1
|
Hou M, Li W, Cen J, Pan W, Deng Z, Hu J, Liu S. Insight into Lysine Selection via Controlled Degradation of 2,4-Diaminobutyric Acid and Ornithine Polypeptides. Angew Chem Int Ed Engl 2025:e202502629. [PMID: 40355379 DOI: 10.1002/anie.202502629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/22/2025] [Accepted: 05/12/2025] [Indexed: 05/14/2025]
Abstract
The selection of twenty canonical amino acids in protein synthesis is well-established, yet the reasons behind their natural selection remain unclear. Specifically, why structurally similar analogs, such as L-2,4-diaminobutyric acid (Dab) and L-ornithine (Orn), are not chosen over L-lysine (Lys) is unknown. These analogs differ only in alkyl chain length, raising the question of whether such variations influence polypeptide stability and natural selection. To investigate how unnatural amino acids affect the stability of synthesized polypeptides, we present the efficient synthesis of o-nitrobenzyl (NB) carbamate-caged photo-responsive polypeptide amphiphiles based on Dab and Orn via polymerization of N-phenoxycarbonyl-functionalized amino acid precursors. Depending on the self-assembly methods, these poly(ethylene glycol) (PEG)-b-polypeptide hybrid block copolymers formed various nanostructures, including two-dimensional discs and oblate vesicles. Upon photoirradiation, the newly liberated primary amines underwent spontaneous cyclization with backbone amide linkages to generate thermodynamically stable 5- or 6-membered lactams. Such a backbone degradation process eventually led to the disassembly and disintegration of the assemblies. These findings provide new insights into the natural selection of Lys, and open new possibilities for creating functional polypeptide-based materials in drug delivery, tissue engineering, and other biomedical applications.
Collapse
Affiliation(s)
- Mingxuan Hou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Wenjin Li
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jie Cen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Wenhao Pan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu Province, 215123, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zhengyu Deng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu Province, 215123, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
2
|
Alvarez AC, Maguire D, Brannigan RP. Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:435-463. [PMID: 40166479 PMCID: PMC11956074 DOI: 10.3762/bjnano.16.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
This review explores the recent advancements in polymer-assisted delivery systems for antisense oligonucleotides (ASOs) and their potential in precision disease treatment. Synthetic polymers have shown significant promise in enhancing the delivery, stability, and therapeutic efficacy of ASOs by addressing key challenges such as cellular uptake, endosomal escape, and reducing cytotoxicity. The review highlights key studies from the past decade demonstrating how these polymers improve gene silencing efficiencies, particularly in cancer and neurodegenerative disease models. Despite the progress achieved, barriers such as immunogenicity, delivery limitations, and scalability still need to be overcome for broader clinical application. Emerging strategies, including stimuli-responsive polymers and advanced nanoparticle systems, offer potential solutions to these challenges. The review underscores the transformative potential of polymer-enhanced ASO delivery in personalised medicine, emphasising the importance of continued innovation to optimise ASO-based therapeutics for more precise and effective disease treatments.
Collapse
Affiliation(s)
- Ana Cubillo Alvarez
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Dylan Maguire
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Ruairí P Brannigan
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
3
|
Pegoraro C, Masiá Sanchis E, Đorđević S, Dolz-Pérez I, Huck-Iriart C, Herrera L, Esteban-Pérez S, Conejos-Sanchez I, Vicent MJ. Multifunctional Polypeptide-Based Nanoconjugates for Targeted Mitochondrial Delivery and Nonviral Gene Therapy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2025; 37:1457-1467. [PMID: 40026705 PMCID: PMC11866743 DOI: 10.1021/acs.chemmater.4c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 03/05/2025]
Abstract
Despite recent advances in nanomedicine, developing multifunctional nanocarriers capable of targeted subcellular delivery and efficient gene therapy remains a significant challenge. This study reports the design, synthesis, and evaluation of a novel multifunctional polypeptide-based nanoconjugate that addresses this gap using sequential delivery, combining mitochondrial targeting and nonviral gene therapy. We engineered a poly-l-ornithine-based, polyethylene glycol-modified carrier and introduced a novel custom-designed trivalent compound (TRV3) into the structure. TRV3, conjugated to the polypeptide carrier via a redox-sensitive disulfide linker, incorporates the well-described triphenylphosphonium moiety (TPP) for mitochondrial targeting and a Cy5 fluorophore as a model drug. The resulting nanoconjugate (C-TRV3-A) demonstrated efficient endosomal escape and mitochondrial localization. Leveraging the endosomolytic properties of C-TRV3-A, we explored its potential as a nonviral vector for gene therapy. After optimizing formulation stability using a VLC-3 anionic polypeptide coating, we developed plasmid DNA polyplexes that exhibited enhanced stability and transfection efficiency in basic and advanced triple-negative breast cancer cell culture models. This multifunctional polypeptide-based nanoconjugate represents a significant advance in the field, offering a chemically versatile platform for simultaneous subcellular targeting and gene delivery that may be used in targeted cancer treatments, among other pathologies.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Príncipe
Felipe Research Center, Polymer Therapeutics
Lab., Valencia 46012, Spain
| | - Esther Masiá Sanchis
- Príncipe
Felipe Research Center, Polymer Therapeutics
Lab., Valencia 46012, Spain
- Centro de
Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029,Spain
- Príncipe
Felipe Research Center, Screening Platform., Valencia 46012, Spain
| | - Snežana Đorđević
- Príncipe
Felipe Research Center, Polymer Therapeutics
Lab., Valencia 46012, Spain
- Centro de
Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029,Spain
| | - Irene Dolz-Pérez
- Curapath, Av. Benjamin Franklin 19, Paterna, Valencia 46980, Spain
| | - Cristián Huck-Iriart
- Experiments
Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès 08209, Spain
| | - Lidia Herrera
- Curapath, Av. Benjamin Franklin 19, Paterna, Valencia 46980, Spain
| | | | - Inmaculada Conejos-Sanchez
- Príncipe
Felipe Research Center, Polymer Therapeutics
Lab., Valencia 46012, Spain
- Centro de
Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029,Spain
| | - María J. Vicent
- Príncipe
Felipe Research Center, Polymer Therapeutics
Lab., Valencia 46012, Spain
- Centro de
Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029,Spain
- Príncipe
Felipe Research Center, Screening Platform., Valencia 46012, Spain
| |
Collapse
|
4
|
Soni S, Kori SK, Nema P, Iyer AK, Soni V, Kashaw SK. Cell-penetrating Peptides as Keys to Endosomal Escape and Intracellular Trafficking in Nanomedicine Delivery. Curr Med Chem 2025; 32:1288-1312. [PMID: 38362688 DOI: 10.2174/0109298673278936240107121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
This review article discusses the challenges of delivering cargoes to the cytoplasm, for example, proteins, peptides, and nucleic acids, and the mechanisms involved in endosomal escape. Endocytosis, endosomal maturation, and exocytosis pose significant barriers to effective cytoplasmic delivery. The article explores various endosomal escape mechanisms, such as the proton sponge effect, osmotic lysis, membrane fusion, pore formation, membrane destabilization/ disruption, and vesicle budding and collapse. Additionally, it discusses the role of lysosomes, glycocalyx, and molecular crowding in the cytoplasmic delivery process. Despite the recent advances in nonviral delivery systems, there is still a need to improve cytoplasmic delivery. Strategies such as fusogenic peptides, endosomolytic polymers, and cell-penetrating peptides have shown promise in improving endosomal escape and cytoplasmic delivery. More research is needed to refine these strategies and make them safer and more effective. In conclusion, the article highlights the challenges associated with cytoplasmic delivery and the importance of understanding the mechanisms involved in endosomal escape. A better understanding of these processes could result in the creation of greater effectiveness and safe delivery systems for various cargoes, including proteins, peptides, and nucleic acids.
