1
|
Liu L, Sun P, Zhang W. A pan-cancer interrogation of intronic polyadenylation and its association with cancer characteristics. Brief Bioinform 2024; 25:bbae376. [PMID: 39082645 PMCID: PMC11289681 DOI: 10.1093/bib/bbae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
3'UTR-APAs have been extensively studied, but intronic polyadenylations (IPAs) remain largely unexplored. We characterized the profiles of 22 260 IPAs in 9679 patient samples across 32 cancer types from the Cancer Genome Atlas cohort. By comparing tumor and paired normal tissues, we identified 180 ~ 4645 dysregulated IPAs in 132 ~ 2249 genes in each of 690 patient tumors from 22 cancer types that showed consistent patterns within individual cancer types. We selected 2741 genes that showed consistently patterns across cancer types, including 1834 pan-cancer tumor-enriched and 907 tumor-depleted IPA genes; the former were amply represented in the functional pathways such as deoxyribonucleic acid damage repair. Expression of IPA isoforms was associated with tumor mutation burden and patient characteristics (e.g. sex, race, cancer stages, and subtypes) in cancer-specific and feature-specific manners, and could be a more accurate prognostic marker than gene expression (summary of all isoforms). In summary, our study reveals the roles and the clinical relevance of tumor-associated IPAs.
Collapse
Affiliation(s)
- Liang Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, United States
- Center for Cancer Genomics and Precision Oncology, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, United States
- Center for Cancer Genomics and Precision Oncology, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Medical Center Blvd, Winston-Salem, NC 27157, United States
| |
Collapse
|
2
|
Polat D, Onur E, Yılmaz N, Sökücü M, Gerçeker O. KDM3A, a Novel Blood-Based Biomarker in Colorectal Carcinogenesis. Balkan J Med Genet 2023; 25:23-27. [PMID: 37265967 PMCID: PMC10230839 DOI: 10.2478/bjmg-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-linked deaths globally. The determination of biomarkers is important in the prognosis and treatment of CRC. Previous studies emphasized the relationship between hypoxia and CRC in humans, and there is strong evidence that this process is strongly related to HIF-1. KDM3A is a histone demethylase that could directly bind to HIF-1α, a subunit of HIF-1. This study aimed to reveal whether the expression level of the KDM3A gene could be used as a predictor of CRC. The expression levels of HIF-1α, KDM3A, and Epithelial-Mesenchymal Transition (EMT) genes were evaluated by qRT-PCR in leukocyte samples of 50 CRC patients in different stages and 50 healthy controls. HIF-1α and KDM3A expression levels were significantly higher in the CRC group, compared to the controls. Slug and ZEB-1 genes, the mesenchymal markers, showed the same significance pattern between groups. We acquired 0.664 AUC with 54% sensitivity and 85.4% specificity for separating controls from CRC patients by using the KDM3A expression levels in ROC analysis. This data support that KDM3A could be a novel supplementary biomarker in diagnosis of CRC, which could be noninvasively detected in circulation.
Collapse
Affiliation(s)
- D. Polat
- Department of Biology, Section of Molecular Biology, Faculty of Art and Science, Gaziantep University, Gaziantep, Turkey
| | - E. Onur
- Department of Medical Biology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - N. Yılmaz
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - M. Sökücü
- Department of Pathology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - O.F. Gerçeker
- Department of Biology, Section of Molecular Biology, Faculty of Art and Science, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
3
|
Mandl A, Markowski MC, Carducci MA, Antonarakis ES. Role of bromodomain and extraterminal (BET) proteins in prostate cancer. Expert Opin Investig Drugs 2023; 32:213-228. [PMID: 36857796 DOI: 10.1080/13543784.2023.2186851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION The bromodomain and extraterminal (BET) family of proteins are epigenetic readers of acetylated histones and are critical activators of oncogenic networks across many cancers. Therapeutic targeting of BET proteins has been an attractive area of clinical development for metastatic castration-resistant prostate cancer. In recent years, many structurally diverse BET inhibitors have been discovered and tested. Preclinical studies have demonstrated significant antiproliferative activity of BET inhibitors against prostate cancer. However, their clinical success as monotherapies has been limited by treatment-associated toxicities, primary and acquired drug resistance, and a lack of predictive biomarkers of benefit. AREAS COVERED This review provides an overview of advancements in BET inhibitor design, preclinical research, and conclusions from clinical trials in prostate cancer. We speculate on incorporating BET inhibitors into combination regimens with other agents to improve the therapeutic index of BET inhibition in treating prostate cancer. EXPERT OPINION The therapeutic potential of BET inhibitors for prostate cancer has been demonstrated in preclinical studies. However, further research is needed to identify biomarkers that can predict sensitivity to BET inhibitors and to develop novel, highly selective inhibitors to reduce toxicities. Finally, BET inhibitors are likely to hold the most clinical potential in combination with other agents.
Collapse
Affiliation(s)
- Adel Mandl
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Mark C Markowski
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
4
|
He C, Liu W, Sun J, Zhang D, Li B. Jumonji domain-containing protein RIOX2 is overexpressed and associated with worse survival outcomes in prostate cancers. Front Oncol 2023; 13:1087082. [PMID: 36776320 PMCID: PMC9911806 DOI: 10.3389/fonc.2023.1087082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Background Histone demethylase RIOX2 was cloned as a c-Myc downstream gene involved in cell proliferation and has been implicated as an oncogenic factor in multiple tumor types. Its expression profiles and correlation with disease progression in prostate cancers are unknown. Methods Transcriptomic profiles of Jumanji domain-containing protein genes were assessed using multiple public expression datasets generated from RNA-seq and cDNA microarray assays. RIOX2 protein expression was assessed using an immunohistochemistry approach on a tissue section array from benign and malignant prostate tissues. Gene expression profiles were analyzed using the bioinformatics software R package. Western blot assay examined androgen stimulation on RIOX2 protein expression in LNCaP cells. Results Among 35 Jumanji domain-containing protein genes, 12 genes were significantly upregulated in prostate cancers compared to benign compartments. COX regression analysis identified that the ribosomal oxygenase 2 (RIOX2) gene was the only one significantly associated with disease-specific survival outcomes in prostate cancer patients. RIOX2 upregulation was confirmed at the protein levels using immunohistochemical assays on prostate cancer tissue sections. Meanwhile, RIOX2 upregulation was associated with clinicopathological features, including late-stage diseases, adverse Gleason scores, TP53 gene mutation, and disease-free status. In castration-resistant prostate cancers (CRPC), RIOX2 expression was positively correlated with AR signaling index but negatively correlated with the neuroendocrinal progression index. However, androgen treatment had no significant stimulatory effect on RIOX2 expression, indicating a parallel but not a causative effect of androgen signaling on RIOX2 gene expression. Further analysis discovered that RIOX2 expression was tightly correlated with its promoter hypomethylation and MYC gene expression, consistent with the notion that RIOX2 was a c-Myc target gene. Conclusion The Jumanji domain-containing protein RIOX2 was significantly overexpressed in prostate cancer, possibly due to c-Myc upregulation. RIOX2 upregulation was identified as an independent prognostic factor for disease-specific survival.
Collapse
Affiliation(s)
- Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jiahao Sun
- Department of Radiation Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Da Zhang
- Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States,Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Benyi Li,
| |
Collapse
|
5
|
Li C, Zhang A, Hu T, Yang Y, Tang S, Li J. Histone demethylase JHDM2A participates in the repair of arsenic-induced DNA damage in L-02 cells by regulating DDB2. Toxicol Ind Health 2022; 38:365-376. [PMID: 35579678 DOI: 10.1177/07482337221098319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arsenic is widely present in nature and is a class I carcinogen confirmed by the World Health Organization and the International Agency for Research on Cancer. The liver is responsible for biotransformation in the body and is one of the major organs where arsenic accumulates in the body, but the mechanisms of arsenic-induced abnormal DNA damage repair pathways in the liver are still unclear. Recent studies have revealed that epigenetic mechanisms play an important role in arsenic-induced lesions. In this study, an in vitro model was established using human normal hepatocytes L-02 to investigate the mechanism of the specific demethylase JHDM2A of H3K9me2 in the repair of arsenic-induced DNA damage in L-02 cells. The results showed that with the increase of arsenic concentrations, the extent of DNA damage in L-02 cells showed an increasing trend and total intracellular H3K9me2 expression was downregulated. In addition, the enrichment level of H3K9me2 in the promoter region of DBB2, a key factor of nucleotide repair (NBR), increased, while protein and mRNA expression levels showed a decreasing trend. Thereafter, we overexpressed and repressed JHDM2A and found a close association between JHDM2A and arsenic-induced DNA damage. DDB2 protein and mRNA expression was downregulated with JHDM2A overexpression and upregulated with JHDM2A repression, while DBB2 promoter region H3K9me2 enrichment levels remained at a high level, although they were affected after JHDM2A overexpression or knockdown to some extent. These results suggest a potential mechanism by which JHDM2A may regulate DDB2 gene expression, participate in the NBR process, and play a role in arsenic-induced DNA damage in L-02 cells, which is not the result of JHDM2A exerting demethylation on H3K9me2 in the DDB2 promoter region. Our results provided an epigenetic mechanism for endemic arsenicosis, as well as a scientific basis for potential prevention and control measures.
