the most frequently methylated and silenced gene yet reported in ALL. TES, a LIM domain-containing tumour suppressor gene and component of the focal adhesion complex, is involved in adhesion, motility, cell-to-cell interactions and cell signalling. Our data implicate TES methylation in ALL and provide additional evidence for the involvement of LIM domain proteins in leukaemogenesis.
Collapse
Affiliation(s)
- Robert J Weeks
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | | | | | | |
Collapse
|
37
|
Qiu H, Zhu J, Yuan C, Yan S, Yang Q, Kong B. Frequent hypermethylation and loss of heterozygosity of the testis derived transcript gene in ovarian cancer. Cancer Sci 2010; 101:1255-60. [PMID: 20180808 PMCID: PMC11159749 DOI: 10.1111/j.1349-7006.2010.01497.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Testis derived transcript (TES) is a candidate tumor suppressor gene located at the human chromosome 7q31, and its function in ovarian cancer is still unknown. Using ovarian cancer cell lines and tissue samples, we demonstrated that both loss of heterozygosity and hypermethylation of the TES gene occurred in ovarian cancer at high frequencies, and there were significant correlations between TES expression and hypermethylation or loss of heterozygosity. We also detected methylation in ovarian cancer cell line A2780 after treatment with 5-aza-2-deoxycytidine. The expression level of TES was enormously up-regulated, then caused changes to the biological behaviors of A2780 cells: cell growth properties were greatly impaired, colony formatting abilities were suppressed to very low levels, and the apoptosis rate was highly raised compared to the control group. Our findings suggest that the TES gene functions as a tumor suppressor gene and is frequently silenced by hypermethylation and loss of heterozygosity in ovarian cancers.
Collapse
Affiliation(s)
- Haifeng Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
38
|
Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 2010; 12:235-46. [PMID: 20173741 DOI: 10.1038/ncb2023] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 02/02/2010] [Indexed: 02/07/2023]
Abstract
Silencing of individual genes can occur by genetic and epigenetic processes during carcinogenesis, but the underlying mechanisms remain unclear. By creating an integrated prostate cancer epigenome map using tiling arrays, we show that contiguous regions of gene suppression commonly occur through long-range epigenetic silencing (LRES). We identified 47 LRES regions in prostate cancer, typically spanning about 2 Mb and harbouring approximately 12 genes, with a prevalence of tumour suppressor and miRNA genes. Our data reveal that LRES is associated with regional histone deacetylation combined with subdomains of different epigenetic remodelling patterns, which include re-enforcement, gain or exchange of repressive histone, and DNA methylation marks. The transcriptional and epigenetic state of genes in normal prostate epithelial and human embryonic stem cells can play a critical part in defining the mode of cancer-associated epigenetic remodelling. We propose that consolidation or effective reduction of the cancer genome commonly occurs in domains through a combination of LRES and LOH or genomic deletion, resulting in reduced transcriptional plasticity within these regions.
Collapse
|
39
|
Yamamoto H, Okumura K, Toshima S, Mukaisho KI, Sugihara H, Hattori T, Kato M, Asano S. FXYD3 Protein Involved in Tumor Cell Proliferation Is Overproduced in Human Breast Cancer Tissues. Biol Pharm Bull 2009; 32:1148-54. [DOI: 10.1248/bpb.32.1148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroto Yamamoto
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Kenzo Okumura
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Shotaro Toshima
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | | | | | | | | | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
40
|
McAvoy S, Zhu Y, Perez DS, James CD, Smith DI. Disabled-1 is a large common fragile site gene, inactivated in multiple cancers. Genes Chromosomes Cancer 2008; 47:165-74. [PMID: 18008369 DOI: 10.1002/gcc.20519] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Common fragile sites (CFS) are large, genomically unstable regions, which are hot-spots for deletions and other alterations, especially in cancer cells. Several have been shown to contain genes that span large genomic regions, such as FHIT (1.5 Mb), WWOX (1.0 Mb), GRID2 (1.36 Mb), PARK2 (1.3 Mb), and RORA (730 kb). These genes are frequently inactivated in multiple different cancers, and FHIT and WWOX are shown to function as tumor suppressors. The disabled-1 gene (DAB1) is one of the human homologs of the Drosophila disabled locus, which in mammals is involved in neuronal migration and lamination in the developing cerebral cortex. Mice DAB1 inactivation results in the neurological mutant Scrambler, having similarities to mice with the inactivation of PARK2 (Quaker), GRID2 (Lurcher), and RORA (Staggerer). We were interested in whether DAB1 was another large CFS gene that could have cancer development importance. We demonstrated here that the human DAB1 gene (spanning 1.25 Mb) mapped within FRA1B CFS region on chromosomal band 1p32.2. Real-time RT-PCR analysis revealed that the expression level of DAB1 was decreased in many human cancer samples, including primary tumor tissues and cancer-derived cell lines, from several different cancers, especially in brain and endometrial cancer. Additionally, the introduction of an over-expression DAB1 plasmid into two different cell lines, having insignificant endogenous DAB1 expression, resulted in decreased cell growth. In summary, DAB1 is another gene that resides within an unstable CFS region and might play a role in human tumorigenesis. These data may provide further linkage between neurological development and cancer.