Collapse
Affiliation(s)
- Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam K Kori
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Priyanshu Nema
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Arun K Iyer
- Use-inspired Biomaterials and Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
5
|
Zhang Y, Zhang M, Song H, Dai Q, Liu C. Tumor Microenvironment-Responsive Polymer-Based RNA Delivery Systems for Cancer Treatment. SMALL METHODS 2025; 9:e2400278. [PMID: 38803312 DOI: 10.1002/smtd.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Indexed: 05/29/2024]
Abstract
Ribonucleic acid (RNA) therapeutics offer a broad prospect in cancer treatment. However, their successful application requires overcoming various physiological barriers to effectively deliver RNAs to the target sites. Currently, a number of RNA delivery systems based on polymeric nanoparticles are developed to overcome these barriers in RNA delivery. This work provides an overview of the existing RNA therapeutics for cancer gene therapy, and particularly summarizes those that are entering the clinical phase. This work then discusses the core features and latest research developments of tumor microenvironment-responsive polymer-based RNA delivery carriers which are designed based on the pathological characteristics of the tumor microenvironment. Finally, this work also proposes opportunities for the transformation of RNA therapies into cancer immunotherapy methods in clinical applications.
Collapse
Affiliation(s)
- Yahan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, 102206, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qiong Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Klyachko NL, Haney MJ, Lopukhov AV, Le-Deygen IM. Cationized extracellular vesicles for gene delivery. Sci Rep 2024; 14:25818. [PMID: 39468145 PMCID: PMC11519934 DOI: 10.1038/s41598-024-75985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Last decade, extracellular vesicles (EVs) attracted a lot of attention as potent versatile drug delivery vehicles. We reported earlier the development of EV-based delivery systems for therapeutic proteins and small molecule chemotherapeutics. In this work, we first time engineered EVs with multivalent cationic lipids for the delivery of nucleic acids. Stable, small size cationized EVs were loaded with plasmid DNA (pDNA), or mRNA, or siRNA. Nucleic acid loaded EVs were efficiently taken up by target cells as demonstrated by confocal microscopy and delivered their cargo to the nuclei in triple negative breast cancer (TNBC) cells and macrophages. Efficient transfection was achieved by engineered cationized EVs formulations of pDNA- and mRNA in vitro. Furthermore, siRNA loaded into cationized EVs showed significant knockdown of the reporter gene in Luc-expressing cells. Overall, multivalent cationized EVs represent a promising strategy for gene delivery.
Collapse
Affiliation(s)
- Natalia L Klyachko
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA.
- Deparment of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| | - Matthew J Haney
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
- Center for Nanotechnology in Drug Delivery, Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anton V Lopukhov
- Deparment of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Irina M Le-Deygen
- Deparment of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
You J, Guo Y, Dong Z. Polypeptides-Based Nanocarriers in Tumor Therapy. Pharmaceutics 2024; 16:1192. [PMID: 39339228 PMCID: PMC11435007 DOI: 10.3390/pharmaceutics16091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a worldwide problem, and new treatment strategies are being actively developed. Peptides have the characteristics of good biocompatibility, strong targeting, functional diversity, modifiability, membrane permeable ability, and low immunogenicity, and they have been widely used to construct targeted drug delivery systems (DDSs). In addition, peptides, as endogenous substances, have a high affinity, which can not only regulate immune cells but also work synergistically with drugs to kill tumor cells, demonstrating significant potential for application. In this review, the latest progress of polypeptides-based nanocarriers in tumor therapy has been outlined, focusing on their applications in killing tumor cells and regulating immune cells. Additionally, peptides as carriers were found to primarily provide a transport function, which was also a subject of interest to us. At the end of the paper, the shortcomings in the construction of peptide nano-delivery system have been summarized, and possible solutions are proposed therein. The application of peptides provides a promising outlook for cancer treatment, and we hope this article can provide in-depth insights into possible future avenues of exploration.
Collapse
Affiliation(s)
- Juhua You
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhengqi Dong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
8
|
Jogdeo CM, Siddhanta K, Das A, Ding L, Panja S, Kumari N, Oupický D. Beyond Lipids: Exploring Advances in Polymeric Gene Delivery in the Lipid Nanoparticles Era. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404608. [PMID: 38842816 PMCID: PMC11384239 DOI: 10.1002/adma.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The recent success of gene therapy during the COVID-19 pandemic has underscored the importance of effective and safe delivery systems. Complementing lipid-based delivery systems, polymers present a promising alternative for gene delivery. Significant advances have been made in the recent past, with multiple clinical trials progressing beyond phase I and several companies actively working on polymeric delivery systems which provides assurance that polymeric carriers can soon achieve clinical translation. The massive advantage of structural tunability and vast chemical space of polymers is being actively leveraged to mitigate shortcomings of traditional polycationic polymers and improve the translatability of delivery systems. Tailored polymeric approaches for diverse nucleic acids and for specific subcellular targets are now being designed to improve therapeutic efficacy. This review describes the recent advances in polymer design for improved gene delivery by polyplexes and covalent polymer-nucleic acid conjugates. The review also offers a brief note on novel computational techniques for improved polymer design. The review concludes with an overview of the current state of polymeric gene therapies in the clinic as well as future directions on their translation to the clinic.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ashish Das
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
9
|
Wu Z, Sun W, Qi H. Recent Advancements in mRNA Vaccines: From Target Selection to Delivery Systems. Vaccines (Basel) 2024; 12:873. [PMID: 39203999 PMCID: PMC11359327 DOI: 10.3390/vaccines12080873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
mRNA vaccines are leading a medical revolution. mRNA technologies utilize the host's own cells as bio-factories to produce proteins that serve as antigens. This revolutionary approach circumvents the complicated processes involved in traditional vaccine production and empowers vaccines with the ability to respond to emerging or mutated infectious diseases rapidly. Additionally, the robust cellular immune response elicited by mRNA vaccines has shown significant promise in cancer treatment. However, the inherent instability of mRNA and the complexity of tumor immunity have limited its broader application. Although the emergence of pseudouridine and ionizable cationic lipid nanoparticles (LNPs) made the clinical application of mRNA possible, there remains substantial potential for further improvement of the immunogenicity of delivered antigens and preventive or therapeutic effects of mRNA technology. Here, we review the latest advancements in mRNA vaccines, including but not limited to target selection and delivery systems. This review offers a multifaceted perspective on this rapidly evolving field.
