1
|
Zeng H, Ma Z, Tao Y, Cheng C, Lin J, Fang J, Wei Y, Liu H, Zou F, Cui E, Zhang Y. Predicting early recurrence in hepatocellular carcinoma after hepatectomy using GD-EOB-DTPA enhanced MRI-based model. Eur J Radiol 2025; 188:112130. [PMID: 40305886 DOI: 10.1016/j.ejrad.2025.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/19/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
PURPOSE To develop and validate a comprehensive model for predicting postoperative early recurrence of hepatocellular carcinoma (HCC) based on gadoxetate disodium (Gd-EOB-DTPA)-enhanced MRI. METHODS 239 patients with HCC who underwent curative surgical resection were recruited from two centers between April 2017 and December 2022. Radiomics features were extracted from the region of interest (ROI) on preoperative Gd-EOB-DTPA-enhanced MR images, and consistency analysis was performed to select stable radiomics features. Significant variables in the univariate and multivariate logistic regression analysis were included in clinical-radiologic model. Nomograms were constructed by combining the best performing radiologic and clinical-radiologic characteristics. Recurrence-free survival (RFS) comparisons were conducted using the log-rank test based on high versus low model-derived scores. RESULTS The radiomics model based on multiple phases MR outperformed all other radiomics models and had the best discrimination for early recurrence, with AUC of 0.799 and 0.743 in the training and validation sets, respectively. In the entire cohort, high-risk patients exhibited significantly lower RFS compared to low-risk patients. CONCLUSION The nomogram integrating Gd-EOB-DTPA enhanced MRI radiomics features and clinical-radiologic characteristics demonstrate superior predictive performance with postoperative early recurrence in patients with HCC. The model can identify patients at high risk and provide support for individualized treatment planning.
Collapse
Affiliation(s)
- Hanqiu Zeng
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Zichang Ma
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yuxi Tao
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Ci Cheng
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Junyu Lin
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Jiayu Fang
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yuhan Wei
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Huajin Liu
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Feixiang Zou
- Department of Radiology, People's Hospital of Wuchuan Gelao and Miao Autonomous County, Zunyi 5643000 Guizhou, China
| | - Enming Cui
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, China.
| | - Yaqin Zhang
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China.
| |
Collapse
|
2
|
Ren L, Chen DB, Yan X, She S, Yang Y, Zhang X, Liao W, Chen H. Bridging the Gap Between Imaging and Molecular Characterization: Current Understanding of Radiomics and Radiogenomics in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:2359-2372. [PMID: 39619602 PMCID: PMC11608547 DOI: 10.2147/jhc.s423549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and the third leading cause of cancer-related deaths. Imaging plays a crucial role in the screening, diagnosis, and monitoring of HCC; however, the potential mechanism regarding phenotypes or molecular subtyping remains underexplored. Radiomics significantly expands the selection of features available by extracting quantitative features from imaging data. Radiogenomics bridges the gap between imaging and genetic/transcriptomic information by associating imaging features with critical genes and pathways, thereby providing biological annotations to these features. Despite challenges in interpreting these connections, assessing their universality, and considering the diversity in HCC etiology and genetic information across different populations, radiomics and radiogenomics offer new perspectives for precision treatment in HCC. This article provides an up-to-date summary of the advancements in radiomics and radiogenomics throughout the HCC care continuum, focusing on the clinical applications, advantages, and limitations of current techniques and offering prospects. Future research should aim to overcome these challenges to improve the prognosis of HCC patients and leverage imaging information for patient benefit.
Collapse
Affiliation(s)
- Liying Ren
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Dong Bo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Xuanzhi Yan
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Shaoping She
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Yao Yang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Xue Zhang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Hongsong Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| |
Collapse
|
3
|
Lu M, Wang C, Zhuo Y, Gou J, Li Y, Li J, Dong X. Preoperative prediction power of radiomics and non-radiomics methods based on MRI for early recurrence in hepatocellular carcinoma: a systemic review and meta-analysis. Abdom Radiol (NY) 2024; 49:3397-3411. [PMID: 38704783 DOI: 10.1007/s00261-024-04356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To compare radiomics and non-radiomics in predicting early recurrence (ER) in patients with hepatocellular carcinoma (HCC) after curative surgery. METHODS We systematically searched PubMed and Embase databases. Studies with clear reference criteria were selected. Data were extracted and assessed for quality using the quality in prognosis studies tool (QUIPS) by two independent authors. All included radiomics studies underwent radiomics quality score (RQS) assessment. We calculated sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) using random or fixed models with a 95%CI. Forest maps visualized the data, and summary receiver operating characteristic (sROC) curves with the area under the curve (AUC) were generated. Meta-regression and subgroup analyses explored sources of heterogeneity. We compared sensitivity, specificity, PLR, and NLR using the z-test and compared AUC values using the Delong test. RESULTS Our meta-analysis included 10 studies comprising 1857 patients. For radiomics, the pooled sensitivity, specificity, AUC of sROC, PLR and NLR were 0.84(95%CI: 0.78-0.89), 0.80(95%CI: 0.75-0.85), 0.89(95%CI: 0.86-0.91), 4.28(95%CI: 3.48-5.27) and 0.20(95%CI: 0.14-0.27), respectively, but with significant heterogeneity (I2 = 60.78% for sensitivity, I2 = 55.79% for specificity) and potential publication bias (P = 0.04). The pooled sensitivity, specificity, AUC of sROC, PLR, NLR for non-radiomics were 0.75(95%CI:0.68-0.81), 0.78(95%CI:0.72-0.83), 0.83(95%CI: 0.80-0.86), 3.45(95%CI: 2.68-4.44) and 0.32(95%CI: 0.24-0.41), respectively. There was no significant heterogeneity in this group (I2 = 0% for sensitivity, I2 = 17.27% for specificity). Radiomics showed higher diagnostic accuracy (AUC: 0.89 vs. 0.83, P = 0.0456), higher sensitivity (0.84 vs. 0.75, P = 0.0385) and lower NLR (0.20 vs. 0.32, P = 0.0287). CONCLUSION The radiomics from preoperative MRI effectively predicts ER of HCC and has higher diagnostic accuracy than non-radiomics. Due to potential publication bias and suboptimal RQS scores in radiomics, these results should be interpreted cautiously.