Collapse
Affiliation(s)
- Sarah McAvoy
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | | | | | | | | |
Collapse
|
41
|
LIM domain protein TES changes its conformational states in different cellular compartments. Mol Cell Biochem 2008; 320:85-92. [PMID: 18696217 DOI: 10.1007/s11010-008-9901-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 07/25/2008] [Indexed: 01/14/2023]
Abstract
The human TESTIN (TES) is a putative tumor suppressor and localizes to the cytoplasm as a component of focal adhesions and cell contacts. TES contains a PET domain in the NH(2)-terminus and three tandem LIM domains in the COOH-terminus. It has been hypothesized that interactions between two termini of TES might lead to a "closed" conformational state of the protein. Here, we provide evidence for different conformational states of TES. We confirmed that the NH(2)-terminus of TES can interact with its third LIM domain in the COOH-terminus by GST pull-down assays. In addition, antisera against the full-length or two truncations of TES were prepared to examine the relationship between the conformation and cellular distribution of the protein. We found that these antisera recognize different regions of TES and showed that TES is co-localised with the marker protein B23 in nucleolus, in addition to its localization in endoplasmic reticulum (ER). Furthermore, our co-immunoprecipitation (co-IP) analysis of TES and B23 demonstrated their co-existence in the same complex. Taken together, our results suggest that TES has different conformational states in different cellular compartments, and a "closed" conformational state of TES may be involved in nucleolar localization.
Collapse
|
42
|
|
43
|
Crompton LA, Du Roure C, Rodriguez TA. Early embryonic expression patterns of the mouse Flamingo and Prickle orthologues. Dev Dyn 2008; 236:3137-43. [PMID: 17937400 DOI: 10.1002/dvdy.21338] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Drosophila melanogaster proteins Flamingo and Prickle act in the planar cell polarity (PCP) pathway, which is required for acquisition of epithelial polarity in the wing, eye, and epidermis. In mammals, PCP signaling has been shown to regulate cell movements and polarity in a variety of tissues. Here, we show that the murine Flamingo orthologues Celsr1-3 and the Prickle orthologues Prickle1, Prickle2, and Testin have dynamic patterns of expression during pregastrulation and gastrulation stages. Celsr1 is expressed in the anterior visceral endoderm and nascent mesoderm, Celsr2 and Celsr3 mark the prospective neuroectoderm, Prickle1 is expressed in the primitive streak and mesoderm, Prickle2 in the node, and Testin in the anterior visceral endoderm, the extraembryonic ectoderm, primitive streak, and mesoderm. Analysis of a gene-trap mutation in Testin indicates that this gene is not required for embryogenesis; therefore, other Prickle homologues may compensate for its function during development.
Collapse
Affiliation(s)
- Lucy A Crompton
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | | | | |
Collapse
|
44
|
Boëda B, Briggs DC, Higgins T, Garvalov BK, Fadden AJ, McDonald NQ, Way M. Tes, a specific Mena interacting partner, breaks the rules for EVH1 binding. Mol Cell 2008; 28:1071-82. [PMID: 18158903 DOI: 10.1016/j.molcel.2007.10.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/14/2007] [Accepted: 10/04/2007] [Indexed: 01/25/2023]
Abstract
The intracellular targeting of Ena/VASP family members is achieved via the interaction of their EVH1 domain with FPPPP sequence motifs found in a variety of cytoskeletal proteins, including lamellipodin, vinculin, and zyxin. Here we show that the LIM3 domain of Tes, which lacks the FPPPP motif, binds to the EVH1 domain of Mena, but not to those of VASP or Evl. The structure of the LIM3:EVH1 complex reveals that Tes occludes the FPPPP-binding site and competes with FPPPP-containing proteins for EVH1 binding. Structure-based gain-of-function experiments define the molecular basis for the specificity of the Tes-Mena interaction. Consistent with in vitro observations, the LIM3 domain displaces Mena, but not VASP, from the leading edge and focal adhesions. It also regulates cell migration through a Mena-dependent mechanism. Our observations identify Tes as an atypical EVH1 binding partner and a regulator specific to a single Ena/VASP family member.