Collapse
Affiliation(s)
- Changzhe Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Anliu Zhang
- Guiyang Center for Disease Control and Prevention, Guiyang, China
| | - Ting Hu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Yue Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Shunfang Tang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Liu JS, Fang WK, Yang SM, Wu MC, Chen TJ, Chen CM, Lin TY, Liu KL, Wu CM, Chen YC, Chuu CP, Wang LY, Hsieh HP, Kung HJ, Wang WC. Natural product myricetin is a pan-KDM4 inhibitor which with poly lactic-co-glycolic acid formulation effectively targets castration-resistant prostate cancer. J Biomed Sci 2022; 29:29. [PMID: 35534851 PMCID: PMC9082844 DOI: 10.1186/s12929-022-00812-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background Castration-resistant prostate cancer (CRPC) with sustained androgen receptor (AR) signaling remains a critical clinical challenge, despite androgen depletion therapy. The Jumonji C-containing histone lysine demethylase family 4 (KDM4) members, KDM4A‒KDM4C, serve as critical coactivators of AR to promote tumor growth in prostate cancer and are candidate therapeutic targets to overcome AR mutations/alterations-mediated resistance in CRPC. Methods In this study, using a structure-based approach, we identified a natural product, myricetin, able to block the demethylation of histone 3 lysine 9 trimethylation by KDM4 members and evaluated its effects on CRPC. A structure-based screening was employed to search for a natural product that inhibited KDM4B. Inhibition kinetics of myricetin was determined. The cytotoxic effect of myricetin on various prostate cancer cells was evaluated. The combined effect of myricetin with enzalutamide, a second-generation AR inhibitor toward C4-2B, a CRPC cell line, was assessed. To improve bioavailability, myricetin encapsulated by poly lactic-co-glycolic acid (PLGA), the US food and drug administration (FDA)-approved material as drug carriers, was synthesized and its antitumor activity alone or with enzalutamide was evaluated using in vivo C4-2B xenografts. Results Myricetin was identified as a potent α-ketoglutarate-type inhibitor that blocks the demethylation activity by KDM4s and significantly reduced the proliferation of both androgen-dependent (LNCaP) and androgen-independent CRPC (CWR22Rv1 and C4-2B). A synergistic cytotoxic effect toward C4-2B was detected for the combination of myricetin and enzalutamide. PLGA-myricetin, enzalutamide, and the combined treatment showed significantly greater antitumor activity than that of the control group in the C4-2B xenograft model. Tumor growth was significantly lower for the combination treatment than for enzalutamide or myricetin treatment alone. Conclusions These results suggest that myricetin is a pan-KDM4 inhibitor and exhibited potent cell cytotoxicity toward CRPC cells. Importantly, the combination of PLGA-encapsulated myricetin with enzalutamide is potentially effective for CRPC. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00812-3.
Collapse
|
7
|
Lin CY, Wang BJ, Fu YK, Huo C, Wang YP, Chen BC, Liu WY, Tseng JC, Jiang SS, Sie ZL, Tsai KK, Yuh CH, Wang WC, Kung HJ, Chuu CP. Inhibition of KDM4C/c-Myc/LDHA signalling axis suppresses prostate cancer metastasis via interference of glycolytic metabolism. Clin Transl Med 2022; 12:e764. [PMID: 35343073 PMCID: PMC8958350 DOI: 10.1002/ctm2.764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 01/03/2023] Open
Affiliation(s)
- Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.,PhD Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Bi-Juan Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ke Fu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chieh Huo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Pei Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Bo-Chih Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Wei-Yi Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Chih Tseng
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.,Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Shih Shen Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Zong-Lin Sie
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Kelvin K Tsai
- College of Medicine, Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei City, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Laboratory of Advanced Molecular Therapeutics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Hwa Yuh
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Ching Wang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Hsing-Jien Kung
- PhD Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.,Graduate Program for Aging, China Medical University, Taichung, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Pervaiz W, Li D, Kang L, Ma X, Li J, Liu Z, Liu HM. Systematic Review and Meta-Analysis of Lysine-Specific Demethylase 1 Expression as a Prognostic Biomarker of Cancer Survival and Disease Progression. Cancer Control 2021; 28:10732748211051557. [PMID: 34802287 PMCID: PMC8727833 DOI: 10.1177/10732748211051557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Numerous studies on the prognostic significance of lysine-specific demethylase 1 (LSD1) up-regulation in tumors have different outcomes. The inconsistency originated from various studies looking into the association between LSD1 and tumor cells has prompted the decision of this quantitative systematic review to decipher how up-regulated LSD1 and overall survival (OS) or recurrence-free survival (RFS) or disease-free survival (DFS) are linked in tumor patients. Methods Articles were searched from online databases such as Embase, Web of Science Core, PubMed, Google Scholar, and Scopus. The extraction of the hazard ratios (HR) with their 95% confidence intervals (CIs) was attained and survival data of 3151 tumor patients from 17 pieces of related research were used for this meta-analysis. Results To shed light on the link between LSD1 up-regulation and the prognosis of diverse tumors, the pooled hazard ratios (HRs) with their 95% confidence intervals (CIs) were determined. In this meta-analysis, it was observed that LSD1 up-regulation is linked with poor OS (HR = 2.08, 95% CI: 1.66–2.61, P < .01) and RFS (HR = 3.09, 95% CI: 1.81–5.26, P < .01) in tumor patients. However, LSD1 up-regulation was not linked to DFS (HR = 1.49, 95% CI: .83–2.69, P = .18) in tumor patients. The subcategory examination grouped by tumor type and ethnicity showed that LSD1 up-regulation was linked with a poor outcome in the esophageal tumor and hepatocellular carcinoma and Asian patients, respectively. For clinical-pathological factors, up-regulated LSD1 was significantly linked with Lymph node status. Conclusion Despite the shortfall of the present work, this meta-analysis proposes that LSD1 up-regulation may be a prognostic biomarker for patients with tumors including esophageal tumors and hepatocellular carcinoma. We propose that large-scale studies are vital to substantiate these outcomes.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Clement Y Effah
- College of Public Health, 12636Zhengzhou University, Zhengzhou, China
| | - Emmanuel K Drokow
- Department of Oncology, 89632Zhengzhou University People's Hospital and Henan Provincial People's Hospital Henan, Zhengzhou, China
| | - Waqar Pervaiz
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Dié Li
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Lei Kang
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zhenzhen Liu
- 12636The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020; 34:3461-3484. [PMID: 31961018 DOI: 10.1096/fj.201902584r] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
The KDM4 subfamily H3K9 histone demethylases are epigenetic regulators that control chromatin structure and gene expression by demethylating histone H3K9, H3K36, and H1.4K26. The KDM4 subfamily mainly consists of four proteins (KDM4A-D), all harboring the Jumonji C domain (JmjC) but with differential substrate specificities. KDM4A-C proteins also possess the double PHD and Tudor domains, whereas KDM4D lacks these domains. KDM4 proteins are overexpressed or deregulated in multiple cancers, cardiovascular diseases, and mental retardation and are thus potential therapeutic targets. Despite extensive efforts, however, there are very few KDM4-selective inhibitors. Defining the exact physiological and oncogenic functions of KDM4 demethylase will provide the foundation for the discovery of novel potent inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM4s and the interplay between KDM4-mediated epigenetic and metabolic pathways in cancer. We also review currently available KDM4 inhibitors and discuss their potential as therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Histone Demethylase KDM4C Stimulates the Proliferation of Prostate Cancer Cells via Activation of AKT and c-Myc. Cancers (Basel) 2019; 11:cancers11111785. [PMID: 31766290 PMCID: PMC6896035 DOI: 10.3390/cancers11111785] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 01/12/2023] Open
Abstract
Our three-dimensional organotypic culture revealed that human histone demethylase (KDM) 4C, a histone lysine demethylase, hindered the acini morphogenesis of RWPE-1 prostate cells, suggesting its potential oncogenic role. Knockdown (KD) of KDM4C suppressed cell proliferation, soft agar colony formation, and androgen receptor (AR) transcriptional activity in PCa cells as well as reduced tumor growth of human PCa cells in zebrafish xenotransplantation assay. Micro-Western array (MWA) analysis indicated that KD of KDM4C protein decreased the phosphorylation of AKT, c-Myc, AR, mTOR, PDK1, phospho-PDK1 S241, KDM8, and proteins involved in cell cycle regulators, while it increased the expression of PTEN. Fluorescent microscopy revealed that KDM4C co-localized with AR and c-Myc in the nuclei of PCa cells. Overexpression of either AKT or c-Myc rescued the suppressive effect of KDM4C KD on PCa cell proliferation. Echoing the above findings, the mRNA and protein expression of KDM4C was higher in human prostate tumor tissues as compared to adjacent normal prostate tissues, and higher KDM4C protein expression in prostate tumors correlated to higher protein expression level of AKT and c-Myc. In conclusion, KDM4C promotes the proliferation of PCa cells via activation of c-Myc and AKT.
Collapse
|
11
|
Wu X, Li R, Song Q, Zhang C, Jia R, Han Z, Zhou L, Sui H, Liu X, Zhu H, Yang L, Wang Y, Ji Q, Li Q. JMJD2C promotes colorectal cancer metastasis via regulating histone methylation of MALAT1 promoter and enhancing β-catenin signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:435. [PMID: 31665047 PMCID: PMC6819649 DOI: 10.1186/s13046-019-1439-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/06/2019] [Indexed: 12/26/2022]
Abstract
Background Our previous work demonstrated that lncRNA-MALAT1 was overexpressed in recurrent colorectal cancer (CRC) and metastatic sites in post-surgical patients. However, the upstream regulatory mechanism of MALAT1 is not well-defined. Histone demethylase JMJD2C holds great potential of epigenetic regulating mechanism in tumor diseases, especially the moderating effect on the promoter activity of targeted genes associated closely with tumor development. Therefore, we herein investigated whether JMJD2C could epigeneticly regulate the promoter activity of MALAT1 and the downstream β-catenin signaling pathway, thereby affecting the metastatic abilities of CRC cells. Methods JMJD2C expressions in human CRC samples were detected by real-time PCR and immunohistochemistry staining. Gene silencing and overexpressing efficiencies of JMJD2C were confirmed by real-time PCR and western blot. The migration of CRC cells in vitro were tested by transwell and wound healing assays. The protein expression and cellular localization of JMJD2C and β-catenin were characterized by immunofluorescence staining and western blot. The histone methylation level of MALAT1 promoter region (H3K9me3 and H3K36me3) was tested by ChIP-PCR assays. The promoter activity of MALAT1 was detected by luciferase reporter assay. The expressions of MALAT1 and the downstream β-catenin signaling pathway related genes in CRC cells were detected by real-time PCR and western blot, respectively. The nude mice tail vein metastasis model was established to observe the effect of JMJD2C on the lung metastasis of CRC cells in vivo. Results Our present results indicated that histone demethylase JMJD2C was overexpressed in matched CRC tumor tissues of primary and metastatic foci, and CRC patients with lower JMJD2C expression in primary tumors had better prognosis with longer OS (Overall Survival). The following biological function observation suggested that JMJD2C promoted CRC metastasis in vitro and in vivo. Further molecular mechanism investigation demonstrated that JMJD2C protein translocated into the nuclear, lowered the histone methylation level of MALAT1 promoter in the sites of H3K9me3 and H3K36me3, up-regulated the expression of MALAT1, and enhanced the β-catenin signaling pathway in CRC cells. Conclusion Our data demonstrated that JMJD2C could enhance the metastatic abilities of CRC cells in vitro and in vivo by regulating the histone methylation level of MALAT1 promoter, thereby up-regulating the expression of MALAT1 and enhancing the activity of β-catenin signaling pathway, providing that JMJD2C might be a novel therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Xinnan Wu
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruixiao Li
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Song
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Chengcheng Zhang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ru Jia
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifen Han
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Sui
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Liu
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qi Li
- Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Blanquart C, Linot C, Cartron PF, Tomaselli D, Mai A, Bertrand P. Epigenetic Metalloenzymes. Curr Med Chem 2019; 26:2748-2785. [PMID: 29984644 DOI: 10.2174/0929867325666180706105903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Epigenetics controls the expression of genes and is responsible for cellular phenotypes. The fundamental basis of these mechanisms involves in part the post-translational modifications (PTMs) of DNA and proteins, in particular, the nuclear histones. DNA can be methylated or demethylated on cytosine. Histones are marked by several modifications including acetylation and/or methylation, and of particular importance are the covalent modifications of lysine. There exists a balance between addition and removal of these PTMs, leading to three groups of enzymes involved in these processes: the writers adding marks, the erasers removing them, and the readers able to detect these marks and participating in the recruitment of transcription factors. The stimulation or the repression in the expression of genes is thus the result of a subtle equilibrium between all the possibilities coming from the combinations of these PTMs. Indeed, these mechanisms can be deregulated and then participate in the appearance, development and maintenance of various human diseases, including cancers, neurological and metabolic disorders. Some of the key players in epigenetics are metalloenzymes, belonging mostly to the group of erasers: the zinc-dependent histone deacetylases (HDACs), the iron-dependent lysine demethylases of the Jumonji family (JMJ or KDM) and for DNA the iron-dependent ten-eleven-translocation enzymes (TET) responsible for the oxidation of methylcytosine prior to the demethylation of DNA. This review presents these metalloenzymes, their importance in human disease and their inhibitors.