Collapse
Affiliation(s)
- Mingjie Lu
- The Clinical Medical College, Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Chen Wang
- The Clinical Medical College, Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Yi Zhuo
- The Clinical Medical College, Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Junjiu Gou
- The Clinical Medical College, Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Yingfeng Li
- The Clinical Medical College, Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Jingqi Li
- The Clinical Medical College, Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Xue Dong
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
4
|
Azeroual S, Ben-Bouazza FE, Naqi A, Sebihi R. Predicting disease recurrence in breast cancer patients using machine learning models with clinical and radiomic characteristics: a retrospective study. J Egypt Natl Canc Inst 2024; 36:20. [PMID: 38853190 DOI: 10.1186/s43046-024-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The goal is to use three different machine learning models to predict the recurrence of breast cancer across a very heterogeneous sample of patients with varying disease kinds and stages. METHODS A heterogeneous group of patients with varying cancer kinds and stages, including both triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (non-TNBC), was examined. Three distinct models were created using the following five machine learning techniques: Adaptive Boosting (AdaBoost), Random Under-sampling Boosting (RUSBoost), Extreme Gradient Boosting (XGBoost), support vector machines (SVM), and Logistic Regression. The clinical model used both clinical and pathology data in conjunction with the machine learning algorithms. The machine learning algorithms were combined with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) imaging characteristics in the radiomic model, and the merged model combined the two types of data. Each technique was evaluated using several criteria, including the receiver operating characteristic (ROC) curve, precision, recall, and F1 score. RESULTS The results suggest that the integration of clinical and radiomic data improves the predictive accuracy in identifying instances of breast cancer recurrence. The XGBoost algorithm is widely recognized as the most effective algorithm in terms of performance. CONCLUSION The findings presented in this study offer significant contributions to the field of breast cancer research, particularly in relation to the prediction of cancer recurrence. These insights hold great potential for informing future investigations and clinical interventions that seek to enhance the accuracy and effectiveness of recurrence prediction in breast cancer patients.
Collapse
Affiliation(s)
- Saadia Azeroual
- LPHE-Modeling and Simulations, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima-Ezzahraa Ben-Bouazza
- Faculty of Sciences and Technology, Hassan First University, Settat, Morocco
- LaMSN (La Maison Des Sciences Num´Eriques), Saint-Denis, France
| | - Amine Naqi
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Rajaa Sebihi
- LPHE-Modeling and Simulations, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
5
|
Bo Z, Song J, He Q, Chen B, Chen Z, Xie X, Shu D, Chen K, Wang Y, Chen G. Application of artificial intelligence radiomics in the diagnosis, treatment, and prognosis of hepatocellular carcinoma. Comput Biol Med 2024; 173:108337. [PMID: 38547656 DOI: 10.1016/j.compbiomed.2024.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with an increasing incidence and poor prognosis. In the past decade, artificial intelligence (AI) technology has undergone rapid development in the field of clinical medicine, bringing the advantages of efficient data processing and accurate model construction. Promisingly, AI-based radiomics has played an increasingly important role in the clinical decision-making of HCC patients, providing new technical guarantees for prediction, diagnosis, and prognostication. In this review, we evaluated the current landscape of AI radiomics in the management of HCC, including its diagnosis, individual treatment, and survival prognosis. Furthermore, we discussed remaining challenges and future perspectives regarding the application of AI radiomics in HCC.