Collapse
Affiliation(s)
- Batiste Boëda
- Cell Motility Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Huggins CJ, Gill M, Andrulis IL. Identification of rare variants in the hLIMD1 gene in breast cancer. ACTA ACUST UNITED AC 2007; 178:36-41. [PMID: 17889706 DOI: 10.1016/j.cancergencyto.2007.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/14/2007] [Indexed: 02/01/2023]
Abstract
The hLIMD1 gene is located at chromosome 3p21 and was identified as a putative tumor suppressor gene using an elimination test assay. Chromosome 3p21 loci are frequently deleted in a number of cancers, including breast. The 3p21.3 locus harbors a number of tumor suppressor candidates, including LIMD1, a member of the ZYXIN family of genes. LIMD1 directly interacts with RB and is thought to play a role in suppressing tumor growth. To investigate whether mutations in the LIMD1 gene could potentially be involved in breast cancer, we used single-stranded conformation polymorphism analysis on DNA from 235 breast cancers and 95 controls. We identified four novel coding region alterations, including two amino acid substitutions at positions 255 and 302. The two remaining novel variants were found at amino acid positions 246 and 647 and encoded silent alterations. The rare Ser255Arg variant was identified in only sporadic breast tumors (2/165 tumors). Some ZYXIN proteins are phosphorylated by serine/threonine kinases, and the Ser255Arg change is located in a region phosphorylated on serine residues. Together, the data suggest that this variant may warrant further characterization.
Collapse
|
46
|
Kim Y, Sun H. Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan. Aging Cell 2007; 6:489-503. [PMID: 17608836 DOI: 10.1111/j.1474-9726.2007.00302.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Genetic studies in many organisms suggest that an increased animal lifespan phenotype is often accompanied by enhanced resistance toward reactive oxygen species (ROS). In Caenorhabditis elegans, mutations in daf-2, which encode an insulin/insulin-like growth factor 1 receptor-like molecule, lead to an extended animal lifespan and increased resistance to ROS. We have optimized an assay to monitor ROS resistance in worms using the ROS-generating chemical paraquat. We have employed this assay to screen the RNAi library along chromosomes III and IV for genes that, when silenced, confer paraquat resistance. The positive RNAi clones were subsequently screened for a lifespan extension phenotype. Using this approach, we have identified 84 genes that, when inactivated by RNAi, lead to significant increases in animal lifespan. Among the 84 genes, 29 were found to act in a manner dependent on daf-16. DAF-16, a forkhead transcription factor, is known to integrate signals from multiple pathways, including the daf-2 pathway, to regulate animal lifespan. Most of the 84 genes have not been previously linked to aging, and potentially participate in important cellular processes such as signal transduction, cell-cell interaction, gene expression, protein degradation, and energy metabolism. Our screen has also identified a group of genes that potentially function in a nutrient-sensing pathway to regulate lifespan in C. elegans. Our study provides a novel approach to identify genes involved in the regulation of aging.
Collapse
Affiliation(s)
- Yongsoon Kim
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
47
|
Liu X, Cicek MS, Plummer SJ, Jorgenson E, Casey G, Witte JS. Association of testis derived transcript gene variants and prostate cancer risk. J Urol 2007; 177:894-8. [PMID: 17296370 DOI: 10.1016/j.juro.2006.10.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Indexed: 01/02/2023]
Abstract
PURPOSE The testis derived transcript gene has been suggested as a tumor suppressor gene for prostate cancer at 7q31. To investigate this concept we evaluated the effects of 7 tagging single nucleotide polymorphisms that comprehensively captured the common genetic variants in TES on aggressive prostate cancer in a case-control study. MATERIALS AND METHODS A total of 506 cases diagnosed with aggressive prostate cancer, and an equal number of age, institute and ethnicity matched controls, were recruited from the major medical institutions in Cleveland, Ohio. A logistic regression model was used to evaluate the association between SNPs/multimarker haplotypes and prostate cancer. RESULTS When looking at all study subjects and white men only, no statistically significant associations were observed between any variants and more aggressive disease. However, 3 variants showed inverse associations with disease in black men (178), including 2 intronic SNPs (rs2402056, rs1004109) and 1 SNP close to the 3' untranslated region (rs4730721) with ORs of 0.57 (95% CI 0.36-0.90, under an additive mode of inheritance), 0.57 (95% CI 0.36-0.91, under an additive mode of inheritance) and 0.45 (95% CI 0.21-0.98, under a dominant mode of inheritance), respectively. Variants rs2402056 and rs1004109 are in tight linkage disequilibrium (r2=0.8) and the reconstructed haplotype did not provide any additional evidence for association than their genotype level results. CONCLUSIONS Our findings suggest that the variants in TES, or in a nearby gene, may be associated with prostate cancer in black men.
