1
|
Franchini M, Focosi D. Monoclonal Antibodies and Hyperimmune Immunoglobulins in the Next Pandemic. Curr Top Microbiol Immunol 2024. [PMID: 38877202 DOI: 10.1007/82_2024_274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Pandemics are highly unpredictable events that are generally caused by novel viruses. There is a high likelihood that such novel pathogens belong to entirely novel viral families for which no targeted small-molecule antivirals exist. In addition, small-molecule antivirals often have pharmacokinetic properties that make them contraindicated for the frail patients who are often the most susceptible to a novel virus. Passive immunotherapies-available from the first convalescent patients-can then play a key role in controlling pandemics. Convalescent plasma is immediately available, but if manufacturers have fast platforms to generate marketable drugs, other forms of passive antibody treatment can be produced. In this chapter, we will review the technological platforms for generating monoclonal antibodies and hyperimmune immunoglobulins, the current experience on their use for treatment of COVID-19, and the pipeline for pandemic candidates.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| |
Collapse
|
2
|
Focosi D, Franchini M, Maggi F, Shoham S. COVID-19 therapeutics. Clin Microbiol Rev 2024; 37:e0011923. [PMID: 38771027 PMCID: PMC11237566 DOI: 10.1128/cmr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
SUMMARYSince the emergence of COVID-19 in 2020, an unprecedented range of therapeutic options has been studied and deployed. Healthcare providers have multiple treatment approaches to choose from, but efficacy of those approaches often remains controversial or compromised by viral evolution. Uncertainties still persist regarding the best therapies for high-risk patients, and the drug pipeline is suffering fatigue and shortage of funding. In this article, we review the antiviral activity, mechanism of action, pharmacokinetics, and safety of COVID-19 antiviral therapies. Additionally, we summarize the evidence from randomized controlled trials on efficacy and safety of the various COVID-19 antivirals and discuss unmet needs which should be addressed.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Focosi D, Franchini M, Senefeld JW, Joyner MJ, Sullivan DJ, Pekosz A, Maggi F, Casadevall A. Passive immunotherapies for the next influenza pandemic. Rev Med Virol 2024; 34:e2533. [PMID: 38635404 DOI: 10.1002/rmv.2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Influenzavirus is among the most relevant candidates for a next pandemic. We review here the phylogeny of former influenza pandemics, and discuss candidate lineages. After briefly reviewing the other existing antiviral options, we discuss in detail the evidences supporting the efficacy of passive immunotherapies against influenzavirus, with a focus on convalescent plasma.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Mantua Hospital, Mantua, Italy
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Franchini M, Focosi D. The Role of Convalescent Plasma in COVID-19: A Conclusive Post-Pandemic Review. Life (Basel) 2023; 13:2322. [PMID: 38137923 PMCID: PMC10744384 DOI: 10.3390/life13122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) has represented the frontline response to the COVID-19 pandemic, largely because of encouraging historical evidences in previous pandemics, biological plausibility, and the initial unavailability of targeted antivirals. Unfortunately, investigator-initiated randomized clinical trials in 2020, launched during a stressful pandemic peak, were designed mostly at addressing the main unmet need, i.e., treating critically ill hospitalized patients who were unlikely to benefit from any antiviral therapy. The failure of most of these drugs, in combination with the lack of any sponsor, led to the false belief that convalescent plasma was useless. With the relaxing pandemic stages, evidences have instead mounted that, when administered properly (i.e., within 5 days from onset of symptoms and at high titers of neutralizing antibodies), CCP is as effective as other antivirals at preventing disease progression in outpatients, and also reduces mortality in hospitalized patients. Recently, the focus of clinical use has been on immunosuppressed patients with persistent seronegativity and infection, where a randomized clinical trial has shown a reduction in mortality. Lessons learnt during the COVID-19 pandemic will be of utmost importance for future pandemics.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| |
Collapse
|
5
|
Yang X. Passive antibody therapy in emerging infectious diseases. Front Med 2023; 17:1117-1134. [PMID: 38040914 DOI: 10.1007/s11684-023-1021-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 12/03/2023]
Abstract
The epidemic of corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome Coronavirus 2 and its variants of concern (VOCs) has been ongoing for over 3 years. Antibody therapies encompassing convalescent plasma, hyperimmunoglobulin, and neutralizing monoclonal antibodies (mAbs) applied in passive immunotherapy have yielded positive outcomes and played a crucial role in the early COVID-19 treatment. In this review, the development path, action mechanism, clinical research results, challenges, and safety profile associated with the use of COVID-19 convalescent plasma, hyperimmunoglobulin, and mAbs were summarized. In addition, the prospects of applying antibody therapy against VOCs was assessed, offering insights into the coping strategies for facing new infectious disease outbreaks.