Collapse
Affiliation(s)
- Zhongyan Wu
- Newish Biological R&D Center, Beijing 100101, China;
| | - Weilu Sun
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - Hailong Qi
- Newish Biological R&D Center, Beijing 100101, China;
| |
Collapse
|
10
|
Chernyi N, Gavrilova D, Saruhanyan M, Oloruntimehin ES, Karabelsky A, Bezsonov E, Malogolovkin A. Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives. Biomolecules 2024; 14:854. [PMID: 39062568 PMCID: PMC11274510 DOI: 10.3390/biom14070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
One of the well-known X-linked genetic disorders is hemophilia, which could be hemophilia A as a result of a mutation in the F8 (factor VIII) gene or hemophilia B as a result of a mutation in the F9 (factor IX) gene, leading to insufficient levels of the proteins essential for blood coagulation cascade. In patients with severe hemophilia, factor VIII or factor IX activities in the blood plasma are considerably low, estimated to be less than 1%. This is responsible for spontaneous or post-traumatic bleeding episodes, or both, leading to disease complications and death. Current treatment of hemophilia relies on the prevention of bleeding, which consists of expensive lifelong replacement infusion therapy of blood plasma clotting factors, their recombinant versions, or therapy with recombinant monoclonal antibodies. Recently emerged gene therapy approaches may be a potential game changer that could reshape the therapeutic outcomes of hemophilia A or B using a one-off vector in vivo delivery and aim to achieve long-term endogenous expression of factor VIII or IX. This review examines both traditional approaches to the treatment of hemophilia and modern methods, primarily focusing on gene therapy, to update knowledge in this area. Recent technological advances and gene therapeutics in the pipeline are critically reviewed and summarized. We consider gene therapy to be the most promising method as it may overcome the problems associated with more traditional treatments, such as the need for constant and expensive infusions and the presence of an immune response to the antibody drugs used to treat hemophilia.
Collapse
Affiliation(s)
- Nikita Chernyi
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Darina Gavrilova
- Department of Biology and General Genetics, First Moscow State Medical University (Sechenov University), Moscow 105043, Russia;
| | - Mane Saruhanyan
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Ezekiel S. Oloruntimehin
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Alexander Karabelsky
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354530, Russia;
| | - Evgeny Bezsonov
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
- Department of Biology and General Genetics, First Moscow State Medical University (Sechenov University), Moscow 105043, Russia;
| | - Alexander Malogolovkin
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354530, Russia;
| |
Collapse
|
11
|
Taghdiri M, Mussolino C. Viral and Non-Viral Systems to Deliver Gene Therapeutics to Clinical Targets. Int J Mol Sci 2024; 25:7333. [PMID: 39000440 PMCID: PMC11242246 DOI: 10.3390/ijms25137333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has revolutionized the field of gene therapy as it has enabled precise genome editing with unprecedented accuracy and efficiency, paving the way for clinical applications to treat otherwise incurable genetic disorders. Typically, precise genome editing requires the delivery of multiple components to the target cells that, depending on the editing platform used, may include messenger RNA (mRNA), protein complexes, and DNA fragments. For clinical purposes, these have to be efficiently delivered into transplantable cells, such as primary T lymphocytes or hematopoietic stem and progenitor cells that are typically sensitive to exogenous substances. This challenge has limited the broad applicability of precise gene therapy applications to those strategies for which efficient delivery methods are available. Electroporation-based methodologies have been generally applied for gene editing applications, but procedure-associated toxicity has represented a major burden. With the advent of novel and less disruptive methodologies to deliver genetic cargo to transplantable cells, it is now possible to safely and efficiently deliver multiple components for precise genome editing, thus expanding the applicability of these strategies. In this review, we describe the different delivery systems available for genome editing components, including viral and non-viral systems, highlighting their advantages, limitations, and recent clinical applications. Recent improvements to these delivery methods to achieve cell specificity represent a critical development that may enable in vivo targeting in the future and will certainly play a pivotal role in the gene therapy field.
Collapse
Affiliation(s)
- Maryam Taghdiri
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Ph.D. Program, Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
12
|
Guo H, Mi P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1988. [PMID: 39109479 DOI: 10.1002/wnan.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Haochen Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Van Guyse JFR, Abbasi S, Toh K, Nagorna Z, Li J, Dirisala A, Quader S, Uchida S, Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew Chem Int Ed Engl 2024; 63:e202404972. [PMID: 38651732 DOI: 10.1002/anie.202404972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Controlling the end-groups of biocompatible polymers is crucial for enabling polymer-based therapeutics and nanomedicine. Typically, end-group diversification is a challenging and time-consuming endeavor, especially for polymers prepared via ionic polymerization mechanisms with limited functional group tolerance. In this study, we present a facile end-group diversification approach for poly(2-oxazoline)s (POx), enabling quick and reliable production of heterotelechelic polymers to facilitate POxylation. The approach relies on the careful tuning of reaction parameters to establish differential reactivity of a pentafluorobenzyl initiator fragment and the living oxazolinium chain-end, allowing the selective introduction of N-, S-, O-nucleophiles via the termination of the polymerization, and a consecutive nucleophilic para-fluoro substitution. The value of this approach for the accelerated development of nanomedicine is demonstrated through the synthesis of well-defined lipid-polymer conjugates and POx-polypeptide block-copolymers, which are well-suited for drug and gene delivery. Furthermore, we investigated the application of a lipid-POx conjugate for the formulation and delivery of mRNA-loaded lipid nanoparticles for immunization against the SARS-COV-2 virus, underscoring the value of POx as a biocompatible polymer platform.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Zlata Nagorna
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Junjie Li
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Department of Medical, Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 606-0823, Kyoto, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 113-8510, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| |
Collapse
|
14
|
Narasipura EA, Fenton OS. Advances in non-viral mRNA delivery to the spleen. Biomater Sci 2024; 12:3027-3044. [PMID: 38712531 PMCID: PMC11175841 DOI: 10.1039/d4bm00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Developing safe and effective delivery strategies for localizing messenger RNA (mRNA) payloads to the spleen is an important goal in the field of genetic medicine. Accomplishing this goal is challenging due to the instability, size, and charge of mRNA payloads. Here, we provide an analysis of non-viral delivery technologies that have been developed to deliver mRNA payloads to the spleen. Specifically, our review begins by outlining the unique anatomy and potential targets for mRNA delivery within the spleen. Next, we describe approaches in mRNA sequence engineering that can be used to improve mRNA delivery to the spleen. Then, we describe advances in non-viral carrier systems that can package and deliver mRNA payloads to the spleen, highlighting key advances in the literature in lipid nanoparticle (LNP) and polymer nanoparticle (PNP) technology platforms. Finally, we provide commentary and outlook on how splenic mRNA delivery may afford next-generation treatments for autoimmune disorders and cancers. In undertaking this approach, our goal with this review is to both establish a fundamental understanding of drug delivery challenges associated with localizing mRNA payloads to the spleen, while also broadly highlighting the potential to use these genetic medicines to treat disease.