Collapse
Affiliation(s)
- Christophe Blanquart
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France.,Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Camille Linot
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France.,Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.,Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Philippe Bertrand
- Réseau Epigénétique du Cancéropôle Grand Ouest, France.,Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B27, 86073, Poitiers cedex 09, France
| |
Collapse
|
13
|
Zhang J, Zhao D, Li Q, Du X, Liu Y, Dai X, Hong L. Upregulation of LSD1 promotes migration and invasion in gastric cancer through facilitating EMT. Cancer Manag Res 2019; 11:4481-4491. [PMID: 31191010 PMCID: PMC6526921 DOI: 10.2147/cmar.s186649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Gastric cancer (GC) is a common malignant tumor of the digestive system. In addition, GC metastasis is an extremely complicated process. A previous study has found that lysine-specific demethylase 1 (LSD1) is abnormal expression in a variety of cancers and its overexpression correlates with aggressive disease and poor outcome. Methods qRT-PCR and Western blot assays were used to assess the expression of LSD1 in GC tissue samples and cell lines. Colony formation assay, CCK-8 assay, scratch-wound assay and transwell invasion, were performed to determine the effect of LSD1 on cell proliferation and migration as well as invasion in GC. Results Our results show that LSD1 was up-regulated in GC tumor tissues and cell lines, and high expression level of LSD1 was found to be positively correlated with tumor size, lymph node metastasis and pathological grade. Moreover, LSD1 promoted cell proliferation, migration and invasion of GC. In addition, LSD1 regulated E-cadherin expression through demethylating H3K4me2, thereby promoting EMT in GC. Conclusion Our work indicated that LSD1 may be used as a potential target of gastric cancer.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China,
| | - Donghui Zhao
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China,
| | - Qingjun Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China
| | - Xiuluan Du
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China,
| | - Yanxiang Liu
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China,
| | - Xin Dai
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China,
| | - Lianqing Hong
- Department of Pathology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, P.R. China,
| |
Collapse
|
14
|
Liu J, Liang T, Zhangsun W. KDM3A is associated with tumor metastasis and modulates colorectal cancer cell migration and invasion. Int J Biol Macromol 2019; 126:318-325. [DOI: 10.1016/j.ijbiomac.2018.12.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022]
|
15
|
Yang Q, Yang Y, Zhou N, Tang K, Lau WB, Lau B, Wang W, Xu L, Yang Z, Huang S, Wang X, Yi T, Zhao X, Wei Y, Wang H, Zhao L, Zhou S. Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol Cancer 2018; 17:109. [PMID: 30064416 PMCID: PMC6069741 DOI: 10.1186/s12943-018-0855-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/11/2018] [Indexed: 01/04/2023] Open
Abstract
Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemical therapy increase patient mortality. Therefore, it is both urgent and important to identify biomarkers facilitating early identification and novel agents preventing recurrence. Accumulating evidence demonstrates that epigenetic aberrations (particularly histone modifications) are crucial in tumor initiation and development. Histone acetylation and methylation are respectively regulated by acetyltransferases-deacetylases and methyltransferases-demethylases, both of which are implicated in ovarian cancer pathogenesis. In this review, we summarize the most recent discoveries pertaining to ovarian cancer development arising from the imbalance of histone acetylation and methylation, and provide insight into novel therapeutic interventions for the treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Qilian Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Yuqing Yang
- Nanchang University, Nanchang, People's Republic of China
| | - Nianxin Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Kexin Tang
- Sichuan Normal University Affiliated Middle School, Chengdu, People's Republic of China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medical Center, Affiliate of Stanford University, Stanford, USA
| | - Wei Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Lian Xu
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Shuang Huang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Hongjing Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
16
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
17
|
Yao J, Zheng S, Li B, Li X, Liu W. KDM3A is not associated with metastasis and prognosis of breast cancer. Oncol Lett 2018; 15:9751-9756. [PMID: 29928349 PMCID: PMC6004682 DOI: 10.3892/ol.2018.8578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 04/19/2018] [Indexed: 01/17/2023] Open
Abstract
Lysine demethylase 3A (KDM3A), also known as JMJD1A, has been associated with metastasis and poor prognosis in several cancer types, including renal cell carcinoma, prostate cancer and Ewing sarcoma. However, little is known regarding the clinicopathological significance of KDM3A expression in breast cancer (BCa). To investigate the clinical relevance of KDM3A expression in the setting of BCa, immunohistochemistry was performed on a tissue microarray consisting of 150 commercially available BCa samples. No significant correlation was identified between KDM3A expression and various clinicopathological variables, including clinical stage, pathological grade, tumor size and the expression statuses of human epidermal growth factor receptor 2, estrogen receptor, and progesterone receptor. In addition, no significant association between KDM3A expression and overall prognosis was observed. Taken together, these findings suggest that there is no significant association between KDM3A expression and clinicopathological variables, indicating that KDM3A may not be associated with the malignant behavior of BCa.
Collapse
Affiliation(s)
- Juan Yao
- The Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Shutao Zheng
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
- State Key Lab Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Baiyan Li
- The Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Xinxin Li
- The Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Wenya Liu
- The Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| |
Collapse
|
18
|
Peng K, Su G, Ji J, Yang X, Miao M, Mo P, Li M, Xu J, Li W, Yu C. Histone demethylase JMJD1A promotes colorectal cancer growth and metastasis by enhancing Wnt/β-catenin signaling. J Biol Chem 2018; 293:10606-10619. [PMID: 29802196 DOI: 10.1074/jbc.ra118.001730] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/25/2018] [Indexed: 01/19/2023] Open
Abstract
The histone demethylase Jumonji domain containing 1A (JMJD1A) is overexpressed in multiple tumors and promotes cancer progression. JMJD1A has been shown to promote colorectal cancer (CRC) progression, but its molecular role in CRC is unclear. Here, we report that JMJD1A is overexpressed in CRC specimens and that its expression is positively correlated with that of proliferating cell nuclear antigen (PCNA). JMJD1A knockdown decreased the expression of proliferative genes such as c-Myc, cyclin D1, and PCNA, suppressed CRC cell proliferation, arrested cell cycle progression, and reduced xenograft tumorigenesis. Furthermore, JMJD1A knockdown inhibited CRC cell migration, invasion, and lung metastasis by decreasing matrix metallopeptidase 9 (MMP9) expression and enzymatic activity. Moreover, bioinformatics analysis of GEO profile datasets revealed that JMJD1A expression in human CRC specimens is positively correlated with the expression of Wnt/β-catenin target genes, including c-Myc, cyclin D1, and MMP9. Mechanistically, JMJD1A enhanced Wnt/β-catenin signaling by promoting β-catenin expression and interacting with β-catenin to enhance its transactivation. JMJD1A removed the methyl groups of H3K9me2 at the promoters of c-Myc and MMP9 genes. In contrast, the JMJD1AH1120Y variant, which lacked demethylase activity, did not demethylate H3K9me2 at these promoters, failed to assist β-catenin to induce the expression of Wnt/β-catenin target genes, and failed to promote CRC progression. These findings suggest that JMJD1A's demethylase activity is required for Wnt/β-catenin activation. Of note, high JMJD1A levels in CRC specimens predicted poor cancer outcomes. In summary, JMJD1A promotes CRC progression by enhancing Wnt/β-catenin signaling, implicating JMJD1A as a potential molecular target for CRC management.
Collapse
Affiliation(s)
- Kesong Peng
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guoqiang Su
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Jinmeng Ji
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaojia Yang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengmeng Miao
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Pingli Mo
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming Li
- the Xiamen City Key Laboratory of Biliary Tract Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361101, China, and
| | - Jianming Xu
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Wengang Li
- the Xiamen City Key Laboratory of Biliary Tract Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361101, China, and
| | - Chundong Yu
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China,
| |
Collapse
|
19
|
The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells. Oncotarget 2018; 8:30328-30343. [PMID: 28416760 PMCID: PMC5444746 DOI: 10.18632/oncotarget.15681] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/09/2016] [Indexed: 01/07/2023] Open
Abstract
The lysine demethylase 3A (KDM3A, JMJD1A or JHDM2A) controls transcriptional networks in a variety of biological processes such as spermatogenesis, metabolism, stem cell activity, and tumor progression. We matched transcriptomic and ChIP-Seq profiles to decipher a genome-wide regulatory network of epigenetic control by KDM3A in prostate cancer cells. ChIP-Seq experiments monitoring histone 3 lysine 9 (H3K9) methylation marks show global histone demethylation effects of KDM3A. Combined assessment of histone demethylation events and gene expression changes presented major transcriptional activation suggesting that distinct oncogenic regulators may synergize with the epigenetic patterns by KDM3A. Pathway enrichment analysis of cells with KDM3A knockdown prioritized androgen signaling indicating that KDM3A plays a key role in regulating androgen receptor activity. Matched ChIP-Seq and knockdown experiments of KDM3A in combination with ChIP-Seq of the androgen receptor resulted in a gain of H3K9 methylation marks around androgen receptor binding sites of selected transcriptional targets in androgen signaling including positive regulation of KRT19, NKX3-1, KLK3, NDRG1, MAF, CREB3L4, MYC, INPP4B, PTK2B, MAPK1, MAP2K1, IGF1, E2F1, HSP90AA1, HIF1A, and ACSL3. The cancer systems biology analysis of KDM3A-dependent genes identifies an epigenetic and transcriptional network in androgen response, hypoxia, glycolysis, and lipid metabolism. Genome-wide ChIP-Seq data highlights specific gene targets and the ability of epigenetic master regulators to control oncogenic pathways and cancer progression.
