1
|
Wang J, Ren T, Sun G, Zhang N, Zhao L, Zhong R. Mechanism of AGT-Mediated Repair of dG-dC Cross-Links in the Drug Resistance to Chloroethylnitrosoureas: Molecular Docking, MD Simulation, and ONIOM (QM/MM) Investigation. J Chem Inf Model 2024; 64:3411-3429. [PMID: 38511939 DOI: 10.1021/acs.jcim.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Chloroethylnitrosoureas (CENUs) are important chemotherapies applied in the treatment of cancer. They exert anticancer activity by inducing DNA interstrand cross-links (ICLs) via the formation of two O6-alkylguanine intermediates, O6-chloroethylguanine (O6-ClEtG) and N1,O6-ethanoguanine (N1,O6-EtG). However, O6-alkylguanine-DNA alkyltransferase (AGT), a DNA-repair enzyme, can restore the O6-alkylguanine damages and thereby obstruct the formation of ICLs (dG-dC cross-link). In this study, the inhibitory mechanism of ICL formation was investigated to elucidate the drug resistance of CENUs mediated by AGT in detail. Based on the structures of the substrate-enzyme complexes obtained from docking and MD simulations, two ONIOM (QM/MM) models with different sizes of the QM region were constructed. The model with a larger QM region, which included the substrate (O6-ClEtG or N1,O6-EtG), a water molecule, and five residues (Tyr114, Cys145, His146, Lys165, and Glu172) in the active pocket of AGT, accurately described the repairing reaction and generated the results coinciding with the experimental outcomes. The repair process consists of two sequential steps: hydrogen transfer to form a thiolate anion on Cys145 and alkyl transfer from the O6 site of guanine (the rate-limiting step). The repair of N1,O6-EtG was more favorable than that of O6-ClEtG from both kinetics and thermodynamics aspects. Moreover, the comparison of the repairing process with the formation of dG-dC cross-link and the inhibition of AGT by O6-benzylguanine (O6-BG) showed that the presence of AGT could effectively interrupt the formation of ICLs leading to drug resistance, and the inhibition of AGT by O6-BG that was energetically more favorable than the repair of O6-ClEtG could not prevent the repair of N1,O6-EtG. Therefore, it is necessary to completely eliminate AGT activity before CENUs medication to enhance the chemotherapeutic effectiveness. This work provides reasonable explanations for the supposed mechanism of AGT-mediated drug resistance of CENUs and will assist in the development of novel CENU chemotherapies and their medication strategies.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Abdelgawwad AMA, Monari A, Tuñón I, Francés-Monerris A. Spatial and Temporal Resolution of the Oxygen-Independent Photoinduced DNA Interstrand Cross-Linking by a Nitroimidazole Derivative. J Chem Inf Model 2022; 62:3239-3252. [PMID: 35771238 PMCID: PMC9277591 DOI: 10.1021/acs.jcim.2c00460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage is ubiquitous in nature and is at the basis of emergent treatments such as photodynamic therapy, which is based on the activation of highly oxidative reactive oxygen species by photosensitizing O2. However, hypoxia observed in solid tumors imposes the necessity to devise oxygen-independent modes of action able to induce DNA damage under a low oxygen concentration. The complexity of these DNA damage mechanisms in realistic environments grows exponentially when taking into account light absorption and subsequent excited-state population, photochemical and (photo)-redox reactions, the multiple species involved in different electronic states, noncovalent interactions, multiple reaction steps, and the large number of DNA reactive sites. This work tackles all the intricate reactivity of a photosensitizer based on a nitroimidazole derivative reacting toward DNA in solution under UV light exposition. This is performed through a combination of ground- and excited-state quantum chemistry, classical molecular dynamics, and hybrid QM/MM simulations to rationalize in detail the formation of DNA interstrand cross-links (ICLs) exerted by the noncanonical noncovalent photosensitizer. Unprecedented spatial and temporal resolution of these phenomena is achieved, revealing that the ICL is sequence-specific and that the fastest reactions take place at AT, GC, and GT steps involving either the opposite nucleobases or adjacent Watson-Crick base pairs. The N7 and O6 positions of guanine, the N7 and N3 sites of adenine, the N4 position of cytosine, and the O2 atom of thymine are deemed as the most nucleophile sites and are positively identified to participate in the ICL productions. This work provides a multiscale computational protocol to study DNA reactivity with noncovalent photosensitizers, and contributes to the understanding of therapies based on photoinduced DNA damage at molecular and electronic levels. In addition, we believe the depth understanding of these processes should assist the design of new photosensitizers considering their molecular size, electronic properties, and the observed regioselectivity toward nucleic acids.
