1
|
Heremans J, Ballet S, Martin C. The versatility of peptide hydrogels: From self-assembly to drug delivery applications. J Pept Sci 2025; 31:e3662. [PMID: 39561971 DOI: 10.1002/psc.3662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Pharmaceuticals often suffer from limitations such as low solubility, low stability, and short half-life. To address these challenges and reduce the need for frequent drug administrations, a more efficient delivery is required. In this context, the development of controlled drug delivery systems, acting as a protective depot for the drug, has expanded significantly over the last decades. Among these, injectable hydrogels have emerged as a promising platform, especially in view of the rise of biologicals as therapeutics. Hydrogels are functional, solid-like biomaterials, composed of cross-linked hydrophilic polymers and high water content. Their physical properties, which closely mimic the extracellular matrix, make them suitable for various biomedical applications. This review discusses the different types of hydrogel systems and their self-assembly process, with an emphasis on peptide-based hydrogels. Due to their structural and functional diversity, biocompatibility, synthetic accessibility, and tunability, peptides are regarded as promising and versatile building blocks. A comprehensive overview of the variety of peptide hydrogels is outlined, with β-sheet forming sequences being highlighted. Key factors to consider when using peptide hydrogels as a controlled drug delivery system are reviewed, along with a discussion of the main drug release mechanisms and the emerging trend towards affinity-based systems to further refine drug release profiles.
Collapse
Affiliation(s)
- Julie Heremans
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Das TN, Ramesh A, Ghosh A, Moyra S, Maji TK, Ghosh G. Peptide-based nanomaterials and their diverse applications. NANOSCALE HORIZONS 2025; 10:279-313. [PMID: 39629637 DOI: 10.1039/d4nh00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The supramolecular self-assembly of peptides offers a promising avenue for both materials science and biological applications. Peptides have garnered significant attention in molecular self-assembly, forming diverse nanostructures with α-helix, β-sheet, and random coil conformations. These self-assembly processes are primarily driven by the amphiphilic nature of peptides and stabilized by non-covalent interactions, leading to complex nanoarchitectures responsive to environmental stimuli. While extensively studied in biomedical applications, including drug delivery and tissue engineering, their potential applications in the fields of piezoresponsive materials, conducting materials, catalysis and energy harvesting remain underexplored. This review comprehensively elucidates the diverse material characteristics and applications of self-assembled peptides. We discuss the multi-stimuli-responsiveness of peptide self-assemblies and their roles as energy harvesters, catalysts, liquid crystalline materials, glass materials and contributors to electrical conductivity. Additionally, we address the challenges and present future perspectives associated with peptide nanomaterials. This review aims to provide insights into the versatile applications of peptide self-assemblies while concisely summarizing their well-established biomedical roles that have previously been extensively reviewed by various research groups, including our group.
Collapse
Affiliation(s)
- Tarak Nath Das
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Arghya Ghosh
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Sourav Moyra
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), International Centre for Materials Science (ICMS), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Ford EM, Hilderbrand AM, Kloxin AM. Harnessing multifunctional collagen mimetic peptides to create bioinspired stimuli responsive hydrogels for controlled cell culture. J Mater Chem B 2024; 12:9600-9621. [PMID: 39211975 PMCID: PMC11362912 DOI: 10.1039/d4tb00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The demand for synthetic soft materials with bioinspired structures continues to grow. Material applications range from in vitro and in vivo tissue mimics to therapeutic delivery systems, where well-defined synthetic building blocks offer precise and reproducible property control. This work examines a synthetic assembling peptide, specifically a multifunctional collagen mimetic peptide (mfCMP) either alone or with reactive macromers, for the creation of responsive hydrogels that capture aspects of soft collagen-rich tissues. We first explored how buffer choice impacts mfCMP hierarchical assembly, in particular, peptide melting temperature, fibril morphology, and ability to form physical hydrogels. Assembly in physiologically relevant buffer resulted in collagen-like fibrillar structures and physically assembled hydrogels with shear-thinning (as indicated through strain-yielding) and self-healing properties. Further, we aimed to create fully synthetic, composite peptide-polymer hydrogels with dynamic responses to various stimuli, inspired by the extracellular matrix (ECM). Specifically, we established mfCMP-poly(ethylene glycol) (PEG) hydrogel compositions that demonstrate increasing non-linear viscoelasticity in response to applied strain as the amount of assembled mfCMP content increases. Furthermore, the thermal responsiveness of mfCMP physical crosslinks was harnessed to manipulate the composite hydrogel mechanical properties in response to changes in temperature. Finally, cells relevant in wound healing, human lung fibroblasts, were encapsulated within these peptide-polymer hydrogels to explore the impact of increased mfCMP, and the resulting changes in viscoelasticity, on cell response. This work establishes mfCMP building blocks as versatile tools for creating hybrid and adaptable systems with applications ranging from injectable shear-thinning materials to responsive interfaces and synthetic ECMs for tissue engineering.