Collapse
|
20
|
Liu J, Zhu M, Xia X, Huang Y, Zhang Q, Wang X. Jumonji domain-containing protein 1A promotes cell growth and progression via transactivation of c-Myc expression and predicts a poor prognosis in cervical cancer. Oncotarget 2018; 7:85151-85162. [PMID: 27835890 PMCID: PMC5356725 DOI: 10.18632/oncotarget.13208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023] Open
Abstract
Jumonji domain-containing protein 1A (JMJD1A) plays a key role in the development and progression of several cancers. Here, we showed that the expression of JMJD1A is increased in cervical cancer cells and tissues, and that suppression of JMJD1A inhibits proliferation, migration, and invasion of cervical cancer cells. JMJD1A induced transcription of c-Myc, which is essential for cervical cancer growth and progression. Clinical data showed that JMJD1A expression correlated with lymph node metastasis (P=0.031) and FIGO stage (P=0.007). Increased c-Myc levels were associated with tumor differentiation (P=0.007) and FIGO stage (P<0.001). JMJD1A protein levels correlated with c-Myc expression (P<0.001), and high co-expression of the two proteins correlated with a poor prognosis. Survival analysis showed that JMJD1A and c-Myc levels are independent prognostic factors for cervical cancer patients. These results suggest that JMJD1A is a promising therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Jue Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, P.R. China
| | - Ming Zhu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Xue Xia
- Department of Orthopaedics, The Second Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, P.R. China
| | - Yuliang Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, P.R. China
| | - Qunfeng Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, P.R. China
| | - Xiaoxu Wang
- Department of Orthopaedics, The Second Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, P.R. China
| |
Collapse
|
21
|
Histone demethylase JMJD2C: epigenetic regulators in tumors. Oncotarget 2017; 8:91723-91733. [PMID: 29207681 PMCID: PMC5710961 DOI: 10.18632/oncotarget.19176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
Histone methylation is one of the major epigenetic modifications, and various histone methylases and demethylases participate in the epigenetic regulating. JMJD2C has been recently identified as one of the histone lysine demethylases. As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes. JMJD2C was firstly found to involve in embryonic development and stem cell regulation. Afterwards, aberrant status of JMJD2C histone methylation was observed during the formation and development of various tumors, and it has been reported to play crucial roles in the progression of breast cancer, prostate carcinomas, osteosarcoma, blood neoplasms and so on, indicating that JMJD2C represents a promising anti-cancer target. In this review, we will focus on the research progress and prospect of JMJD2C in tumors, and provide abundant evidence for the functional application and therapeutic potential of targeting JMJD2C in tumors.
Collapse
|
22
|
Zou ZK, Huang YQ, Zou Y, Zheng XK, Ma XD. Silencing of LSD1 gene modulates histone methylation and acetylation and induces the apoptosis of JeKo-1 and MOLT-4 cells. Int J Mol Med 2017. [PMID: 28627608 PMCID: PMC5505009 DOI: 10.3892/ijmm.2017.3032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) has been identified and biochemically characterized in epigenetics; however, the pathological roles of its dysfunction in mantle cell lymphoma (MCL) and T-cell acute lymphoblastic leukemia remain to be elucidated. In this study, we evaluated LSD1, and histone H3 lysine 4 (H3K4)me1 and H3K4me2 expression in patients with MCL and silenced LSD1 in JeKo‑1 and MOLT‑4 cells, in order to define its role in JeKo‑1 and MOLT‑4 cell proliferation and apoptosis. We retrospectively analyzed the protein expression of LSD1, and mono- and dimethylated H3K4 (H3K4me1 and H3K4me2), and cyclin D1 and Ki67 in 30 cases of MCL by immunohistochemistry. The correlation of LSD1, H3K4me1 and H3K4me2 with Ki67 was determined by statistical analysis. LSD1 was silenced by small interfering RNA (siRNA). Cell apoptosis and cell proliferation were detected by flow cytometry and 3-(4,5-dimethylthiazol‑2-yl)‑2,5-diphenyltetrazolium bromide (MTT) assay. The protein expression levels of LSD1, histone methylated H3K4, histone acetylated H3, cyclin D1, apoptotic proteins, p15 and DNA methyltransferase 1 (DNMT1) were examined by western blot analysis. We demonstrated that LSD1 was upregulated, and that H3K4me1 and H3K4me2 were downregulated in the cases with MCL, compared to those with proliferative lymphadenitis (p<0.05). LSD1 positively correlated with Ki67 in MCL [Cohen's kappa (κ)=0.667, p<0.01]. There was no significant correlation between H3K4me1 and H3K4me2, and Ki67 (κ=-0.182, p>0.05, κ=-0.200, p>0.05). The silencing of LSD1 decreased the levels of the apoptosis-related proteins, Bcl-2, pro-caspase-3 and C-myc, and decreased those of DNMT1 and increased p15, and resulted in the loss of cell viability and the induction apoptosis. The silencing of LSD1 increased the expression of H3K4me1 and H3K4me2, and histone acetylated H3 in the JeKo‑1 and MOLT‑4 cells. LSD1 siRNA also decreased cyclin D1 expression in the JeKo‑1 cells. On the whole, our findings demonstrate that the overexpression of LSD1 may be associated with the pathogenesis in MCL. We demonstrated that the silencing of LSD1 is capable of removing the mono- and dimethyl groups from H3K4, and upregulating the histone acetylation of H3 in JeKo‑1 and MOLT‑4 cells. The silencing of LSD1 inhibited cell growth and induced cell apoptosis. Of note, in JeKo‑1 cells, the silencing of LSD1 decreased cyclin D1 expression, which is one of the genes that contribute to the pathogenesis of MCL. LSD1 may thus be a possible therapeutic target in MCL and acute lymphoblastic leukemia MOLT‑4 cells.
Collapse
Affiliation(s)
- Zhong-Kai Zou
- Department of Pathology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yi-Qun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yong Zou
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Xu-Ke Zheng
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Xu-Dong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
23
|
Epigenetic Signature: A New Player as Predictor of Clinically Significant Prostate Cancer (PCa) in Patients on Active Surveillance (AS). Int J Mol Sci 2017; 18:ijms18061146. [PMID: 28555004 PMCID: PMC5485970 DOI: 10.3390/ijms18061146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Widespread prostate-specific antigen (PSA) testing notably increased the number of prostate cancer (PCa) diagnoses. However, about 30% of these patients have low-risk tumors that are not lethal and remain asymptomatic during their lifetime. Overtreatment of such patients may reduce quality of life and increase healthcare costs. Active surveillance (AS) has become an accepted alternative to immediate treatment in selected men with low-risk PCa. Despite much progress in recent years toward identifying the best candidates for AS in recent years, the greatest risk remains the possibility of misclassification of the cancer or missing a high-risk cancer. This is particularly worrisome in men with a life expectancy of greater than 10–15 years. The Prostate Cancer Research International Active Surveillance (PRIAS) study showed that, in addition to age and PSA at diagnosis, both PSA density (PSA-D) and the number of positive cores at diagnosis (two compared with one) are the strongest predictors for reclassification biopsy or switching to deferred treatment. However, there is still no consensus upon guidelines for placing patients on AS. Each institution has its own protocol for AS that is based on PRIAS criteria. Many different variables have been proposed as tools to enrol patients in AS: PSA-D, the percentage of freePSA, and the extent of cancer on biopsy (number of positive cores or percentage of core involvement). More recently, the Prostate Health Index (PHI), the 4 Kallikrein (4K) score, and other patient factors, such as age, race, and family history, have been investigated as tools able to predict clinically significant PCa. Recently, some reports suggested that epigenetic mapping differs significantly between cancer patients and healthy subjects. These findings indicated as future prospect the use of epigenetic markers to identify PCa patients with low-grade disease, who are likely candidates for AS. This review explores literature data about the potential of epigenetic markers as predictors of clinically significant disease.