Collapse
Affiliation(s)
| | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75006 Paris, France.,Université de Lorraine and CNRS, UMR 7019 LPCT, F-5400 Nancy, France
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
3
|
Sun X, Fan T, Sun G, Zhou Y, Huang Y, Zhang N, Zhao L, Zhong R, Peng Y. 2-Deoxy-D-glucose increases the sensitivity of glioblastoma cells to BCNU through the regulation of glycolysis, ROS and ERS pathways: In vitro and in vivo validation. Biochem Pharmacol 2022; 199:115029. [PMID: 35381210 DOI: 10.1016/j.bcp.2022.115029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
Abstract
Chloroethylnitrosoureas (CENUs) exert antitumor activity via producing dG-dC interstrand crosslinks (ICLs). However, tumor resistance make it necessary to find novel strategies to improve the therapeutic effect of CENUs. 2-Deoxy-D-glucose (2-DG) is a well-known glycolytic inhibitor, which can reprogram tumor energy metabolism closely related to tumor resistance. Here, we investigated the chemosensitization effect of 2-DG on l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) against glioblastoma cells and the underlying mechanisms. We found that 2-DG significantly increased the inhibitory effects of BCNU on tumor cells compared with BCNU alone, while 2-DG showed no obvious enhancing effect on the BCNU-induced cytotoxicity for normal HaCaT and HA1800 cells. Proliferation, migration and invasion determinations presented the same trend as survival on tumor cells. 2-DG plus BCNU increased the energy deficiency through a more effective inhibition of glycolytic pathway. Notably, the combination of 2-DG and BCNU aggravated oxidative stress in glioblastoma cells, along with a significant decrease in glutathione (GSH) levels, and an increase in intracellular reactive oxygen species (ROS). Subsequently, we demonstrated that the combination treatment led to increased apoptosis via activating mitochondria and endoplasmic reticulum stress (ERS) related apoptosis pathways. Finally, we found that the dG-dC level was significantly increased after 2-DG pretreatment compared to BCNU alone by HPLC-ESI-MS/MS analysis. Finally, in vivo, 2-DG plus BCNU significantly suppressed tumor growth with lower side effects compared with BCNU alone in tumor-bearing mice. In summary, we proposed that 2-DG may have potential to increase the sensitivity of glioblastoma cells to BCNU by regulating glycolysis, ROS and ERS pathways in clinical setting.
Collapse
Affiliation(s)
- Xiaodong Sun
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China.
| | - Guohui Sun
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yue Zhou
- Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Xian Nong Tan Street, Beijing 100050, China.
| | - Yaxin Huang
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Na Zhang
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Liu Q, Wang X, Li J, Wang J, Sun G, Zhang N, Ren T, Zhao L, Zhong R. Development and biological evaluation of AzoBGNU: A novel hypoxia-activated DNA crosslinking prodrug with AGT-inhibitory activity. Biomed Pharmacother 2021; 144:112338. [PMID: 34678728 DOI: 10.1016/j.biopha.2021.112338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Chloroethylnitrosoureas (CENUs) are an important family of chemotherapies in clinical treatment of cancers, which exert antitumor activity by inducing the formation of DNA interstrand crosslinks (dG-dC ICLs). However, the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability largely decrease the antitumor efficacy of CENUs. In this study, we synthesized an azobenzene-based hypoxia-activated combi-nitrosourea prodrug, AzoBGNU, and evaluated its hypoxic selectivity and antitumor activity. The prodrug was composed of a CENU pharmacophore and an O6-benzylguanine (O6-BG) analog moiety masked by a N,N-dimethyl-4-(phenyldiazenyl)aniline segment as a hypoxia-activated trigger, which was designed to be selectively reduced via azo bond break in hypoxic tumor microenvironment, accompanied with releasing of an O6-BG analog to inhibit AGT and a chloroethylating agent to induce dG-dC ICLs. AzoBGNU exhibited significantly increased cytotoxicity and apoptosis-inducing ability toward DU145 cells under hypoxia compared with normoxia, indicating the hypoxia-responsiveness as expected. Predominant higher cytotoxicity was observed in the cells treated by AzoBGNU than those by traditional CENU chemotherapy ACNU and its combination with O6-BG. The levels of dG-dC ICLs in DU145 cells induced by AzoBGNU was remarkably enhanced under hypoxia, which was approximately 6-fold higher than those in the AzoBGNU-treated groups under normoxia and those in the ACNU-treated groups. The results demonstrated that azobenzene-based combi-nitrosourea prodrug possessed desirable tumor-hypoxia targeting ability and eliminated chemoresistance compared with the conventional CENUs.