Collapse
Affiliation(s)
- Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China.
- China National Biotec Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
6
|
Focosi D, Franchini M, Nicastri E, Sullivan DJ, Casadevall A. Convalescent Plasma Versus Hyperimmune Immunoglobulins. Clin Infect Dis 2023; 77:1356-1357. [PMID: 37399022 DOI: 10.1093/cid/ciad406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Emanuele Nicastri
- Division of Infectious Diseases, National Institute for Infectious Diseases "Lazzaro Spallanzani," Rome, Italy
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Focosi D, Meschi S, Coen S, Iorio MC, Franchini M, Lanza M, Maggi F. Serum anti-Spike immunoglobulin G levels in random blood donors in Italy: High-titre convalescent plasma is easier than ever to procure. Vox Sang 2023; 118:794-797. [PMID: 37489640 DOI: 10.1111/vox.13498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND AND OBJECTIVES COVID-19 convalescent plasma (CCP) has retained potency and clinical efficacy against SARS-CoV-2 and is currently of utmost value for seronegative immunocompromised patients. Since most of the effect is due to the vaccine boost of infection-elicited antibodies, there is a theoretical concern that the frequency of suitable donors is declining. MATERIALS AND METHODS In this single-institution serosurvey, we screened 599 consecutive donors attending our area in two different seasons (300 in November 2022 and 299 in February 2023) using the Abbott Alinity® anti-Spike immunoglobulin G assay. RESULTS More than 80% of random donors qualify according to the FDA criteria for high-titre CCP (>4350 AU/mL), with a stable trend. CONCLUSION Despite reduced anti-Spike vaccine boost deployment in the general population, we have shown here that high-titre CCP units are easier than ever to procure. This finding also has implications for the derivation of standard immunoglobulins, which are finally approaching the potency of hyperimmune serum and could soon represent an alternative to CCP.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Sabrina Coen
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Maria Carla Iorio
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | | | - Maria Lanza
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
8
|
Focosi D, Joyner MJ, Casadevall A. Recent Hybrid Plasma Better Neutralizes Omicron Sublineages Than Old Hyperimmune Serum. Clin Infect Dis 2023; 76:554. [PMID: 36074894 DOI: 10.1093/cid/ciac742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Schrezenmeier H, Hoffmann S, Hofmann H, Appl T, Jahrsdörfer B, Seifried E, Körper S. Immune Plasma for the Treatment of COVID-19: Lessons Learned so far. Hamostaseologie 2023; 43:67-74. [PMID: 36807822 DOI: 10.1055/a-1987-3682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) has been explored as one of the treatment options for COVID-19. Results of many cohort studies and clinical trials have been recently published. At first glance, the results of the CCP studies appear to be inconsistent. However, it became clear that CCP is not beneficial if CCP with low anti-SARS-CoV-2 antibody concentrations is used, if it is administered late in advanced disease stages, and to patients who already mounted an antibody response against SARS-CoV-2 at the time of CCP transfusion. On the other hand, CCP may prevent progression to severe COVID-19 when very high-titer CCP is given early in vulnerable patients. Immune escape of new variants is a challenge for passive immunotherapy. While new variants of concern developed resistance to most clinically used monoclonal antibodies very rapidly, immune plasma from individuals immunized by both a natural SARS-CoV-2 infection and SARS-CoV-2 vaccination retained neutralizing activity against variants. This review briefly summarizes the evidence on CCP treatment to date and identifies further research needs. Ongoing research on passive immunotherapy is not only relevant for improving care for vulnerable patients in the ongoing SARS-CoV-2 pandemic, but even more as a model for passive immunotherapy in case of future pandemics with a newly evolving pathogen. Compared to other drugs, which must be newly developed in a pandemic (e.g., monoclonal antibodies, antiviral drugs), convalescent plasma is rapidly available, inexpensive to produce, and can be adaptive to viral evolution by selection of contemporary convalescent donors.