Collapse
|
24
|
Li Y, Yang W, Wu B, Liu Y, Li D, Guo Y, Fu H, Li Y. KDM3A promotes inhibitory cytokines secretion by participating in TLR4 regulation of Foxp3 transcription in lung adenocarcinoma cells. Oncol Lett 2017; 13:3529-3537. [PMID: 28521455 PMCID: PMC5431314 DOI: 10.3892/ol.2017.5949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/20/2016] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is a pattern recognition receptors, a member of the Toll-like receptor family and it serves a role in innate and acquired immunity. It has previously been reported that TLR4 was overexpressed in a variety of tumor tissues and cells, including colorectal cancer, gastric cancer and ovarian cancer. In the tumor microenvironment, the TLR4 signaling pathway may be activated in order to upregulate forkhead box P3 (Foxp3) expression in regulatory T cells (Tregs), and thus enhance the immunosuppressive function of Tregs. Also, inflammatory cytokine release would be increased, which promotes tumor immune system evasion. Additionally, it has previously been reported that TLR4 activation may induce histone methylation changes at multiple sites. However, the effects of the alterations to histone methylation in the process of TLR4-associated tumor immune system evasion are not currently known. Histone methylation serves a critical role in regulating gene expression. Abnormal histone methylation is closely associated with tumor development and progression. In order to investigate the epigenetic mechanisms underlying Foxp3 regulation by TLR4, the human lung adenocarcinoma cell line A549 was used. In the present study, it was revealed that the expression level of H3K9me1/2 histone lysine demethylase 3A (KDM3A) was significantly increased following TLR 4 activation in the lung adenocarcinoma A549 cell line, whereas silencing of KDM3A expression led to significantly reduced Foxp3 expression under TLR4 regulation. This result suggests that KDM3A participates in TLR4 regulation of Foxp3 transcription. Additional analysis revealed that during nuclear transport of Foxp3, KDM3A may directly bind to the Foxp3 promoter and activate its transcription. This results in increased secretion of Foxp3-downstream inhibitory cytokines, including transforming growth factor-β1 (TGF-β1), interleukin 35 (IL-35) and heme oxygenase 1 (HO-1), which have immunosuppressive effects and ultimately facilitate the immune escape of lung cancer cells. From the results, the present study concluded that TLR4 activation promoted the expression of H3K9me1/2 demethylase KDM3A. KDM3A bound directly to the Foxp3 promoter and promoted Foxp3 transcription, thereby inducing the secretion of Foxp3-associated downstream inhibitory cytokines (TGF-β1, IL-35, and HO-1), ultimately facilitating the immune system evasion of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yinan Li
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Pathology, Qingdao Center Medical Group, Qingdao, Shandong 266000, P.R. China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Wu
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaqing Liu
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dongbei Li
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yantong Guo
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haiying Fu
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yi Li
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
25
|
Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α. Oncogene 2017; 36:3868-3877. [DOI: 10.1038/onc.2017.13] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
|
26
|
Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics 2016; 8:98. [PMID: 27651838 PMCID: PMC5025578 DOI: 10.1186/s13148-016-0264-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.
Collapse
Affiliation(s)
- Inês Graça
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Eva Pereira-Silva
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Simon J Crabb
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
27
|
Downregulation of KDM4A Suppresses the Survival of Glioma Cells by Promoting Autophagy. J Mol Neurosci 2016; 60:137-44. [PMID: 27514525 DOI: 10.1007/s12031-016-0796-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
Glioma is the most common type of primary intracranial tumor and has a poor prognosis. It has been reported that lysine-specific demethylase 4A (KDM4A) can promote tumor progression; however, its role in human glioma remains unclear. Western blot and qRT-PCR analyses showed that KDM4A was highly expressed in U87MG and T98G cells. 48 h after transfection with siKDM4A, the protein level of KDM4A was significantly downregulated. The silenced expression of KDM4A in T98G or U87MG cells inhibited cell viability and invasion, and aggravated cell apoptosis. We found that the siKDM4A led to a significant increase in acidic vesicular organelles (AVOs) and upregulated the expression of autophagy-related proteins, including LC3B-phosphatidylethanolamine conjugate, a cytosolic form of LC3B (LC3B-II/LC3B-I) and Beclin 1 in T98G and U87MG cells. Further studies demonstrated that after pretreatment with 3-MA (3 mmol/L) for 48 h, siKDM4A-transfected cells showed a prominent decrease in LC3B-II/LC3B-I and Beclin 1, accompanied by increased viability and invasion and decreased apoptosis. Our results suggest that the inhibition of KDM4A expression might efficiently suppress glioma cell survival by promoting autophagy, providing a promising agent for treating malignant gliomas.
Collapse
|
28
|
Li Y, Tian X, Sui CG, Jiang YH, Liu YP, Meng FD. Interference of lysine-specific demethylase 1 inhibits cellular invasion and proliferation in vivo in gastric cancer MKN-28 cells. Biomed Pharmacother 2016; 82:498-508. [PMID: 27470390 DOI: 10.1016/j.biopha.2016.04.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Lysine-specific demethylase 1(LSD1), the first identified histone demethylase, plays an important role in the epigenetic regulation of gene activation and repression. Up-regulated LSD1expression has been reported in several malignant tumors.Our aim, therefore, was to better understand the mechanisms underlying the upregulation of LSD1 in gastric cancer. METHODS We used lentiviral shRNA to knockdown LSD1 in the gastric cancer MKN-28 cell line. Cell proliferation was measured by MTT assay while cell apoptosis was assessed by Annexin V-FITC/PI double staining flow cytometry. The invasive potential of gastric cancer cells was determined by matrigel invasion assay. Protein expression was detected by Western blot. In vivo, the effect of knocking down LSD1 on tumor growth and protein expression in gastric cancer cells in nude mice was investigated. RESULTS LSD1 knockdown in MKN-28 cell lines resulted in increasing the activity of cisplatin in vitro and the inhibition of cancer cell proliferation and invasion, and induced cell apoptosis. The expression of TGF-β1, VEGF, Bcl-2, β-catenin, p-ERK and p-Smad 2/3 proteins was inhibited in LSD1 knockdown cells. Moreover, in an in vivo model of gastric cancer, LSD1 knockdown suppressed tumor growth and protein expression. CONCLUSION LSD1 knockdown affected the fuction of gastric cancer MKN-28 cell line. LSD1 may be a latent target in the diagnosis and therapy of gastric cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, China
| | - Xin Tian
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, China
| | - Cheng-Guang Sui
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, China
| | - You-Hong Jiang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, China
| | - Yun-Peng Liu
- Department of Oncology, The First Affiliated Hospital of China Medical University, China
| | - Fan-Dong Meng
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, China.
| |
Collapse
|
29
|
Hojati Z, Nouri Emamzadeh F, Dehghanian F. Association between polymorphisms of exon 12 and exon 24 of JHDM2A gene and male infertility. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.6.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
30
|
JMJD1A promotes tumorigenesis and forms a feedback loop with EZH2/let-7c in NSCLC cells. Tumour Biol 2016; 37:11237-47. [PMID: 26945572 DOI: 10.1007/s13277-016-4999-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/25/2016] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) accounts for 80 to 85 % of all lung cancer. Although the standard treatment regimen has been established, long-term survival for NSCLC patients is still generally poor. The histone demethylase Jumonji domain containing 1A (JMJD1A) has been proposed as an oncogene in several types of human cancer, but its clinical significance and functional roles in NSCLC remain largely unclear. In the present study, JMJD1A was frequently upregulated in NSCLC compared with para-carcinoma tissues. JMJD1A knockdown significantly inhibited NSCLC cell growth, migration, and invasion in vitro and tumorigenesis in vivo. Further experiments demonstrated that JMJD1A knockdown could decrease the expression of EZH2, which has been shown to play a crucial role in the carcinogenesis of NSCLC and, in turn, increase the expression of anti-tumor microRNA let-7c. Also, let-7c directly targeted the 3'-untranslated regions of JMJD1A and EZH2. Taken together, JMJD1A could promote NSCLC tumorigenesis. JMJD1A/EZH2/let-7c constituted a feedback loop and might represent a promising therapeutic target for NSCLC.
Collapse
|
31
|
Park SY, Park JW, Chun YS. Jumonji histone demethylases as emerging therapeutic targets. Pharmacol Res 2016; 105:146-51. [PMID: 26816087 DOI: 10.1016/j.phrs.2016.01.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/28/2022]
Abstract
The methylation status of lysine residues in histones determines the transcription of surrounding genes by modulating the chromatin architecture. Jumonji domain-containing histone-lysine demethylases (Jmj-KDMs) remove the methyl moiety from lysine residues in histones by utilizing Fe(2+) and α-ketoglutarate. Since genetic alterations in Jmj-KDMs occur in various human cancers, the roles of Jmj-KDMs in cancer development and progression have been investigated, but still controversial. The KDM7 subfamily, which belongs to the Jmj-KDM family, is an emerging class of transcriptional coactivators because its members erase the repressive marks H3K9me2/1, H3K27me2/1, and H4K20 me1. Recently, KDM7C (alternatively named PHF2) was discovered as a new KDM7 member and identified to play a tumor-suppressive role through the reinforcement of p53-driven growth arrest and apoptosis. In this article, we generally reviewed the roles of Jmj-KDMs in human cancers and more discussed the molecular functions and the clinical significances of KDM7C.
Collapse
Affiliation(s)
- Sung Yeon Park
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jong-Wan Park
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Yang-Sook Chun
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
32
|
Liu H, Liu L, Holowatyj A, Jiang Y, Yang ZQ. Integrated genomic and functional analyses of histone demethylases identify oncogenic KDM2A isoform in breast cancer. Mol Carcinog 2015. [PMID: 26207617 DOI: 10.1002/mc.22341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone lysine demethylases (KDMs) comprise a large class of enzymes that catalyze site-specific demethylation of lysine residues on histones and other proteins. They play critical roles in controlling transcription, chromatin architecture, and cellular differentiation. However, the genomic landscape and clinical significance of KDMs in breast cancer remain poorly characterized. Here, we conducted a meta-analysis of 24 KDMs in breast cancer and identified associations among recurrent copy number alterations, gene expression, breast cancer subtypes, and clinical outcome. Two KDMs, KDM2A and KDM5B, had the highest frequency of genetic amplification and overexpression. Furthermore, among the 24 KDM genes, KDM2A had the highest correlation between copy number and mRNA expression, and high mRNA levels of KDM2A were significantly associated with shorter survival of breast cancer patients. KDM2A has two isoforms: the long isoform is comprised of a JmjC domain, CXXC-zinc finger, PHD zinc finger, F-box, and the AMN1 protein domain; whereas the short isoform of KDM2A lacks the N-terminal JmjC domain but contains all other motifs. Detailed characterization of KDM2A in breast cancer revealed that the short isoform of KDM2A is more abundant than the long isoform at DNA, mRNA, and protein levels in a subset of breast cancers. Furthermore, our data indicate that the short isoform of KDM2A has oncogenic potential and functions as an oncogenic isoform in a subset of breast cancers. Taken together, our findings suggest that amplification and overexpression of the KDM2A short isoform is critical in breast cancer progression.
Collapse
Affiliation(s)
- Hui Liu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medicine, Jilin University, Jilin, China.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Lanxin Liu
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Andreana Holowatyj
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yuanyuan Jiang
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Zeng-Quan Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
33
|
Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 2015; 104:213-46. [PMID: 25787087 PMCID: PMC4747437 DOI: 10.1002/bip.22643] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1-selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance.