Collapse
Affiliation(s)
- Xin Liu
- Department of Epidemiology and Biostatistics, and Institute for Human Genetics, University of California, San Francisco, San Francisco, California 94143-0794, USA
| | | | | | | | | | | |
Collapse
|
48
|
Cigognini D, Corneo G, Fermo E, Zanella A, Tripputi P. HIC gene, a candidate suppressor gene within a minimal region of loss at 7q31.1 in myeloid neoplasms. Leuk Res 2007; 31:477-82. [PMID: 17064770 DOI: 10.1016/j.leukres.2006.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 04/06/2006] [Accepted: 09/10/2006] [Indexed: 11/22/2022]
Abstract
We studied monosomy and deletions of chromosome 7 in 170 patients with myeloid disorders and we identified a minimal region of loss in 7q31.1 spanning between the D7S2554 and D7S2460 markers. The closest gene to our most deleted microsatellite, D7S2554, is the human I-mfa domain containing (HIC) gene, alias MyoD family inhibitor domain containing (MDFIC). We investigated the involvement of HIC in myeloid neoplasms by screening for mutations the coding regions and the intron-exon boundaries of this gene in 15 patients who presented chromosome 7 deletions in the region of HIC. No mutations were found in the coding region of this gene.
Collapse
Affiliation(s)
- Daniela Cigognini
- Department of Medicine, Surgery and Dentistry, University of Milan, via di Rudinì 8, 20142 Milano, Italy.
| | | | | | | | | |
Collapse
|
49
|
Kuroki T, Tajima Y, Furui J, Kanematsu T. Common fragile genes and digestive tract cancers. Surg Today 2006; 36:1-5. [PMID: 16378185 DOI: 10.1007/s00595-005-3094-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 03/15/2005] [Indexed: 01/09/2023]
Abstract
FRA3B and FRA16D are the most sensitive common chromosomal fragile site loci in the human genome. Two tumor suppressor genes, the fragile histidine triad (FHIT) gene and the WW domain-containing oxidoreductase (WWOX), map to the common fragile sites, FRA3B and FRA16D, respectively. Interestingly, FHIT and WWOX have similarities: for example, they are both larger than 1 Mb and encompass fragile sites, they both show frequent allelic loss regions in various human cancers, they both span a region of homozygous deletion in multiple cancers, and they both frequently show aberrant transcripts. The development of human cancers, including digestive tract cancers, is strongly associated with exposure to environmental carcinogens. Common fragile sites are very sensitive to this type of exposure, and the resulting DNA damage leads to the inactivation of genes such as FHIT and WWOX. We present an overview of these two common fragile genes, namely FHIT/FRA3B and WWOX/FRA16D, in digestive tract cancers.
Collapse
Affiliation(s)
- Tamotsu Kuroki
- Department of Transplantation and Digestive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | |
Collapse
|
50
|
Mueller W, Nutt CL, Ehrich M, Riemenschneider MJ, von Deimling A, van den Boom D, Louis DN. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 2006; 26:583-93. [PMID: 16909125 DOI: 10.1038/sj.onc.1209805] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glioblastoma, the most aggressive and least treatable form of malignant glioma, is the most common human brain tumor. Although many regions of allelic loss occur in glioblastomas, relatively few tumor suppressor genes have been found mutated at such loci. To address the possibility that epigenetic alterations are an alternative means of glioblastoma gene inactivation, we coupled pharmacological manipulation of methylation with gene profiling to identify potential methylation-regulated, tumor-related genes. Duplicates of three short-term cultured glioblastomas were exposed to 5 microM 5-aza-dC for 96 h followed by cRNA hybridization to an oligonucleotide microarray (Affymetrix U133A). We based candidate gene selection on bioinformatics, reverse transcription-polymerase chain reaction (RT-PCR), bisulfite sequencing, methylation-specific PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Two genes identified in this manner, RUNX3 and Testin (TES), were subsequently shown to harbor frequent tumor-specific epigenetic alterations in primary glioblastomas. This overall approach therefore provides a powerful means to identify candidate tumor-suppressor genes for subsequent evaluation and may lead to the identification of genes whose epigenetic dysregulation is integral to glioblastoma tumorigenesis.
Collapse
Affiliation(s)
- W Mueller
- Department of Pathology, Cancer Center and Neurosurgical Service, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|