Collapse
Affiliation(s)
- Qi Liu
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Jiaojiao Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Sun X, Sun G, Huang Y, Zhang S, Tang X, Zhang N, Zhao L, Zhong R, Peng Y. Glycolytic inhibition by 3-bromopyruvate increases the cytotoxic effects of chloroethylnitrosoureas to human glioma cells and the DNA interstrand cross-links formation. Toxicology 2020; 435:152413. [PMID: 32109525 DOI: 10.1016/j.tox.2020.152413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
DNA interstrand cross-links (ICLs) are essential for the antitumor activity of chloroethylnitrosoureas (CENUs). Commonly, CENUs resistance is mainly considered to be associated with O6-methylguanine-DNA methyltransferase (MGMT) within tumors. Bypassing the MGMT-mediated resistance, to our knowledge, herein, we first utilized a novel glycolytic inhibitor, 3-bromopyruvate (3-BrPA), to increase the cytotoxic effects of l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to human glioma cells based on the hypothesis that blocking energy metabolism renders tumor cells more sensitive to chemotherapy. We found 3-BrPA significantly increased the cell killing by BCNU in human glioma SF763 and SF126 cell lines. Significantly decreased levels of extracellular lactate, cellular ATP and glutathione (GSH) were observed after 3-BrPA treatment, and the effects were more remarkable with 3-BrPA in combination with BCNU. Considering that the role of ATP and GSH in drug efflux, DNA damage repair and drug inactivation, we determined the effect of 3-BrPA on the formation of dG-dC ICLs induced by BCNU using stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As expected, the levels of lethal dG-dC ICLs induced by BCNU were obviously enhanced after 3-BrPA pretreatment. Based on these results, 3-BrPA and related glycolytic inhibitors may be promising to enhance the cell killing effect and reverse the clinical chemoresistance of CENUs and related antitumor agents.
Collapse
Affiliation(s)
- Xiaodong Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yaxin Huang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Shufen Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Xiaoyu Tang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
6
|
Xiao W, Sun G, Fan T, Liu J, Zhang N, Zhao L, Zhong R. Reductive Activity and Mechanism of Hypoxia- Targeted AGT Inhibitors: An Experimental and Theoretical Investigation. Int J Mol Sci 2019; 20:6308. [PMID: 31847200 PMCID: PMC6941096 DOI: 10.3390/ijms20246308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 11/16/2022] Open
Abstract
O6-alkylguanine-DNA alkyltransferase (AGT) is the main cause of tumor cell resistance to DNA-alkylating agents, so it is valuable to design tumor-targeted AGT inhibitors with hypoxia activation. Based on the existing benchmark inhibitor O6-benzylguanine (O6-BG), four derivatives with hypoxia-reduced potential and their corresponding reduction products were synthesized. A reductase system consisting of glucose/glucose oxidase, xanthine/xanthine oxidase, and catalase were constructed, and the reduction products of the hypoxia-activated prodrugs under normoxic and hypoxic conditions were determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The results showed that the reduction products produced under hypoxic conditions were significantly higher than that under normoxic condition. The amount of the reduction product yielded from ANBP (2-nitro-6-(3-amino) benzyloxypurine) under hypoxic conditions was the highest, followed by AMNBP (2-nitro-6-(3-aminomethyl)benzyloxypurine), 2-NBP (2-nitro-6-benzyloxypurine), and 3-NBG (O6-(3-nitro)benzylguanine). It should be noted that although the levels of the reduction products of 2-NBP and 3-NBG were lower than those of ANBP and AMNBP, their maximal hypoxic/normoxic ratios were higher than those of the other two