Collapse
|
34
|
Chen C, Ge J, Lu Q, Ping G, Yang C, Fang X. Expression of Lysine-specific demethylase 1 in human epithelial ovarian cancer. J Ovarian Res 2015; 8:28. [PMID: 25956476 PMCID: PMC4429353 DOI: 10.1186/s13048-015-0155-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/29/2015] [Indexed: 01/28/2023] Open
Abstract
Background Lysine-specific demethylase 1(LSD1) is implicated in the tumorigenesis and progression in various cancers. However, the expression of LSD1 in epithelial ovarian cancer and its clinical significance has not been examined in detail. Methods Immunohistochemical was used to detect the expression of LSD1 in normal ovarian epithelial tissues, cystadenoma, borderline cystadenoma, and cystadenocarcinoma. Next, the correlations between expression of LSD1 and clinicopathological features was assessed in 96 species of serous cystadenocarcinoma and 36 species of mucinous cystadenocarcinoma. Results Immunohistochemical results showed that the expression of LSD1 was gradually increased from benign cystadenoma and borderline cystadenoma to cystadenocarcinoma. The positive ratio of LSD1 expression was 50% in normal ovarian epithelial tissues, 72% in serous cystadenoma, 73% in mucinous cystadenoma, 82% in borderline serous cystadenoma, 83% in borderline mucinous cystadenoma, 94% in serous cystadenocarcinoma and 92% in mucinous cystadenocarcinoma, respectively. LSD1 expression levels were associated with International Federation of Gynecology and Obstetrics stage and lymphatic metastasis in both serous and mucinous cystadenocarcinoma samples. Kaplan-Meier curves suggested that overall survival time of patients with high LSD1 expression was significantly shorter than that of patients with low LSD1 expression. Multivariate Cox proportional hazard regression indicated that higher LSD1 expression was a significant independent predictor of poor survival of EOC patients (P = 0.016). Conclusions These results suggest that LSD1 may be involved in carcinogenesis and progression with promising therapeutic potential for epithelial ovarian cancer.
Collapse
Affiliation(s)
- Cong Chen
- Department of Gynecology of Traditional Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Jing Ge
- Department of Endocrinology, Jiangsu Provincial Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, 210029, China.
| | - Qibin Lu
- Department of Gynecology of Traditional Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Guoqiang Ping
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Chunqing Yang
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xuefeng Fang
- Department of Medical Oncology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
35
|
Sun LL, Wu JY, Wu ZY, Shen JH, Xu XE, Chen B, Wang SH, Li EM, Xu LY. A three-gene signature and clinical outcome in esophageal squamous cell carcinoma. Int J Cancer 2015; 136:E569-77. [PMID: 25220908 PMCID: PMC4477912 DOI: 10.1002/ijc.29211] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 02/05/2023]
Abstract
It is increasingly apparent that cancer development depends not only on genetic alterations, but also on epigenetic changes involving histone modifications. GASC1, member of the histone demethylases affecting heterochromatin formation and transcriptional repression, has been found to be dysregulation in many types of cancers including breast cancer, prostate cancer, metastatic lung sarcomatoid carcinoma, and leukemia. In this study, we examined the expression of GASC1 and certain GASC1-targeted genes (KLF4, MYC, SOX2, PPARG, MDM2, and NANOG) and identified a three-gene prognostic signature (PPARG, MDM2, and NANOG), using risk scores based on immunohistochemical analyses of 149 tumor specimens from patients with esophageal squamous cell carcinoma (ESCC). The presence of a high-risk three-gene signature in the ESCC tumors was significantly associated with decreased overall survival (OS) of the patients. We validated the predictive value of the three-gene signature in a second independent cohort of 101 patients with ESCC in order to determine whether it had predictive value. The results were similar to those in 149 patients. According to multivariate Cox proportional hazards analyses, the predictive model of a three-gene signature was an independent predictor for OS (p = 0.005 in cohort 1, p = 0.025 in cohort 2). In addition, ROC analysis indicated that the predictive ability of the three-gene model was more robust than that of a single biomarker. Therefore, our three-gene signature is closely associated with OS among patients with ESCC and may serve as a predictor for the poor prognosis of ESCC patients.
Collapse
Affiliation(s)
- Ling-Ling Sun
- Institute of Oncologic Pathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, Guangdong, China
- Department of Pathology, Shaoyang Central Hospital, Affiliated Shaoyang Hospital of University of South ChinaShaoyang, Hunan, China
| | - Jian-Yi Wu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, Guangdong, China
| | - Zhi-Yong Wu
- Department of Oncology Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou, Guangdong, China
| | - Jin-Hui Shen
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou, Guangdong, China
| | - Xiu-E Xu
- Institute of Oncologic Pathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, Guangdong, China
| | - Bo Chen
- Institute of Oncologic Pathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, Guangdong, China
| | - Shao-Hong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou, Guangdong, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, Guangdong, China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, Guangdong, China
| |
Collapse
|
36
|
Leurs U, Lohse B, Rand KD, Ming S, Riise ES, Cole PA, Kristensen JL, Clausen RP. Substrate- and cofactor-independent inhibition of histone demethylase KDM4C. ACS Chem Biol 2014; 9:2131-8. [PMID: 25014588 PMCID: PMC4168794 DOI: 10.1021/cb500374f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Inhibition of histone demethylases
has within recent years advanced
into a new strategy for treating cancer and other diseases. Targeting
specific histone demethylases can be challenging, as the active sites
of KDM1A-B and KDM4A-D histone demethylases are highly conserved.
Most inhibitors developed up-to-date target either the cofactor- or
substrate-binding sites of these enzymes, resulting in a lack of selectivity
and off-target effects. This study describes the discovery of the
first peptide-based inhibitors of KDM4 histone demethylases that do
not share the histone peptide sequence or inhibit through substrate
competition. Through screening of DNA-encoded peptide libraries against
KDM1 and -4 histone demethylases by phage display, two cyclic peptides
targeting the histone demethylase KDM4C were identified and developed
as inhibitors by amino acid replacement, truncation, and chemical
modifications. Hydrogen/deuterium exchange mass spectrometry revealed
that the peptide-based inhibitors target KDM4C through substrate-independent
interactions located on the surface remote from the active site within
less conserved regions of KDM4C. The sites discovered in this study
provide a new approach of targeting KDM4C through substrate- and cofactor-independent
interactions and may be further explored to develop potent selective
inhibitors and biological probes for the KDM4 family.
Collapse
Affiliation(s)
| | | | | | - Shonoi Ming
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, 316 Hunterian Building, Baltimore, Maryland 21205, United States
| | | | - Philip A. Cole
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, 316 Hunterian Building, Baltimore, Maryland 21205, United States
| | | | | |
Collapse
|
37
|
Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, Oppermann U. The roles of Jumonji-type oxygenases in human disease. Epigenomics 2014; 6:89-120. [PMID: 24579949 PMCID: PMC4233403 DOI: 10.2217/epi.13.79] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The iron- and 2-oxoglutarate-dependent oxygenases constitute a phylogenetically conserved class of enzymes that catalyze hydroxylation reactions in humans by acting on various types of substrates, including metabolic intermediates, amino acid residues in different proteins and various types of nucleic acids. The discovery of jumonji (Jmj), the founding member of a class of Jmj-type chromatin modifying enzymes and transcriptional regulators, has culminated in the discovery of several branches of histone lysine demethylases, with essential functions in regulating the epigenetic landscape of the chromatin environment. This work has now been considerably expanded into other aspects of epigenetic biology and includes the discovery of enzymatic steps required for methyl-cytosine demethylation as well as modification of RNA and ribosomal proteins. This overview aims to summarize the current knowledge on the human Jmj-type enzymes and their involvement in human pathological processes, including development, cancer, inflammation and metabolic diseases.
Collapse
Affiliation(s)
- Catrine Johansson
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Anthony Tumber
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - KaHing Che
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
| | - Peter Cain
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
| | - Radoslaw Nowak
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
- Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK
| | - Carina Gileadi
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
- Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK
| |
Collapse
|
38
|
Chen QW, Zhu XY, Li YY, Meng ZQ. Epigenetic regulation and cancer (review). Oncol Rep 2013; 31:523-32. [PMID: 24337819 DOI: 10.3892/or.2013.2913] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/04/2013] [Indexed: 11/06/2022] Open
Abstract
'Epigenetics' is defined as the inheritable changes in gene expression with no alterations in DNA sequences. Epigenetics is a rapidly expanding field, and the study of epigenetic regulation in cancer is emerging. Disruption of the epigenome is a fundamental mechanism in cancer, and several epigenetic drugs have been proven to prolong survival and to be less toxic than conventional chemotherapy. Promising results from combination clinical trials with DNA methylation inhibitors and histone deacetylase inhibitors have recently been reported, and data are emerging that describe molecular determinants of clinical responses. Despite significant advances, challenges remain, including a lack of predictive markers, unclear mechanisms of response and resistance, and rare responses in solid tumors. Preclinical studies are ongoing with novel classes of agents that target various components of the epigenetic machinery. In the present review, examples of studies that demonstrate the role of epigenetic regulation in human cancers with the focus on histone modifications and DNA methylation, and the recent clinical and translational data in the epigenetics field that have potential in cancer therapy are discussed.
Collapse
Affiliation(s)
- Q W Chen
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - X Y Zhu
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Y Y Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Z Q Meng
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
39
|
Nicholson TB, Singh AK, Su H, Hevi S, Wang J, Bajko J, Li M, Valdez R, Goetschkes M, Capodieci P, Loureiro J, Cheng X, Li E, Kinzel B, Labow M, Chen T. A hypomorphic lsd1 allele results in heart development defects in mice. PLoS One 2013; 8:e60913. [PMID: 23637775 PMCID: PMC3634827 DOI: 10.1371/journal.pone.0060913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Lysine-specific demethylase 1 (Lsd1/Aof2/Kdm1a), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. Lsd1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that Lsd1-interacting proteins regulate the activity and specificity of Lsd1, the significance and roles of such interactions in developmental processes remain largely unknown. Here we describe a hypomorphic Lsd1 allele that contains two point mutations in the tower domain, resulting in a protein with reduced interaction with known binding partners and decreased enzymatic activity. Mice homozygous for this allele die perinatally due to heart defects, with the majority of animals suffering from ventricular septal defects. Molecular analyses revealed hyperphosphorylation of E-cadherin in the hearts of mutant animals. These results identify a previously unknown role for Lsd1 in heart development, perhaps partly through the control of E-cadherin phosphorylation.