Collapse
Affiliation(s)
- Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Cao LM, Yu YF, Li ZZ, Zhong NN, Wang GR, Xiao Y, Liu B, Wu QJ, Feng C, Bu LL. Adjuvants for cancer mRNA vaccines in the era of nanotechnology: strategies, applications, and future directions. J Nanobiotechnology 2024; 22:308. [PMID: 38825711 PMCID: PMC11145938 DOI: 10.1186/s12951-024-02590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yi-Fu Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qiu-Ji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| | - Chun Feng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongii Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
16
|
Martínez-Orts M, Pujals S. Responsive Supramolecular Polymers for Diagnosis and Treatment. Int J Mol Sci 2024; 25:4077. [PMID: 38612886 PMCID: PMC11012635 DOI: 10.3390/ijms25074077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.
Collapse
Affiliation(s)
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
17
|
Abstract
Carriers for RNA delivery must be dynamic, first stabilizing and protecting therapeutic RNA during delivery to the target tissue and across cellular membrane barriers and then releasing the cargo in bioactive form. The chemical space of carriers ranges from small cationic lipids applied in lipoplexes and lipid nanoparticles, over medium-sized sequence-defined xenopeptides, to macromolecular polycations applied in polyplexes and polymer micelles. This perspective highlights the discovery of distinct virus-inspired dynamic processes that capitalize on mutual nanoparticle-host interactions to achieve potent RNA delivery. From the host side, subtle alterations of pH, ion concentration, redox potential, presence of specific proteins, receptors, or enzymes are cues, which must be recognized by the RNA nanocarrier via dynamic chemical designs including cleavable bonds, alterable physicochemical properties, and supramolecular assembly-disassembly processes to respond to changing biological microenvironment during delivery.
Collapse
Affiliation(s)
- Simone Berger
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Ulrich Lächelt
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna1090, Austria
| | - Ernst Wagner
- Department of Pharmacy, Pharmaceutical Biotechnology, Ludwig-Maximilians-Universität Munich, 81377Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| |
Collapse
|
18
|
Jin Z, Al Amili M, Guo S. Tumor Microenvironment-Responsive Drug Delivery Based on Polymeric Micelles for Precision Cancer Therapy: Strategies and Prospects. Biomedicines 2024; 12:417. [PMID: 38398021 PMCID: PMC10886702 DOI: 10.3390/biomedicines12020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In clinical practice, drug therapy for cancer is still limited by its inefficiency and high toxicity. For precision therapy, various drug delivery systems, including polymeric micelles self-assembled from amphiphilic polymeric materials, have been developed to achieve tumor-targeting drug delivery. Considering the characteristics of the pathophysiological environment at the drug target site, the design, synthesis, or modification of environmentally responsive polymeric materials has become a crucial strategy for drug-targeted delivery. In comparison to the normal physiological environment, tumors possess a unique microenvironment, characterized by a low pH, high reactive oxygen species concentration, hypoxia, and distinct enzyme systems, providing various stimuli for the environmentally responsive design of polymeric micelles. Polymeric micelles with tumor microenvironment (TME)-responsive characteristics have shown significant improvement in precision therapy for cancer treatment. This review mainly outlines the most promising strategies available for exploiting the tumor microenvironment to construct internal stimulus-responsive drug delivery micelles that target tumors and achieve enhanced antitumor efficacy. In addition, the prospects of TME-responsive polymeric micelles for gene therapy and immunotherapy, the most popular current cancer treatments, are also discussed. TME-responsive drug delivery via polymeric micelles will be an efficient and robust approach for developing clinical cancer therapies in the future.
Collapse
Affiliation(s)
- Zhu Jin
- Correspondence: (Z.J.); (S.G.)