Collapse
Affiliation(s)
- Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Simone Hoffmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Henrike Hofmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen, Frankfurt, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
10
|
Focosi D, Franchini M. Polyclonal immunoglobulins for COVID-19 pre-exposure prophylaxis in immunocompromised patients. Transfus Apher Sci 2023:103648. [PMID: 36759280 PMCID: PMC9886389 DOI: 10.1016/j.transci.2023.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Immunocompromised patients remain at high risk of COVID-19 morbidity and mortality. After recent Omicron sublineages gained full resistance to Evusheld™, they are left without effective pre-exposure prophylaxis. We review here arguments to support the growing role of regular immunoglobulin (IG) infusions at protecting against COVID-19. Since there is evidence for neutralizing antibody titers approaching the ones seen in hyperimmune sera, and since some categories of patients at risk for COVID-19 progression are already under preexposure prophylaxis with IG, this cost-effective strategy should be urgently investigated in randomized clinical trials. Surveys of anti-Spike antibody levels in current plasma donations are urgent to forecast the potency of future IG batches.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56100 Pisa, Italy.
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy.
| |
Collapse
|
11
|
Marcec R, Dodig VM, Radanovic I, Likic R. Intravenous immunoglobulin (IVIg) therapy in hospitalised adult COVID-19 patients: A systematic review and meta-analysis. Rev Med Virol 2022; 32:e2397. [PMID: 36097650 PMCID: PMC9538058 DOI: 10.1002/rmv.2397] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
Intravenous immunoglobulin (IVIg) therapy has been suggested as a potential treatment option for hospitalised COVID-19 patients. The aim of this systematic review and meta-analysis was to investigate the potential impact of IVIg on mortality and length of hospitalisation in adult COVID-19 patients. PubMed, Scopus, Web of Science and medRxiv were searched in the week of 20.12.2021 for English language, prospective trials, and retrospective studies with control groups, reporting on the use of intravenous immunoglobulin therapy in adult hospitalised COVID-19 patients. Exclusion criteria were: studies evaluating the use of IVIg in paediatric COVID-19 cases, trials using convalescent anti-SARS-CoV-2 plasma or immunoglobulins derived from convalescent anti-SARS-CoV-2 plasma. A random effects meta-analysis with subgroup analyses regarding study design and patient disease severity according to WHO criteria was also performed. A total of 13 studies were included, of which 6 were prospective, on a total of 2313 (IVIg = 1104, control = 1209) patient outcomes. Meta-analysis results indicated that IVIg therapy had no statistically significant effect on mortality (RR 0.91 [0.59; 1.39], p = 0.65, I2 = 69% [46%; 83%]) or length of hospital stay (MD 0.51 [-2.80; 3.81], p = 0.76, I2 = 96% [94%; 98%]). Subgroup analyses indicated no statistically significant impact on either outcome, but prospective studies' results suggested that IVIg may increase the length of hospitalisation in the severe COVID-19 patient group (MD 2.66 [1.43; 3.90], p < 0.01, I2 = 0% [0%; >90%]). The results of this meta-analysis do not support use of IVIg in hospitalised adult COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | - Robert Likic
- School of MedicineUniversity of ZagrebZagrebCroatia
- Department of Internal MedicineClinical Hospital Centre ZagrebUnit for Clinical PharmacologyZagrebCroatia
| |
Collapse
|
12
|
Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D. Analysis of anti-SARS-CoV-2 Omicron-neutralizing antibody titers in different vaccinated and unvaccinated convalescent plasma sources. Nat Commun 2022; 13:6478. [PMID: 36309490 PMCID: PMC9617541 DOI: 10.1038/s41467-022-33864-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