Collapse
MESH Headings
- Alleles
- Animals
- Cadherins/metabolism
- Disease Models, Animal
- Enzyme Activation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Heart Septal Defects, Ventricular/genetics
- Heart Septal Defects, Ventricular/metabolism
- Heart Septal Defects, Ventricular/pathology
- Histone Demethylases
- Homozygote
- Mice
- Mice, Knockout
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Phosphorylation
- Point Mutation
- Pregnancy
- Protein Binding
Collapse
Affiliation(s)
- Thomas B. Nicholson
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Anup K. Singh
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Hui Su
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Sarah Hevi
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jing Wang
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jeff Bajko
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Mei Li
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Reginald Valdez
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Margaret Goetschkes
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Paola Capodieci
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Joseph Loureiro
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University, Atlanta, Georgia, United States of America
| | - En Li
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Bernd Kinzel
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mark Labow
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Taiping Chen
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Sun LL, Holowatyj A, Xu XE, Wu JY, Wu ZY, Shen JH, Wang SH, Li EM, Yang ZQ, Xu LY. Histone demethylase GASC1, a potential prognostic and predictive marker in esophageal squamous cell carcinoma. Am J Cancer Res 2013; 3:509-17. [PMID: 24224128 PMCID: PMC3816970 DOI: pmid/24224128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 10/05/2013] [Indexed: 02/05/2023] Open
Abstract
Gene amplified in squamous cell carcinoma 1 (GASC1) is a member of Jumonji C-domain containing histone demethylases that play an essential role in affecting chromatin architecture and gene expression. The purpose of this study was to determine the expression features and the clinical significance of GASC1 in esophageal squamous cell carcinoma (ESCC). GASC1 expression was detected on tissue microarrays of ESCC samples in 185 cases using immunohistochemical staining. Strong nuclear staining for GASC1 was observed in a subset of ESCC samples. The nuclear expression of GASC1 was significantly associated with lymph node metastasis (P=0.030) and tumor-node metastasis stages (P=0.013). Kaplan-Meier survival analysis showed a tendency that high expression of GASC1 in the nucleus was associated with poor survival of ESCC patients, with a 5-year survival rate of 26.5%, as compared to 43.7% for patients with GASC1-negative/low expression. Furthermore, multivariate analysis revealed that high expression of GASC1 likely acts as a predictive factor for overall survival of ESCC patients, despite the P-value failing to reach significance (P=0.059). The findings indicate that histone demethylase GASC1 may play an important role in promoting cancer metastasis, and shed new light on the importance of targeting GASC1 to suppress metastatic disease in various tumor types, including ESCC.
Collapse
Affiliation(s)
- Ling-Ling Sun
- Institute of Oncologic Pathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, China
| | - Andreana Holowatyj
- Department of Oncology, Karmanos Cancer Institute, Wayne State UniversityDetroit, USA
| | - Xiu-E Xu
- Institute of Oncologic Pathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, China
| | - Jian-Yi Wu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, China
| | - Zhi-Yong Wu
- Department of Oncology Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou, China
| | - Jin-Hui Shen
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou, China
| | - Shao-Hong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen UniversityShantou, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, China
| | - Zeng-Quan Yang
- Department of Oncology, Karmanos Cancer Institute, Wayne State UniversityDetroit, USA
| | - Li-Yan Xu
- Institute of Oncologic Pathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical CollegeShantou, China
| |
Collapse
|
41
|
Zhao ZK, Yu HF, Wang DR, Dong P, Chen L, Wu WG, Ding WJ, Liu YB. Overexpression of lysine specific demethylase 1 predicts worse prognosis in primary hepatocellular carcinoma patients. World J Gastroenterol 2012; 18:6651-6. [PMID: 23236241 PMCID: PMC3516205 DOI: 10.3748/wjg.v18.i45.6651] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/10/2012] [Accepted: 08/25/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinicopathological features and prognostic value of lysine specific demethylase 1 (LSD1) in hepatocellular carcinoma (HCC).
METHODS: We examined LSD1 expression in 60 paired liver cancer tissues and adjacent noncancerous tissues by quantitative real time polymerase chain reaction (qRT-PCR) and Western blotting. In addition, we analyzed LSD1 expression in 198 HCC samples by immunohistochemistry. The relationship between LSD1 expression, clinicopathological features and patient survival was investigated.
RESULTS: Immunohistochemistry, Western blotting, and qRT-PCR consistently confirmed LSD1 overexpression in HCC tissues compared to adjacent non-neoplastic tissues (P < 0.01). Additionally, immunostaining showed more LSD1-positive cells in the higher tumor stage (T3-4) and tumor grade (G3) than in the lower tumor stage (T1-2, P < 0.001) and tumor grade (G1-2, P < 0.001), respectively. Moreover, HCC patients with high LSD1 expression had significantly lower 5-year overall survival rates (P < 0.001) and lower 5-year disease-free survival rates (P < 0.001), respectively. A Cox proportional hazards model further demonstrated that LSD1 over-expression was an independent predictor of poor prognosis for both 5-year disease-free survival [hazards ratio (HR) = 1.426, 95%CI: 0.672-2.146, P < 0.001] and 5-year overall survival (HR = 2.456, 95%CI: 1.234-3.932, P < 0.001) in HCC.
CONCLUSION: Our data suggest for the first time that the overexpression of LSD1 protein in HCC tissues indicates tumor progression and predicts poor prognosis.
Collapse
|
42
|
Involvement of histone demethylase LSD1 in short-time-scale gene expression changes during cell cycle progression in embryonic stem cells. Mol Cell Biol 2012; 32:4861-76. [PMID: 23028048 DOI: 10.1128/mcb.00816-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The histone demethylase LSD1, a component of the CoREST (corepressor for element 1-silencing transcription factor) corepressor complex, plays an important role in the downregulation of gene expression during development. However, the activities of LSD1 in mediating short-time-scale gene expression changes have not been well understood. To reveal the mechanisms underlying these two distinct functions of LSD1, we performed genome-wide mapping and cellular localization studies of LSD1 and its dimethylated histone 3 lysine 4 (substrate H3K4me2) in mouse embryonic stem cells (ES cells). Our results showed an extensive overlap between the LSD1 and H3K4me2 genomic regions and a correlation between the genomic levels of LSD1/H3K4me2 and gene expression, including many highly expressed ES cell genes. LSD1 is recruited to the chromatin of cells in the G(1)/S/G(2) phases and is displaced from the chromatin of M-phase cells, suggesting that LSD1 or H3K4me2 alternatively occupies LSD1 genomic regions during cell cycle progression. LSD1 knockdown by RNA interference or its displacement from the chromatin by antineoplastic agents caused an increase in the levels of a subset of LSD1 target genes. Taken together, these results suggest that cell cycle-dependent association and dissociation of LSD1 with chromatin mediates short-time-scale gene expression changes during embryonic stem cell cycle progression.
Collapse
|
43
|
Curtis BJ, Zraly CB, Dingwall AK. Drosophila LSD1-CoREST demethylase complex regulates DPP/TGFβ signaling during wing development. Genesis 2012; 51:16-31. [PMID: 22965777 DOI: 10.1002/dvg.22346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/27/2012] [Accepted: 08/30/2012] [Indexed: 12/30/2022]
Abstract
The choice and timing of specific developmental pathways in organogenesis are determined by tissue-specific temporal and spatial cues that are acted upon to impart unique cellular and compartmental identities. A consequence of cellular signaling is the rapid transcriptional reprogramming of a wide variety of target genes. To overcome intrinsic epigenetic chromatin barriers to transcription modulation, histone modifying and remodeling complexes are employed. The deposition or erasure of specific covalent histone modifications, including acetylation, methylation, and ubiquitination are essential features of gene activation and repression. We have found that the activity of a specific class of histone demethylation enzymes is required for the specification of vein cell fates during Drosophila wing development. Genetic tests revealed that the Drosophila LSD1-CoREST complex is required for proper cell specification through regulation of the DPP/TGFβ pathway. An important finding from this analysis is that LSD1-CoREST functions through control of rhomboid expression in an EGFR-independent pathway.
Collapse
Affiliation(s)
- Brenda J Curtis
- Program in Molecular and Cellular Biochemistry, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois, USA
| | | | | |
Collapse
|
44
|
Zhao ZK, Dong P, Gu J, Chen L, Zhuang M, Lu WJ, Wang DR, Liu YB. Overexpression of LSD1 in hepatocellular carcinoma: a latent target for the diagnosis and therapy of hepatoma. Tumour Biol 2012; 34:173-80. [PMID: 23015317 DOI: 10.1007/s13277-012-0525-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/13/2012] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to investigate the expression of LSD1 in human hepatocellular carcinoma (HCC) cell lines and HCC samples. In this study, we examined LSD1 expression in 60 paired liver cancer tissues and adjacent noncancerous tissues by Western blot. In addition, we analyzed LSD1 expression in 198 HCC samples by immunohistochemistry. The relationship between LSD1 expression and clinicopathological features was investigated. The HCC cell line SMMC-7721 was transfected with LSD1 siRNA expressing plasmids. We subsequently examined in vitro cell growth using the MTT assay and anchorage-independent growth through a soft-agar colony-formation assay. In addition, the expression levels of Bcl-2 and c-Myc were also examined. Immunohistochemistry and Western blotting consistently confirmed LSD1 overexpression in HCC tissues compared with adjacent non-neoplastic tissues (P < 0.01). Additionally, immunostaining showed more LSD1-positive cells in the higher tumor stage (T3-4) and tumor grade (G3) than in the lower tumor stage (T1-2, P < 0.001) and tumor grade (G1-2, P < 0.001). Knockdown of LSD1 expression in HCC cells led to decreased cell proliferation. The expression of Bcl-2 and c-Myc were down-regulated after transfection of LSD1 siRNA into HCC cell line SMMC-7721. In conclusion, because LSD1 was overexpressed in HCC and has an important role in the development of HCC, LSD1 could be a latent target in the diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Ze-Kun Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University, No. 1165, Kongjiang Rd, Shanghai, 200092, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Crea F, Sun L, Mai A, Chiang YT, Farrar WL, Danesi R, Helgason CD. The emerging role of histone lysine demethylases in prostate cancer. Mol Cancer 2012; 11:52. [PMID: 22867098 PMCID: PMC3441810 DOI: 10.1186/1476-4598-11-52] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/17/2012] [Indexed: 01/22/2023] Open
Abstract
Early prostate cancer (PCa) is generally treatable and associated with good prognosis. After a variable time, PCa evolves into a highly metastatic and treatment-refractory disease: castration-resistant PCa (CRPC). Currently, few prognostic factors are available to predict the emergence of CRPC, and no curative option is available. Epigenetic gene regulation has been shown to trigger PCa metastasis and androgen-independence. Most epigenetic studies have focused on DNA and histone methyltransferases. While DNA methylation leads to gene silencing, histone methylation can trigger gene activation or inactivation, depending on the target amino acid residues and the extent of methylation (me1, me2, or me3). Interestingly, some histone modifiers are essential for PCa tumor-initiating cell (TIC) self-renewal. TICs are considered the seeds responsible for metastatic spreading and androgen-independence. Histone Lysine Demethylases (KDMs) are a novel class of epigenetic enzymes which can remove both repressive and activating histone marks. KDMs are currently grouped into 7 major classes, each one targeting a specific methylation site. Since their discovery, KDM expression has been found to be deregulated in several neoplasms. In PCa, KDMs may act as either tumor suppressors or oncogenes, depending on their gene regulatory function. For example, KDM1A and KDM4C are essential for PCa androgen-dependent proliferation, while PHF8 is involved in PCa migration and invasion. Interestingly, the possibility of pharmacologically targeting KDMs has been demonstrated. In the present paper, we summarize the emerging role of KDMs in regulating the metastatic potential and androgen-dependence of PCa. In addition, we speculate on the possible interaction between KDMs and other epigenetic effectors relevant for PCa TICs. Finally, we explore the role of KDMs as novel prognostic factors and therapeutic targets. We believe that studies on histone demethylation may add a novel perspective in our efforts to prevent and cure advanced PCa.