| | | | - Shengrong Guo
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
19
|
Zhao B, Zhang X, Bickle MS, Fu S, Li Q, Zhang F. Development of polypeptide-based materials toward messenger RNA delivery. NANOSCALE 2024; 16:2250-2264. [PMID: 38213302 DOI: 10.1039/d3nr05635j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Messenger RNA (mRNA)-based therapeutic agents have demonstrated significant potential in recent times, particularly in the context of the COVID-19 pandemic outbreak. As a promising prophylactic and therapeutic strategy, polypeptide-based mRNA delivery systems attract significant interest because of their low cost, simple preparation, tuneable sizes and morphology, convenient large-scale production, biocompatibility, and biodegradability. In this review, we begin with a brief discussion of the synthesis of polypeptides, followed by a review of commonly used polypeptides in mRNA delivery, including classical polypeptides and cell-penetrating peptides. Then, the challenges against mRNA delivery, including extracellular, intracellular, and clinical barriers, are discussed in detail. Finally, we highlight a range of strategies for polypeptide-based mRNA delivery, offering valuable insights into the advancement of polypeptide-based mRNA carrier development.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Xiao Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Molly S Bickle
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Shiwei Fu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Qingchun Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
- The Dr John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
20
|
Lyu M, Yazdi M, Lin Y, Höhn M, Lächelt U, Wagner E. Receptor-Targeted Dual pH-Triggered Intracellular Protein Transfer. ACS Biomater Sci Eng 2024; 10:99-114. [PMID: 35802884 DOI: 10.1021/acsbiomaterials.2c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein therapeutics are of widespread interest due to their successful performance in the current pharmaceutical and medical fields, even though their broad applications have been hindered by the lack of an efficient intracellular delivery approach. Herein, we fabricated an active-targeted dual pH-responsive delivery system with favorable tumor cell entry augmented by extracellular pH-triggered charge reversal and tumor receptor targeting and pH-controlled endosomal release in a traceless fashion. As a traceable model protein, the enhanced green fluorescent protein (eGFP) bearing a nuclear localization signal was covalently coupled with a pH-labile traceless azidomethyl-methylmaleic anhydride (AzMMMan) linker followed by functionalization with different molar equivalents of two dibenzocyclooctyne-octa-arginine-cysteine (DBCO-R8C)-modified moieties: polyethylene glycol (PEG)-GE11 peptide for epidermal growth factor receptor-mediated targeting and melittin for endosomal escape. The cationic melittin domain was masked with tetrahydrophthalic anhydride revertible at mild acidic pH 6.5. At the optimally balanced ratio of functional units, the on-demand charge conversion at tumoral extracellular pH 6.5 in combination with GE11-mediated targeting triggered enhanced electrostatic cellular attraction by the R8C cell-penetrating peptides and melittin, as demonstrated by strongly enhanced cellular uptake. Successful endosomal release followed by nuclear localization of the eGFP cargo was obtained by taking advantage of melittin-mediated endosomal escape and rapid traceless release from the AzMMMan linker. The effectiveness of this multifunctional bioresponsive system suggests a promising strategy for delivery of protein drugs toward intracellular targets. A possible therapeutic relevance was indicated by an example of cytosolic delivery of cytochrome c initiating the apoptosis pathway to kill cancer cells.
Collapse
Affiliation(s)
- Meng Lyu
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
21
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Van Guyse JFR, Bernhard Y, Podevyn A, Hoogenboom R. Non-activated Esters as Reactive Handles in Direct Post-Polymerization Modification. Angew Chem Int Ed Engl 2023; 62:e202303841. [PMID: 37335931 DOI: 10.1002/anie.202303841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Non-activated esters are prominently featured functional groups in polymer science, as ester functional monomers display great structural diversity and excellent compatibility with a wide range of polymerization mechanisms. Yet, their direct use as a reactive handle in post-polymerization modification has been typically avoided due to their low reactivity, which impairs the quantitative conversion typically desired in post-polymerization modification reactions. While activated ester approaches are a well-established alternative, the modification of non-activated esters remains a synthetic and economically valuable opportunity. In this review, we discuss past and recent efforts in the utilization of non-activated ester groups as a reactive handle to facilitate transesterification and aminolysis/amidation reactions, and the potential of the developed methodologies in the context of macromolecular engineering.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Université de Lorraine, UMR CNRS 7053 L2CM, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy Cedex, France
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
23
|
Malik S, Muhammad K, Waheed Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules 2023; 28:6624. [PMID: 37764400 PMCID: PMC10536529 DOI: 10.3390/molecules28186624] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Knowing the beneficial aspects of nanomedicine, scientists are trying to harness the applications of nanotechnology in diagnosis, treatment, and prevention of diseases. There are also potential uses in designing medical tools and processes for the new generation of medical scientists. The main objective for conducting this research review is to gather the widespread aspects of nanomedicine under one heading and to highlight standard research practices in the medical field. Comprehensive research has been conducted to incorporate the latest data related to nanotechnology in medicine and therapeutics derived from acknowledged scientific platforms. Nanotechnology is used to conduct sensitive medical procedures. Nanotechnology is showing successful and beneficial uses in the fields of diagnostics, disease treatment, regenerative medicine, gene therapy, dentistry, oncology, aesthetics industry, drug delivery, and therapeutics. A thorough association of and cooperation between physicians, clinicians, researchers, and technologies will bring forward a future where there is a more calculated, outlined, and technically programed field of nanomedicine. Advances are being made to overcome challenges associated with the application of nanotechnology in the medical field due to the pathophysiological basis of diseases. This review highlights the multipronged aspects of nanomedicine and how nanotechnology is proving beneficial for the health industry. There is a need to minimize the health, environmental, and ethical concerns linked to nanotechnology.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
24
|
Uchida S, Lau CYJ, Oba M, Miyata K. Polyplex designs for improving the stability and safety of RNA therapeutics. Adv Drug Deliv Rev 2023; 199:114972. [PMID: 37364611 DOI: 10.1016/j.addr.2023.114972] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Nanoparticle-based delivery systems have contributed to the recent clinical success of RNA therapeutics, including siRNA and mRNA. RNA delivery using polymers has several distinct properties, such as enabling RNA delivery into extra-hepatic organs, modulation of immune responses to RNA, and regulation of intracellular RNA release. However, delivery systems should overcome safety and stability issues to achieve widespread therapeutic applications. Safety concerns include direct damage to cellular components, innate and adaptive immune responses, complement activation, and interaction with surrounding molecules and cells in the blood circulation. The stability of the delivery systems should balance extracellular RNA protection and controlled intracellular RNA release, which requires optimization for each RNA species. Further, polymer designs for improving safety and stability often conflict with each other. This review covers advances in polymer-based approaches to address these issues over several years, focusing on biological understanding and design concepts for delivery systems rather than material chemistry.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Chun Yin Jerry Lau
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
25
|
Han G, Noh D, Lee H, Lee S, Kim S, Yoon HY, Lee SH. Advances in mRNA therapeutics for cancer immunotherapy: From modification to delivery. Adv Drug Deliv Rev 2023; 199:114973. [PMID: 37369262 PMCID: PMC10290897 DOI: 10.1016/j.addr.2023.114973] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
RNA vaccines have demonstrated their ability to solve the issues posed by the COVID-19 pandemic. This success has led to the renaissance of research into mRNA and their nanoformulations as potential therapeutic modalities for various diseases. The potential of mRNA as a template for synthesizing proteins and protein fragments for cancer immunotherapy is now being explored. Despite the promise, the use of mRNA in cancer immunotherapy is limited by challenges, such as low stability against extracellular RNases, poor delivery efficiency to the target organs and cells, short circulatory half-life, variable expression levels and duration. This review highlights recent advances in chemical modification and advanced delivery systems that are helping to address these challenges and unlock the biological and pharmacological potential of mRNA therapeutics in cancer immunotherapy. The review concludes by discussing future perspectives for mRNA-based cancer immunotherapy, which holds great promise as a next-generation therapeutic modality.