The latest SARS-CoV-2 variant of concern Omicron, with its immune escape from therapeutic anti-Spike monoclonal antibodies and WA-1 vaccine-elicited sera, demonstrates the continued relevance of COVID-19 convalescent plasma (CCP) therapies. Lessons learnt from previous usage of CCP suggests focusing on early outpatients and immunocompromised recipients, with high neutralizing antibody titer units. Here, we systematically review Omicron-neutralizing plasma activity data, and report that approximately 47% (424/902) of CCP samples from unvaccinated pre-Omicron donors neutralizes Omicron BA.1 with a very low geometric mean of geometric mean titers for 50% neutralization GM(GMT50) of ~13, representing a > 20-fold reduction from WA-1 neutralization. Non-convalescent subjects who had received two doses of mRNA vaccines had a GM(GMT50) for Omicron BA.1 neutralization of ~27. However, plasma from vaccinees recovering from either previous pre-Omicron variants of concern infection, Omicron BA.1 infection, or third-dose uninfected vaccinees was nearly 100% neutralizing against Omicron BA.1, BA.2 and BA.4/5 with GM(GMT(50)) all over 189, 10 times higher than pre-Omicron CCP. Fully vaccinated and post-BA.1 plasma (Vax-CCP) had a GM(GMT50) > 450 for BA.4/5 and >1,500 for BA.1 and BA.2. These findings have implications for both CCP stocks collected in prior pandemic periods and for future plans to restart CCP collections. Thus, Vax-CCP provides an effective tool to combat ongoing variants that escape therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- David J Sullivan
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, 21218, USA
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100, Mantua, Italy
| | - Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, 21218, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124, Pisa, Italy.
| |
Collapse
|
13
|
Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D. Analysis of anti-Omicron neutralizing antibody titers in different vaccinated and unvaccinated convalescent plasma sources. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.12.24.21268317. [PMID: 35982681 PMCID: PMC9387146 DOI: 10.1101/2021.12.24.21268317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The latest SARS-CoV-2 variant of concern Omicron, with its immune escape from therapeutic anti-Spike monoclonal antibodies and WA-1 vaccine-elicited sera, demonstrates the continued relevance of COVID-19 convalescent plasma (CCP) therapies. Lessons learnt from previous usage of CCP suggests focusing on early outpatients and immunocompromised recipients, with high neutralizing antibody (nAb) titer units. In this analysis we systematically reviewed Omicron-neutralizing plasma activity data, and found that approximately 47% (424/902) of CCP from unvaccinated pre-Omicron donors neutralizes Omicron BA.1 with a very low geomean of geometric mean titers for 50% neutralization GM(GMT50) of about 13, representing a more than 20-fold reduction from WA-1 neutralization. Two doses of mRNA vaccines in nonconvalescent subjects had a similar 50% percent neutralization with Omicron BA.1 neutralization GM(GMT(50)) of about 27. However, plasma from vaccinees recovered from either previous pre-Omicron variants of concern infection, Omicron BA.1 infection, or third-dose uninfected vaccinees was nearly 100% neutralizing against Omicron BA.1, BA.2 and BA.4/5 with GM(GMT(50)) all over 189, 10 times higher than pre-Omicron CCP. Fully vaccinated and post-BA.1 plasma (Vax-CCP) had GM(GMT50) over 450 for BA.4/5 and over 1500 for BA.1 and BA.2. These findings have implications for both CCP stocks collected in prior pandemic periods and plans to restart CCP collections. Thus, Vax-CCP provides an effective tool to combat ongoing variants that defeat therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- David J Sullivan
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD 21218, USA
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Michael J. Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD 21218, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|