Collapse
Affiliation(s)
- Francesco Crea
- Experimental Therapeutics, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada, V5Z 1L3.
| | | | | | | | | | | | | |
Collapse
|
46
|
Clenbuterol upregulates histone demethylase JHDM2a via the β2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Cell Signal 2012; 24:2297-306. [PMID: 22820505 DOI: 10.1016/j.cellsig.2012.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/20/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND β(2)-Adrenergic receptor (β(2)-AR) signaling activated by the agonist clenbuterol is important in the metabolism of muscle and adipose cells. Additionally, the significant role of histone demethylase JHDM2a in regulating metabolic gene expression was also recently demonstrated in Jhdm2a(-/-) mice. To elucidate the molecular mechanism involved in clenbuterol-induced adipocyte reduction from an epigenetic perspective, this study focused on cAMP-responsive element binding protein (CREB) to determine whether JHDM2a is regulated by the β(2)-AR/cAMP/protein kinase A (PKA) signaling pathway. RESULTS In porcine tissues treated with clenbuterol, JHDM2a expression was upregulated, and in porcine cells, expression of exogenous CREB led to increased JHDM2a expression. In addition, changes in JHDM2a expression were coincident with variations in the phosphorylation of CREB and p-CREB/CBP interaction in porcine and human cells treated with drugs known to modify the β(2)-AR/cAMP/PKA pathway. Finally, binding assays demonstrated that CREB regulated JHDM2a by binding directly to the CRE site nearest to the transcription start site. CONCLUSION Our results reveal that clenbuterol activates the β(2)-AR signaling pathway upstream of JHDM2a and that CREB acts as an intermediate link regulated by cAMP-PKA to induce activity of the JHDM2a promoter. These findings suggest that clenbuterol decreases adipose cell size and increases muscle fiber size in porcine tissues by virtue of JHDM2a-mediated demethylation, which regulates downstream metabolic and related genes.
Collapse
|
47
|
Lv T, Yuan D, Miao X, Lv Y, Zhan P, Shen X, Song Y. Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS One 2012; 7:e35065. [PMID: 22493729 PMCID: PMC3320866 DOI: 10.1371/journal.pone.0035065] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/11/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Lysine specific demethylase 1 (LSD1) has been identified and biochemically characterized in epigenetics, but the pathological roles of its dysfunction in lung cancer remain to be elucidated. The aim of this study was to evaluate the prognostic significance of LSD1 expression in patients with non-small cell lung cancer (NSCLC) and to define its exact role in lung cancer proliferation, migration and invasion. METHODS The protein levels of LSD1 in surgically resected samples from NSCLC patients were detected by immunohistochemistry or Western blotting. The mRNA levels of LSD1 were detected by qRT-PCR. The correlation of LSD1 expression with clinical characteristics and prognosis was determined by statistical analysis. Cell proliferation rate was assessed by MTS assay and immunofluorescence. Cell migration and invasion were detected by scratch test, matrigel assay and transwell invasion assay. RESULTS LSD1 expression was higher in lung cancer tissue more than in normal lung tissue. Our results showed that over-expression of LSD1 protein were associated with shorter overall survival of NSCLC patients. LSD1 was localized mainly to the cancer cell nucleus. Interruption of LSD1 using siRNA or a chemical inhibitor, pargyline, suppressed proliferation, migration and invasion of A549, H460 and 293T cells. Meanwhile, over-expression of LSD1 enhanced cell growth. Finally, LSD1 was shown to regulate epithelial-to-mesenchymal transition in lung cancer cells. CONCLUSIONS Over-expression of LSD1 was associated with poor prognosis in NSCLC, and promoted tumor cell proliferation, migration and invasion. These results suggest that LSD1 is a tumor-promoting factor with promising therapeutic potential for NSCLC.
Collapse
Affiliation(s)
- Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaohui Miao
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yanling Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ping Zhan
- First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Xiaokun Shen
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
48
|
Stratmann A, Haendler B. Histone demethylation and steroid receptor function in cancer. Mol Cell Endocrinol 2012; 348:12-20. [PMID: 21958694 DOI: 10.1016/j.mce.2011.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/05/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
Steroid receptors recruit various cofactors to form multi-protein complexes which locally alter chromatin structure and control DNA accessibility in order to regulate gene transcription. Some of these factors are enzymes that add or remove histone marks in the vicinity of regulatory regions of target genes. Numerous histone modifications added by specific writer enzymes and removed by eraser enzymes have been identified. Histone methylation is a modification with a complex outcome, as it can lead to gene activation or repression, depending on the modified residue and the context. Methylation marks are added by different enzyme families displaying exquisite substrate specificity. Lysine methylation is reversible and two different demethylase families have been identified in humans, the Jumonji C and the lysine-specific demethylase families. A regulatory role of histone demethylases in fine-tuning the function of steroid receptors, especially the androgen receptor and estrogen receptor, has emerged in recent years. This is mostly inferred from in vitro studies, but more recently first in vivo data have further supported this concept. This and the deregulated expression observed for several histone demethylases suggest a role in tumours such as prostate and breast cancer.
Collapse
Affiliation(s)
- Antje Stratmann
- Therapeutic Research Group Oncology/Gynecological Therapies and Global Biomarker, Bayer Pharma AG, Bayer HealthCare, D-13342 Berlin, Germany
| | | |
Collapse
|
49
|
Nicholson TB, Su H, Hevi S, Wang J, Bajko J, Li M, Valdez R, Loureiro J, Cheng X, Li E, Kinzel B, Labow M, Chen T. Defective heart development in hypomorphic LSD1 mice. Cell Res 2011:cr2011194. [PMID: 22143567 DOI: 10.1038/cr.2011.194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/07/2011] [Accepted: 10/14/2010] [Indexed: 11/09/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1/AOF2/KDM1A), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. LSD1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that LSD1-interacting proteins regulate the activity and specificity of LSD1, the significance and roles of such interactions in developmental processes remain largely unknown. Here we describe a hypomorphic LSD1 allele that contains two point mutations in the tower domain, resulting in a protein with reduced interaction with known binding partners and decreased enzymatic activity. Mice homozygous for this allele die perinatally due to heart defects, with the majority of animals suffering from ventricular septal defects. Transcriptional profiling revealed altered expression of a limited subset of genes in the hearts. This includes an increase in calmodulin kinase (CK) 2β, the regulatory subunit of the CK2 kinase, which correlates with E-cadherin hyperphosphorylation. These results identify a previously unknown role for LSD1 in heart development, perhaps partly through the control of E-cadherin phosphorylation.Cell Research advance online publication 6 December 2011; doi:10.1038/cr.2011.194.
Collapse
Affiliation(s)
- Thomas B Nicholson
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Hui Su
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Sarah Hevi
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jing Wang
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jeff Bajko
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Mei Li
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Reginald Valdez
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Joseph Loureiro
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - En Li
- Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Bernd Kinzel
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Novartis Pharma AG Forum 1 Novartis Campus CH-4056, Basel, Switzerland
| | - Mark Labow
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Taiping Chen
- 1] Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [2] Epigenetics Program, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA [3] Current address: Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
50
|
Loss of lysine-specific demethylase 1 nonautonomously causes stem cell tumors in the Drosophila ovary. Proc Natl Acad Sci U S A 2011; 108:7064-9. [PMID: 21482791 DOI: 10.1073/pnas.1015874108] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Specialized microenvironments called niches keep stem cells in an undifferentiated and self-renewing state. Dedicated stromal cells form niches by producing a variety of factors that act directly on stem cells. The size and signaling output of niches must be finely tuned to ensure proper tissue homeostasis. Although advances have been made in identifying factors that promote niche cell fate, the mechanisms that restrict niche cell formation during development and limit niche signaling output in adults remain poorly understood. Here, we show that the histone lysine-specific demethylase 1 (Lsd1) regulates the size of the germline stem cell (GSC) niche in Drosophila ovaries. GSC maintenance depends on bone morphogenetic protein (BMP) signals produced by a small cluster of cap cells located at the anterior tip of the germarium. Lsd1 null mutant ovaries carry small germline tumors containing an expanded number of GSC-like cells with round fusomes that display ectopic BMP signal responsiveness away from the normal niche. Clonal analysis and cell type-specific rescue experiments demonstrate that Lsd1 functions within the escort cells (ECs) that reside immediately adjacent to cap cells and prevents them from ectopically producing niche-specific signals. Temporally restricted gene knockdown experiments suggest that Lsd1 functions both during development, to specify EC fate, and in adulthood, to prevent ECs from forming ectopic niches independent of changes in cell fate. Further analysis shows that Lsd1 functions to repress decapentaplegic (dpp) expression in adult germaria. The role of Lsd1 in regulating niche-specific signals may have important implications for understanding how disruption of its mammalian homolog contributes to cancer and metastasis.
Collapse
|