prodrugs. Meanwhile, we also investigated the single electron reduction mechanism of the hypoxia-activated prodrugs using density functional theory (DFT) calculations. As a result, the reduction of the nitro group to the nitroso was proven to be a rate-limiting step. Moreover, the 2-nitro group of purine ring was more ready to be reduced than the 3-nitro group of benzyl. The energy barriers of the rate-limiting steps were 34-37 kcal/mol. The interactions between these prodrugs and nitroreductase were explored via molecular docking study, and ANBP was observed to have the highest affinity to nitroreductase, followed by AMNBP, 2-NBP, and 3-NBG. Interestingly, the theoretical results were generally in a good agreement with the experimental results. Finally, molecular docking and molecular dynamics simulations were performed to predict the AGT-inhibitory activity of the four prodrugs and their reduction products. In summary, simultaneous consideration of reduction potential and hypoxic selectivity is necessary to ensure that such prodrugs have good hypoxic tumor targeting. This study provides insights into the hypoxia-activated mechanism of nitro-substituted prodrugs as AGT inhibitors, which may contribute to reasonable design and development of novel tumor-targeted AGT inhibitors.
Collapse
Affiliation(s)
- Weinan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (W.X.); (G.S.); (T.F.); (J.L.); (N.Z.); (R.Z.)
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (W.X.); (G.S.); (T.F.); (J.L.); (N.Z.); (R.Z.)
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (W.X.); (G.S.); (T.F.); (J.L.); (N.Z.); (R.Z.)
- Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Junjun Liu
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (W.X.); (G.S.); (T.F.); (J.L.); (N.Z.); (R.Z.)
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (W.X.); (G.S.); (T.F.); (J.L.); (N.Z.); (R.Z.)
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (W.X.); (G.S.); (T.F.); (J.L.); (N.Z.); (R.Z.)
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (W.X.); (G.S.); (T.F.); (J.L.); (N.Z.); (R.Z.)
| |
Collapse
|
7
|
Sun G, Zhao L, Zhong R, Peng Y. The specific role of O 6-methylguanine-DNA methyltransferase inhibitors in cancer chemotherapy. Future Med Chem 2018; 10:1971-1996. [PMID: 30001630 DOI: 10.4155/fmc-2018-0069] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), can confer resistance to guanine O6-alkylating agents. Therefore, inhibition of resistant MGMT protein is a practical approach to increase the anticancer effects of such alkylating agents. Numerous small molecule inhibitors were synthesized and exhibited potential MGMT inhibitory activities. Although they were nontoxic alone, they also inhibited MGMT in normal tissues, thereby enhancing the side effects of chemotherapy. Therefore, strategies for tumor-specific MGMT inhibition have been proposed, including local drug delivery and tumor-activated prodrugs. Over-expression of MGMT in hematopoietic stem cells to protect bone marrow from the toxic effects of chemotherapy is also a feasible selection. The future prospects and challenges of MGMT inhibitors in cancer chemotherapy were also discussed.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment & Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
8
|
Sun G, Zhang N, Zhao L, Fan T, Zhang S, Zhong R. Synthesis and antitumor activity evaluation of a novel combi-nitrosourea prodrug: Designed to release a DNA cross-linking agent and an inhibitor of O(6)-alkylguanine-DNA alkyltransferase. Bioorg Med Chem 2016; 24:2097-2107. [PMID: 27041398 DOI: 10.1016/j.bmc.2016.03.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
Abstract