Collapse
Affiliation(s)
- Eden M Ford
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Amber M Hilderbrand
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
4
|
Kashyap S, Pal VK, Mohanty S, Roy S. Exploring a Solvent Dependent Strategy to Control Self-Assembling Behavior and Cellular Interaction in Laminin-Mimetic Short Peptide based Supramolecular Hydrogels. Chembiochem 2024; 25:e202300835. [PMID: 38390634 DOI: 10.1002/cbic.202300835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Self-assembled hydrogels, fabricated through diverse non-covalent interactions, have been extensively studied in regenerative medicines. Inspired from bioactive functional motifs of ECM protein, short peptide sequences have shown remarkable abilities to replicate the intrinsic features of the natural extracellular milieu. In this direction, we have fabricated two short hydrophobic bioactive sequences derived from the laminin protein i. e., IKVAV and YIGSR. Based on the substantial hydrophobicity of these peptides, we selected a co-solvent approach as a suitable gelation technique that included different concentrations of DMSO as an organic phase along with an aqueous solution containing 0.1 % TFA. These hydrophobic laminin-based bioactive peptides with limited solubility in aqueous physiological environment showed significantly enhanced solubility with higher DMSO content in water. The enhanced solubility resulted in extensive intermolecular interactions that led to the formation of hydrogels with a higher-order entangled network along with improved mechanical properties. Interestingly, by simply modulating DMSO content, highly tunable gels were accessed in the same gelator domain that displayed differential physicochemical properties. Further, the cellular studies substantiated the potential of these laminin-derived hydrogels in enhancing cell-matrix interactions, thereby reinforcing their applications in tissue engineering.
Collapse
Affiliation(s)
- Shambhavi Kashyap
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Vijay Kumar Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sweta Mohanty
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sangita Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| |
Collapse
|
5
|
Chavda VP, Teli D, Balar PC, Davidson M, Bojarska J, Vaghela DA, Apostolopoulos V. Self-assembled peptide hydrogels for the treatment of diabetes and associated complications. Colloids Surf B Biointerfaces 2024; 235:113761. [PMID: 38281392 DOI: 10.1016/j.colsurfb.2024.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
Diabetes is a widespread epidemic that includes a number of comorbid conditions that greatly increase the chance of acquiring other chronic illnesses. Every year, there are significantly more people with diabetes because of the rise in type-2 diabetes prevalence. The primary causes of illness and mortality worldwide are, among these, hyperglycemia and its comorbidities. There has been a lot of interest in the creation of peptide-based hydrogels as a potentially effective platform for the treatment of diabetes and its consequences. Here, we emphasize the use of self-assembled hydrogel formulations and their unique potential for the treatment/management of type-2 diabetes and its consequences. (i.e., wounds). Key aspects covered include the characteristics of self-assembled peptide hydrogels, methods for their preparation, and their pre-clinical and clinical applications in addressing metabolic disorders such as type-2 diabetes.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India.
| | - Divya Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromski S.t, 90-924 Lodz, Poland.
| | - Dixa A Vaghela
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia; Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Wang Y, Zhang L, Liu C, Luo Y, Chen D. Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies. Pharmaceutics 2024; 16:240. [PMID: 38399294 PMCID: PMC10893007 DOI: 10.3390/pharmaceutics16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide-drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide-drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions.
Collapse
Affiliation(s)
- Yubo Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, China;
| | - Lu Zhang
- School of Life Sciences, Xiamen University, Xiamen 361005, China;
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 351002, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
7
|
Min J, Rong X, Zhang J, Su R, Wang Y, Qi W. Computational Design of Peptide Assemblies. J Chem Theory Comput 2024; 20:532-550. [PMID: 38206800 DOI: 10.1021/acs.jctc.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.
Collapse
Affiliation(s)
- Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
8
|
Tian Y, Li J, Wang A, Li Q, Jian H, Bai S. Peptide-Based Optical/Electronic Materials: Assembly and Recent Applications in Biomedicine, Sensing, and Energy Storage. Macromol Biosci 2023; 23:e2300171. [PMID: 37466295 DOI: 10.1002/mabi.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/20/2023]
Abstract
The unique optical and electronic properties of living systems are impressive. Peptide-based supramolecular self-assembly systems attempt to mimic these properties by preparation optical/electronic function materials with specific structure through simple building blocks, rational molecular design, and specific kinetic stimulation. From the perspective of building blocks and assembly strategies, the unique optical and electronic properties of peptide-based nanostructures, including peptides self-assembly and peptides regulate the assembly of external function subunits, are systematically reviewed. Additionally, their applications in biomedicine, sensing, and energy storage are also highlighted. This bioinspired peptide-based function material is one of the hot candidates for the new generation of green intellect materials, with many advantages such as biocompatibility, environmental friendliness, and adjustable morphology.