Collapse
Affiliation(s)
- Geonhee Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dahye Noh
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792; Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hokyung Lee
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sehoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792.
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
26
|
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023; 12:e2202688. [PMID: 36785927 PMCID: PMC11469255 DOI: 10.1002/adhm.202202688] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Lucas Mixich
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Eger Boonstra
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Horacio Cabral
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
27
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
28
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
29
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
30
|
Xian H, Zhang Y, Yu C, Wang Y. Nanobiotechnology-Enabled mRNA Stabilization. Pharmaceutics 2023; 15:pharmaceutics15020620. [PMID: 36839942 PMCID: PMC9965532 DOI: 10.3390/pharmaceutics15020620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
mRNA technology has attracted enormous interest due to its great therapeutic potential. Strategies that can stabilize fragile mRNA molecules are crucial for their widespread applications. There are numerous reviews on mRNA delivery, but few focus on the underlying causes of mRNA instability and how to tackle the instability issues. Herein, the recent progress in nanobiotechnology-enabled strategies for stabilizing mRNA and better delivery is reviewed. First, factors that destabilize mRNA are introduced. Second, nanobiotechnology-enabled strategies to stabilize mRNA molecules are reviewed, including molecular and nanotechnology approaches. The impact of formulation processing on mRNA stability and shelf-life, including freezing and lyophilization, are also briefly discussed. Lastly, our perspectives on challenges and future directions are presented. This review may provide useful guidelines for understanding the structure-function relationship and the rational design of nanobiotechnology for mRNA stability enhancement and mRNA technology development.
Collapse
|
31
|
Nanotechnology-Based RNA Vaccines: Fundamentals, Advantages and Challenges. Pharmaceutics 2023; 15:pharmaceutics15010194. [PMID: 36678823 PMCID: PMC9864317 DOI: 10.3390/pharmaceutics15010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Over the past decades, many drugs based on the use of nanotechnology and nucleic acids have been developed. However, until recently, most of them remained at the stage of pre-clinical development and testing and did not find their way to the clinic. In our opinion, the main reason for this situation lies in the enormous complexity of the development and industrial production of such formulations leading to their high cost. The development of nanotechnology-based drugs requires the participation of scientists from many and completely different specialties including Pharmaceutical Sciences, Medicine, Engineering, Drug Delivery, Chemistry, Molecular Biology, Physiology and so on. Nevertheless, emergence of coronavirus and new vaccines based on nanotechnology has shown the high efficiency of this approach. Effective development of vaccines based on the use of nucleic acids and nanomedicine requires an understanding of a wide range of principles including mechanisms of immune responses, nucleic acid functions, nanotechnology and vaccinations. In this regard, the purpose of the current review is to recall the basic principles of the work of the immune system, vaccination, nanotechnology and drug delivery in terms of the development and production of vaccines based on both nanotechnology and the use of nucleic acids.
Collapse
|
32
|
Yang T, Xia L, Li G, Zhao J, Li J, Ge J, Yuan Q, Zhang J, He K, Xia Q. Novel bionic inspired nanosystem construction for precise delivery of mRNA. Front Bioeng Biotechnol 2023; 11:1160509. [PMID: 36937761 PMCID: PMC10018395 DOI: 10.3389/fbioe.2023.1160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The intracellular delivery of messenger (m)RNA holds great potential for the discovery and development of vaccines and therapeutics. Yet, in many applications, a major obstacle to clinical translation of mRNA therapy is the lack of efficient strategy to precisely deliver RNA sequence to liver tissues and cells. In this study, we synthesized virus-like mesoporous silica (V-SiO2) nanoparticles for effectively deliver the therapeutic RNA. Then, the cationic polymer polyethylenimine (PEI) was included for the further silica surface modification (V-SiO2-P). Negatively charged mRNA motifs were successfully linked on the surface of V-SiO2 through electrostatic interactions with PEI (m@V-SiO2-P). Finally, the supported lipid bilayer (LB) was completely wrapped on the bionic inspired surface of the nanoparticles (m@V-SiO2-P/LB). Importantly, we found that, compared with traditional liposomes with mRNA loading (m@LNPs), the V-SiO2-P/LB bionic-like morphology effectively enhanced mRNA delivery effect to hepatocytes both in vitro and in vivo, and PEI modification concurrently promoted mRNA binding and intracellular lysosomal escape. Furthermore, m@V-SiO2-P increased the blood circulation time (t1/2 = 7 h) to be much longer than that of the m@LNPs (4.2 h). Understanding intracellular delivery mediated by the V-SiO2-P/LB nanosystem will inspire the next-generation of highly efficient and effective mRNA therapies. In addition, the nanosystem can also be applied to the oral cavity, forehead, face and other orthotopic injections.
Collapse
Affiliation(s)
- Taihua Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gen Li
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahao Ge
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jianjun Zhang, ; Kang He, ; Qiang Xia,
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jianjun Zhang, ; Kang He, ; Qiang Xia,
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- *Correspondence: Jianjun Zhang, ; Kang He, ; Qiang Xia,
| |
Collapse
|
33
|
Yang L, Gong L, Wang P, Zhao X, Zhao F, Zhang Z, Li Y, Huang W. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. Pharmaceutics 2022; 14:2682. [PMID: 36559175 PMCID: PMC9787894 DOI: 10.3390/pharmaceutics14122682] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Messenger RNA (mRNA), which is composed of ribonucleotides that carry genetic information and direct protein synthesis, is transcribed from a strand of DNA as a template. On this basis, mRNA technology can take advantage of the body's own translation system to express proteins with multiple functions for the treatment of various diseases. Due to the advancement of mRNA synthesis and purification, modification and sequence optimization technologies, and the emerging lipid nanomaterials and other delivery systems, mRNA therapeutic regimens are becoming clinically feasible and exhibit significant reliability in mRNA stability, translation efficiency, and controlled immunogenicity. Lipid nanoparticles (LNPs), currently the leading non-viral delivery vehicles, have made many exciting advances in clinical translation as part of the COVID-19 vaccines and therefore have the potential to accelerate the clinical translation of gene drugs. Additionally, due to their small size, biocompatibility, and biodegradability, LNPs can effectively deliver nucleic acids into cells, which is particularly important for the current mRNA regimens. Therefore, the cutting-edge LNP@mRNA regimens hold great promise for cancer vaccines, infectious disease prevention, protein replacement therapy, gene editing, and rare disease treatment. To shed more lights on LNP@mRNA, this paper mainly discusses the rational of choosing LNPs as the non-viral vectors to deliver mRNA, the general rules for mRNA optimization and LNP preparation, and the various parameters affecting the delivery efficiency of LNP@mRNA, and finally summarizes the current research status as well as the current challenges. The latest research progress of LNPs in the treatment of other diseases such as oncological, cardiovascular, and infectious diseases is also given. Finally, the future applications and perspectives for LNP@mRNA are generally introduced.