The drug resistance of CENUs induced by O(6)-alkylguanine-DNA alkyltransferase (AGT), which repairs the O(6)-alkylated guanine and subsequently inhibits the formation of dG-dC cross-links, hinders the application of CENU chemotherapies. Therefore, the discovery of CENU analogs with AGT inhibiting activity is a promising approach leading to novel CENU chemotherapies with high therapeutic index. In this study, a new combi-nitrosourea prodrug 3-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-1-(2-chloroethyl)-1-nitrosourea (6), designed to release a DNA cross-linking agent and an inhibitor of AGT, was synthesized and evaluated for its antitumor activity and ability to induce DNA interstrand cross-links (ICLs). The results indicated that 6 exhibited higher cytotoxicity against mer(+) glioma cells compared with ACNU, BCNU, and their respective combinations with O(6)-benzylguanine (O(6)-BG). Quantifications of dG-dC cross-links induced by 6 were performed using HPLC-ESI-MS/MS. Higher levels of dG-dC cross-link were observed in 6-treated human glioma SF763 cells (mer(+)), whereas lower levels of dG-dC cross-link were observed in 6-treated calf thymus DNA, when compared with the groups treated with BCNU and ACNU. The results suggested that the superiority of 6 might result from the AGT inhibitory moiety, which specifically functions in cells with AGT activity. Molecular docking studies indicated that five hydrogen bonds were formed between the O(6)-BG analogs released from 6 and the five residues in the active pocket of AGT, which provided a reasonable explanation for the higher AGT-inhibitory activity of 6 than O(6)-BG.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Shufen Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
9
|
Li L, Li S, Sun G, Peng R, Zhao L, Zhong R. Influence of the Expression Level of O6-Alkylguanine-DNA Alkyltransferase on the Formation of DNA Interstrand Crosslinks Induced by Chloroethylnitrosoureas in Cells: A Quantitation Using High-Performance Liquid Chromatography-Mass Spectrometry. PLoS One 2015; 10:e0121225. [PMID: 25799182 PMCID: PMC4370500 DOI: 10.1371/journal.pone.0121225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/29/2015] [Indexed: 11/24/2022] Open
Abstract
Chloroethylnitrosoureas (CENUs), which are bifunctional alkylating agents widely used in the clinical treatment of cancer, exert anticancer activity by inducing crosslink within a guanine-cytosine DNA base pair. However, the formation of dG-dC crosslinks can be prevented by O6-alkylguanine-DNA alkyltransferase (AGT), ultimately leading to drug resistance. Therefore, the level of AGT expression is related to the formation of dG-dC crosslinks and the sensitivity of cells to CENUs. In this work, we determined the CENU-induced dG-dC crosslink in mouse L1210 leukemia cells and in human glioblastoma cells (SF-763, SF-767 and SF-126) containing different levels of AGT using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. The results indicate that nimustine (ACNU) induced more dG-dC crosslinks in L1210 leukemia cells than those induced by carmustine (BCNU), lomustine (CCNU) and fotemustine (FTMS). This result was consistent with a previously reported cohort study, which demonstrated that ACNU had a better survival gain than BCNU, CCNU and FTMS for patients with high-grade glioma. Moreover, we compared the crosslinking levels and the cytotoxicity in SF-763, SF-767 and SF-126 cells with different AGT expression levels after exposure to ACNU. The levels of dG-dC crosslink in SF-126 cells (low AGT expression) were significantly higher than those in SF-767 (medium AGT expression) and SF-763 (high AGT expression) cells at each time point. Correspondingly, the cytotoxicity of SF-126 was the highest followed by SF-767 and SF-763. The results obtained in this work provided unequivocal evidence for drug resistance to CENUs induced by AGT-mediated repair of DNA ICLs. We postulate that the level of dG-dC crosslink has the potential to be employed as a biomarker for estimating drug resistance and anticancer efficiencies of novel CENU chemotherapies.