Collapse
Affiliation(s)
- Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiatao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danyang Shu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiyu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Mao B, Ren Y, Yu X, Liang X, Ding X. Preoperative prediction for early recurrence of hepatocellular carcinoma using machine learning-based radiomics. Front Oncol 2024; 14:1346124. [PMID: 38559563 PMCID: PMC10978579 DOI: 10.3389/fonc.2024.1346124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To develop a contrast-enhanced computed tomography (CECT) based radiomics model using machine learning method and assess its ability of preoperative prediction for the early recurrence of hepatocellular carcinoma (HCC). Methods A total of 297 patients confirmed with HCC were assigned to the training dataset and test dataset based on the 8:2 ratio, and the follow-up period of the patients was from May 2012 to July 2017. The lesion sites were manually segmented using ITK-SNAP, and the pyradiomics platform was applied to extract radiomic features. We established the machine learning model to predict the early recurrence of HCC. The accuracy, AUC, standard deviation, specificity, and sensitivity were applied to evaluate the model performance. Results 1,688 features were extracted from the arterial phase and venous phase images, respectively. When arterial phase and venous phase images were employed correlated with clinical factors to train a prediction model, it achieved the best performance (AUC with 95% CI 0.8300(0.7560-0.9040), sensitivity 89.45%, specificity 79.07%, accuracy 82.67%, p value 0.0064). Conclusion The CECT-based radiomics may be helpful to non-invasively reveal the potential connection between CECT images and early recurrence of HCC. The combination of radiomics and clinical factors could boost model performance.
Collapse
Affiliation(s)
- Bing Mao
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Yajun Ren
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Yu
- Department of Medical Imaging, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinliang Liang
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Xiangming Ding
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Brancato V, Cerrone M, Garbino N, Salvatore M, Cavaliere C. Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score. World J Gastroenterol 2024; 30:381-417. [PMID: 38313230 PMCID: PMC10835534 DOI: 10.3748/wjg.v30.i4.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) for different tasks related to the management of patients with hepatocellular carcinoma (HCC). However, its implementation in clinical practice is still far, with many issues related to the methodological quality of radiomic studies. AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score (RQS). METHODS A systematic literature search of PubMed, Google Scholar, and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023. The methodological quality of radiomic studies was assessed using the RQS tool. Spearman's correlation (ρ) analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies. The level of statistical signi-ficance was set at P < 0.05. RESULTS One hundred and twenty-seven articles were included, of which 43 focused on HCC prognosis, 39 on prediction of pathological findings, 16 on prediction of the expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 had multiple purposes. The mean RQS was 8 ± 6.22, and the corresponding percentage was 24.15% ± 15.25% (ranging from 0.0% to 58.33%). RQS was positively correlated with journal impact factor (IF; ρ = 0.36, P = 2.98 × 10-5), 5-years IF (ρ = 0.33, P = 1.56 × 10-4), number of patients included in the study (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features extracted in the study (ρ = 0.59, P < 4.59 × 10-13), and time of publication (ρ = -0.23, P < 0.0072). CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
Collapse
Affiliation(s)
- Valentina Brancato
- Department of Information Technology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Cerrone
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Nunzia Garbino
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Salvatore
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| |
Collapse
|
8
|
Tian H, Xie Y, Wang Z. Radiomics for preoperative prediction of early recurrence in hepatocellular carcinoma: a meta-analysis. Front Oncol 2023; 13:1114983. [PMID: 37350952 PMCID: PMC10282764 DOI: 10.3389/fonc.2023.1114983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Background/Objective Early recurrence (ER) affects the long-term survival prognosis of patients with hepatocellular carcinoma (HCC). Many previous studies have utilized CT/MRI-based radiomics to predict ER after radical treatment, achieving high predictive value. However, the diagnostic performance of radiomics for the preoperative identification of ER remains uncertain. Therefore, we aimed to perform a meta-analysis to investigate the predictive performance of radiomics for ER in HCC. Methods A systematic literature search was conducted in PubMed, Web of Science (including MEDLINE), EMBASE and the Cochrane Central Register of Controlled Trials to identify studies that utilized radiomics methods to assess ER in HCC. Data were extracted and quality assessed for retrieved studies. Statistical analyses included pooled data, tests for heterogeneity, and publication bias. Meta-regression and subgroup analyses were performed to investigate potential sources of heterogeneity. Results The analysis included fifteen studies involving 3,281 patients focusing on preoperative CT/MRI-based radiomics for the prediction of ER in HCC. The combined sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic were 75% (95% CI: 65-82), 78% (95% CI: 68-85), and 83% (95% CI: 79-86), respectively. The combined positive likelihood ratio, negative likelihood ratio, diagnostic score, and diagnostic odds ratio were 3.35 (95% CI: 2.41-4.65), 0.33 (95% CI: 0.25-0.43), 2.33 (95% CI: 1.91-2.75), and 10.29 (95% CI: 6.79-15.61), respectively. Substantial heterogeneity was observed among the studies (I²=99%; 95% CI: 99-100). Meta-regression showed imaging equipment contributed to the heterogeneity of specificity in subgroup analysis (P= 0.03). Conclusion Preoperative CT/MRI-based radiomics appears to be a promising and non-invasive predictive approach with moderate ER recognition performance.
Collapse
Affiliation(s)
- Huan Tian
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Yong Xie
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|