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
9
|
Buzzaccaro S, Ruzzi V, Gelain F, Piazza R. A Light Scattering Investigation of Enzymatic Gelation in Self-Assembling Peptides. Gels 2023; 9:gels9040347. [PMID: 37102959 PMCID: PMC10137429 DOI: 10.3390/gels9040347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Self-assembling peptides (SAPs) have been increasingly studied as hydrogel-former gelators because they can create biocompatible environments. A common strategy to trigger gelation, is to use a pH variation, but most methods result in a change in pH that is too rapid, leading to gels with hardly reproducible properties. Here, we use the urea-urease reaction to tune gel properties, by a slow and uniform pH increase. We were able to produce very homogeneous and transparent gels at several SAP concentrations, ranging from c=1g/L to c=10g/L. In addition, by exploiting such a pH control strategy, and combining photon correlation imaging with dynamic light scattering measurements, we managed to unravel the mechanism by which gelation occurs in solutions of (LDLK)3-based SAPs. We found that, in diluted and concentrated solutions, gelation follows different pathways. This leads to gels with different microscopic dynamics and capability of trapping nanoparticles. At high concentrations, a strong gel is formed, made of relatively thick and rigid branches that firmly entrap nanoparticles. By contrast, the gel formed in dilute conditions is weaker, characterized by entanglements and crosslinks of very thin and flexible filaments. The gel is still able to entrap nanoparticles, but their motion is not completely arrested. These different gel morphologies can potentially be exploited for controlled multiple drug release.
Collapse
Affiliation(s)
- Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Vincenzo Ruzzi
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Fabrizio Gelain
- Unità di Ingegneria Tissutale, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering, ASST GOM Niguarda, 20162 Milano, Italy
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
10
|
Hernandez A, Hartgerink JD, Young S. Self-assembling peptides as immunomodulatory biomaterials. Front Bioeng Biotechnol 2023; 11:1139782. [PMID: 36937769 PMCID: PMC10014862 DOI: 10.3389/fbioe.2023.1139782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Self-assembling peptides are a type of biomaterial rapidly emerging in the fields of biomedicine and material sciences due to their promise in biocompatibility and effectiveness at controlled release. These self-assembling peptides can form diverse nanostructures in response to molecular interactions, making them versatile materials. Once assembled, the peptides can mimic biological functions and provide a combinatorial delivery of therapeutics such as cytokines and drugs. These self-assembling peptides are showing success in biomedical settings yet face unique challenges that must be addressed to be widely applied in the clinic. Herein, we describe self-assembling peptides' characteristics and current applications in immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Andrea Hernandez
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, TX, United States
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States
- *Correspondence: Simon Young,
| |
Collapse
|
11
|
Pitz M, Elpers M, Nukovic A, Wilde S, Gregory AJ, Alexander-Bryant A. De Novo Self-Assembling Peptides Mediate the Conversion of Temozolomide and Delivery of a Model Drug into Glioblastoma Multiforme Cells. Biomedicines 2022; 10:biomedicines10092164. [PMID: 36140265 PMCID: PMC9495814 DOI: 10.3390/biomedicines10092164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive central nervous system tumor, and standard treatment, including surgical resection, radiation, and chemotherapy, has not significantly improved patient outcomes over the last 20 years. Temozolomide (TMZ), the prodrug most commonly used to treat GBM, must pass the blood–brain barrier and requires a basic pH to convert to its active form. Due to these barriers, less than 30% of orally delivered TMZ reaches the central nervous system and becomes bioactive. In this work, we have developed a novel biomaterial delivery system to convert TMZ to its active form and that shows promise for intracellular TMZ delivery. Self-assembling peptides were characterized under several different assembly conditions and evaluated for TMZ loading and conversion. Both solvent and method of assembly were found to affect the supramolecular and secondary structure of peptide assemblies. Additionally, as peptides degraded in phosphate-buffered saline, TMZ was rapidly converted to its active form. This work demonstrates that peptide-based drug delivery systems can effectively create a local stimulus during drug delivery while remaining biocompatible. This principle could be used in many future biomedical applications in addition to cancer treatment, such as wound healing and regenerative medicine.
Collapse
|