Collapse
Affiliation(s)
- Lili Li
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P. R. China
| | - Sisi Li
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P. R. China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P. R. China
| | - Ruizeng Peng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P. R. China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P. R. China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P. R. China
| |
Collapse
|
10
|
Sun G, Zhao L, Fan T, Li S, Zhong R. Investigations on the effect of O(6)-benzylguanine on the formation of dG-dC interstrand cross-links induced by chloroethylnitrosoureas in human glioma cells using stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry. Chem Res Toxicol 2014; 27:1253-1262. [PMID: 24914620 DOI: 10.1021/tx500143b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chloroethylnitrosoureas (CENUs) are bifunctional alkylating agents widely used for the clinical treatment of cancer. They exert anticancer activity by inducing DNA interstrand cross-links (ICLs) within GC base pairs to form dG-dC cross-links. This lesion inhibits DNA double strand separation during replication and transcription and results in the apoptosis of cancer cells. However, O(6)-alkylguanine DNA alkyltransferase (AGT) repairs the DNA ICLs by removing the alkyl group at the O(6) position of either O(6)-(2-chloroethyl)deoxyguanosine (O(6)-ClEtdGuo) or N1,O(6)-ethanodeoxyguanosine (N1,O(6)-EtdGuo), which are intermediates in the formation of dG-dC cross-links. The action of AGT leads to drug resistance against CENUs. O(6)-Benzylguanine (O(6)-BG) was identified as an effective AGT inhibitor that enhances the antitumor effects of CENUs. In this study, the effect of O(6)-BG on the formation of dG-dC cross-links was investigated by treating human brain glioma SF767 cells with 1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea (ACNU). The levels of dG-dC cross-link were determined using stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The results indicated that ACNU induced higher levels of dG-dC cross-link in SF767 cells pretreated with O(6)-BG compared to cells without O(6)-BG pretreatment. The highest dG-dC cross-linking levels were generally observed at 12 h for all drug concentration groups, a result which was consistent with cytotoxicity assay. These results provided direct evidence for the enhancement of dG-dC cross-linking levels caused by the inhibition of AGT by O(6)-BG. These data indicate that dG-dC cross-links may be developed as a biomarker for evaluating the activity of novel O(6)-BG analogues as AGT inhibitors for combination therapy with CENUs.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology , Beijing 100124, P. R. China
| | | | | | | | | |
Collapse
|
11
|
Li L, Zhao L, Zhong R. Quantification of DNA interstrand crosslinks induced by ACNU in NIH/3T3 and L1210 cells using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:439-447. [PMID: 24497281 DOI: 10.1002/rcm.6800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/28/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Chloroethylnitrosoureas (CENUs) are important alkylating agents employed for the clinical treatment of cancer. The cellular toxicity of CENUs is primarily due to induction of DNA interstrand crosslinks (ICLs), which has been characterized as l-(3-deoxycytidyl), 2-(l-deoxyguanosinyl)ethane (dG-dC). However, the formation of dG-dC crosslinks can be prevented by O(6) -alkylguanine-DNA alkyltransferase (AGT), which removes the O(6) -chloroethyl group from O(6) -chloroethylguanine (O(6) -ClEt-Gua), and ultimately its increased expression can result in drug resistance. Differing levels of AGT expression can lead to varying amounts of dG-dC crosslinking, which influences the sensitivity of cells to CENUs. METHODS In this work, a sensitive method for the quantitation of dG-dC crosslinks in cellular DNA has been established using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). RESULTS The limit of detection (LOD) and limit of quantitation (LOQ) of the method were determined to be 2 fmol and 8 fmol on-column, respectively, and the recovery ranged from 96% to 105% with the relative standard deviation (RSD) below 5%. Using this method, the levels of dG-dC crosslink induced by 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) were determined in NIH/3T3 fibroblasts cells (high level of expression of AGT) and L1210 leukemia cells (low level of expression of AGT). The time-course profile indicated that the levels of dG-dC crosslink uniformly increased in the early incubation period and reached the maximum at 12 h. Subsequently, the amount of dG-dC crosslinking decreased to very low levels presumably owing to the repair of O(6) -ClEt-Gua by AGT. The crosslinking levels in L1210 cells were significantly higher than those in NIH/3T3 cells at each time point. This provides strong evidence that high express of AGT in CENU-resistant cells inhibits the formation of dG-dC crosslinks. CONCLUSIONS This work will contribute to the further understanding of the drug resistance of CENUs, and will provide a means to evaluate the anticancer activity of new bifunctional anticancer agents.
Collapse
Affiliation(s)
- Lili Li
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing, 100124, P.R., China
| | | | | |
Collapse
|