Collapse
Affiliation(s)
- Lei Yang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinghui Zhao
- Beijing Bio-Bank Co., Ltd., Beijing 100107, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
34
|
Yang Y, Liu Z, Ma H, Cao M. Application of Peptides in Construction of Nonviral Vectors for Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224076. [PMID: 36432361 PMCID: PMC9693978 DOI: 10.3390/nano12224076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 05/29/2023]
Abstract
Gene therapy, which aims to cure diseases by knocking out, editing, correcting or compensating abnormal genes, provides new strategies for the treatment of tumors, genetic diseases and other diseases that are closely related to human gene abnormalities. In order to deliver genes efficiently to abnormal sites in vivo to achieve therapeutic effects, a variety of gene vectors have been designed. Among them, peptide-based vectors show superior advantages because of their ease of design, perfect biocompatibility and safety. Rationally designed peptides can carry nucleic acids into cells to perform therapeutic effects by overcoming a series of biological barriers including cellular uptake, endosomal escape, nuclear entrance and so on. Moreover, peptides can also be incorporated into other delivery systems as functional segments. In this review, we referred to the biological barriers for gene delivery in vivo and discussed several kinds of peptide-based nonviral gene vectors developed for overcoming these barriers. These vectors can deliver different types of genetic materials into targeted cells/tissues individually or in combination by having specific structure-function relationships. Based on the general review of peptide-based gene delivery systems, the current challenges and future perspectives in development of peptidic nonviral vectors for clinical applications were also put forward, with the aim of providing guidance towards the rational design and development of such systems.
Collapse
Affiliation(s)
- Yujie Yang
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhen Liu
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
35
|
Li Y, Fang H, Zhang T, Wang Y, Qi T, Li B, Jiao H. Lipid-mRNA nanoparticles landscape for cancer therapy. Front Bioeng Biotechnol 2022; 10:1053197. [PMID: 36394007 PMCID: PMC9659646 DOI: 10.3389/fbioe.2022.1053197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 09/19/2023] Open
Abstract
Intracellular delivery of message RNA (mRNA) technique has ushered in a hopeful era with the successive authorization of two mRNA vaccines for the Coronavirus disease-19 (COVID-19) pandemic. A wide range of clinical studies are proceeding and will be initiated in the foreseeable future to treat and prevent cancers. However, efficient and non-toxic delivery of therapeutic mRNAs maintains the key limited step for their widespread applications in human beings. mRNA delivery systems are in urgent demand to resolve this difficulty. Recently lipid nanoparticles (LNPs) vehicles have prospered as powerful mRNA delivery tools, enabling their potential applications in malignant tumors via cancer immunotherapy and CRISPR/Cas9-based gene editing technique. This review discusses formulation components of mRNA-LNPs, summarizes the latest findings of mRNA cancer therapy, highlights challenges, and offers directions for more effective nanotherapeutics for cancer patients.
Collapse
Affiliation(s)
- Yin Li
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Hengtong Fang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Tao Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Yu Wang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Tingting Qi
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Bai Li
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huping Jiao
- College of Animal Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Andrée L, Oude Egberink R, Dodemont J, Hassani Besheli N, Yang F, Brock R, Leeuwenburgh SCG. Gelatin Nanoparticles for Complexation and Enhanced Cellular Delivery of mRNA. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3423. [PMID: 36234551 PMCID: PMC9565693 DOI: 10.3390/nano12193423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Messenger RNA (mRNA) is increasingly gaining interest as a modality in vaccination and protein replacement therapy. In regenerative medicine, the mRNA-mediated expression of growth factors has shown promising results. In contrast to protein delivery, successful mRNA delivery requires a vector to induce cellular uptake and subsequent endosomal escape to reach its end destination, the ribosome. Current non-viral vectors such as lipid- or polymer-based nanoparticles have been successfully used to express mRNA-encoded proteins. However, to advance the use of mRNA in regenerative medicine, it is required to assess the compatibility of mRNA with biomaterials that are typically applied in this field. Herein, we investigated the complexation, cellular uptake and maintenance of the integrity of mRNA complexed with gelatin nanoparticles (GNPs). To this end, GNPs with positive, neutral or negative surface charge were synthesized to assess their ability to bind and transport mRNA into cells. Positively charged GNPs exhibited the highest binding affinity and transported substantial amounts of mRNA into pre-osteoblastic cells, as assessed by confocal microscopy using fluorescently labeled mRNA. Furthermore, the GNP-bound mRNA remained stable. However, no expression of mRNA-encoded protein was detected, which is likely related to insufficient endosomal escape and/or mRNA release from the GNPs. Our results indicate that gelatin-based nanomaterials interact with mRNA in a charge-dependent manner and also mediate cellular uptake. These results create the basis for the incorporation of further functionality to yield endosomal release.
Collapse
Affiliation(s)
- Lea Andrée
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Rik Oude Egberink
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Josephine Dodemont
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Negar Hassani Besheli
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | - Sander C. G. Leeuwenburgh
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| |
Collapse
|
37
|
Quader S, Van Guyse JFR. Bioresponsive Polymers for Nanomedicine-Expectations and Reality! Polymers (Basel) 2022; 14:3659. [PMID: 36080733 PMCID: PMC9460233 DOI: 10.3390/polym14173659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/18/2022] Open
Abstract
Bioresponsive polymers in nanomedicine have been widely perceived to selectively activate the therapeutic function of nanomedicine at diseased or pathological sites, while sparing their healthy counterparts. This idea can be described as an advanced version of Paul Ehrlich's magic bullet concept. From that perspective, the inherent anomalies or malfunction of the pathological sites are generally targeted to allow the selective activation or sensory function of nanomedicine. Nonetheless, while the primary goals and expectations in developing bioresponsive polymers are to elicit exclusive selectivity of therapeutic action at diseased sites, this remains difficult to achieve in practice. Numerous research efforts have been undertaken, and are ongoing, to tackle this fine-tuning. This review provides a brief introduction to key stimuli with biological relevance commonly featured in the design of bioresponsive polymers, which serves as a platform for critical discussion, and identifies the gap between expectations and current reality.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Joachim F. R. Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
- Leiden Academic Center for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
38
|
Biomaterial-Mediated Protein Expression Induced by Peptide-mRNA Nanoparticles Embedded in Lyophilized Collagen Scaffolds. Pharmaceutics 2022; 14:pharmaceutics14081619. [PMID: 36015245 PMCID: PMC9414905 DOI: 10.3390/pharmaceutics14081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
In our aging society, the number of patients suffering from poorly healing bone defects increases. Bone morphogenetic proteins (BMPs) are used in the clinic to promote bone regeneration. However, poor control of BMP delivery and thus activity necessitates high doses, resulting in adverse effects and increased costs. It has been demonstrated that messenger RNA (mRNA) provides a superior alternative to protein delivery due to local uptake and prolonged expression restricted to the site of action. Here, we present the development of porous collagen scaffolds incorporating peptide-mRNA nanoparticles (NPs). Nanoparticles were generated by simply mixing aqueous solutions of the cationic cell-penetrating peptide PepFect14 (PF14) and mRNA. Peptide-mRNA complexes were uniformly distributed throughout the scaffolds, and matrices fully preserved cell attachment and viability. There was a clear dependence of protein expression on the incorporated amount of mRNA. Importantly, after lyophilization, the mRNA formulation in the collagen scaffolds retained activity also at 4 °C over two weeks. Overall, our results demonstrate that collagen scaffolds incorporating peptide-mRNA complexes hold promise as off-the-shelf functional biomaterials for applications in regenerative medicine and constitute a viable alternative to lipid-based mRNA formulations.
Collapse
|
39
|
Nezammahalleh H, Ghanati F, Rezaei S, Badshah MA, Park J, Abbas N, Ali A. Biochemical Interactions through Microscopic Techniques: Structural and Molecular Characterization. Polymers (Basel) 2022; 14:2853. [PMID: 35890632 PMCID: PMC9318543 DOI: 10.3390/polym14142853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Many researchers and scientists have contributed significantly to provide structural and molecular characterizations of biochemical interactions using microscopic techniques in the recent decade, as these biochemical interactions play a crucial role in the production of diverse biomaterials and the organization of biological systems. The properties, activities, and functionalities of the biomaterials and biological systems need to be identified and modified for different purposes in both the material and life sciences. The present study aimed to review the advantages and disadvantages of three main branches of microscopy techniques (optical microscopy, electron microscopy, and scanning probe microscopy) developed for the characterization of these interactions. First, we explain the basic concepts of microscopy and then the breadth of their applicability to different fields of research. This work could be useful for future research works on biochemical self-assembly, biochemical aggregation and localization, biological functionalities, cell viability, live-cell imaging, material stability, and membrane permeability, among others. This understanding is of high importance in rapid, inexpensive, and accurate analysis of biochemical interactions.
Collapse
Affiliation(s)
- Hassan Nezammahalleh
- Faculty of Biological Science, Tarbiat Modares University, Tehran 14115-111, Iran; (H.N.); (F.G.)
- Research and Development Department, Hamyarapply Group, Tehran 14115-111, Iran
| | - Faezeh Ghanati
- Faculty of Biological Science, Tarbiat Modares University, Tehran 14115-111, Iran; (H.N.); (F.G.)
| | - Shima Rezaei
- Department of Microbiology, Faculty of Biological Science, Ardebil Branch, Islamic Azad University, Ardebil 5615731567, Iran;
| | - Mohsin Ali Badshah
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA;
| | - Joobee Park
- Plamica Labs, Batten Hall, 125 Western Ave, Allston, MA 02163, USA;
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea
| | - Ahsan Ali
- Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Korea
| |
Collapse
|
40
|
D’haese S, Laeremans T, den Roover S, Allard SD, Vanham G, Aerts JL. Efficient Induction of Antigen-Specific CD8+ T-Cell Responses by Cationic Peptide-Based mRNA Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071387. [PMID: 35890284 PMCID: PMC9321026 DOI: 10.3390/pharmaceutics14071387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
A major determinant for the success of mRNA-based vaccines is the composition of the nanoparticles (NPs) used for formulation and delivery. Cationic peptides represent interesting candidate carriers for mRNA, since they have been shown to efficiently deliver nucleic acids to eukaryotic cells. mRNA NPs based on arginine-rich peptides have previously been demonstrated to induce potent antigen-specific CD8+ T-cell responses. We therefore compared the histidine-rich amphipathic peptide LAH4-L1 (KKALLAHALHLLALLALHLAHALKKA) to the fully substituted arginine variant (LAH4-L1R) for their capacity to formulate mRNA and transfect dendritic cells (DCs). Although both peptides encapsulated mRNA to the same extent, and showed excellent uptake in DCs, the gene expression level was significantly higher for LAH4-L1. The LAH4-L1–mRNA NPs also resulted in enhanced antigen presentation in the context of MHC I compared to LAH4-L1R in primary murine CD103+ DCs. Both peptides induced DC maturation and inflammasome activation. Subsequent ex vivo stimulation of OT-I splenocytes with transfected CD103+ DCs resulted in a high proportion of polyfunctional CD8+ T cells for both peptides. In addition, in vivo immunization with LAH4-L1 or LAH4-L1R–mRNA NPs resulted in proliferation of antigen-specific T cells. In conclusion, although LAH4-L1 outperformed LAH4-L1R in terms of transfection efficiency, the immune stimulation ex vivo and in vivo was equally efficient.
Collapse
Affiliation(s)
- Sigrid D’haese
- Laboratory for Neuro-Aging and Viro-Immunotherapy (NAVI), Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (S.D.); (T.L.); (S.d.R.)
| | - Thessa Laeremans
- Laboratory for Neuro-Aging and Viro-Immunotherapy (NAVI), Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (S.D.); (T.L.); (S.d.R.)
| | - Sabine den Roover
- Laboratory for Neuro-Aging and Viro-Immunotherapy (NAVI), Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (S.D.); (T.L.); (S.d.R.)
| | - Sabine D. Allard
- Department of Internal Medicine (IRG), Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium;
| | - Guido Vanham
- Department of Virology, Institute of Tropical Medicine, University of Antwerp, 2000 Antwerp, Belgium;
| | - Joeri L. Aerts
- Laboratory for Neuro-Aging and Viro-Immunotherapy (NAVI), Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (S.D.); (T.L.); (S.d.R.)
- Correspondence:
| |
Collapse
|
41
|
Vodyashkin AA, Kezimana P, Vetcher AA, Stanishevskiy YM. Biopolymeric Nanoparticles-Multifunctional Materials of the Future. Polymers (Basel) 2022; 14:2287. [PMID: 35683959 PMCID: PMC9182720 DOI: 10.3390/polym14112287] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| |
Collapse
|