1
|
Zhang J, Sun X, Chai X, Jiao Y, Sun J, Wang S, Yu H, Feng X. Curcumin Mitigates Oxidative Damage in Broiler Liver and Ileum Caused by Aflatoxin B1-Contaminated Feed through Nrf2 Signaling Pathway. Animals (Basel) 2024; 14:409. [PMID: 38338051 PMCID: PMC10854683 DOI: 10.3390/ani14030409] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
This experiment aimed to investigate the mitigating effect of CUR on the growth performance and liver and intestinal health of broilers fed AFB1-contaminated diets. In this study, 320 one-day-old healthy male Arbor Acres (AA) broilers were randomly divided into four groups, including the Control group (fed the basal diet), the AFB1 group (fed the AFB1-contaminated diet containing 1 mg/kg AFB1), the AFB1+CUR group (fed the AFB1-contaminated diet with 500 mg/kg CUR), and the CUR group (fed the basal diet containing 500 mg/kg CUR), with eight replicates of ten animals per group and a 28 d experimental period. In terms of the growth performance, the addition of 500 mg/kg CUR significantly improved AFB1-induced significant reductions in the final body weight on day 28 and mean daily gain (p < 0.05) and increased the ratio of the mean daily feed intake to mean daily weight gain in broilers (p < 0.05). In terms of liver health, significant improvements in liver histological lesions occurred in broilers in the AFB1+CUR group compared to the AFB1 group, with significantly higher glutathione peroxidase (GSH-Px), catalase (CAT), and total superoxide dismutase (T-SOD) activities (p < 0.05) and significantly higher levels of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap-1), heme oxygenase 1 (HO-1), and NAD(P)H quinone oxidoreductase 1 (NQO-1) gene expression (p < 0.05). In terms of intestinal health, CUR addition significantly increased the relative length of ileum (p < 0.05), significantly elevated the height of ileal villi (p < 0.05), significantly reduced D-Lactate (D-LA) and diamine oxidase (DAO) activities in broiler serum (p < 0.05), significantly increased GSH, CAT, and T-SOD activities in ileal tissues (p < 0.05), and significantly elevated the expression of Nrf2, HO-1, and NQO-1 genes (p < 0.05) compared to the AFB1 group. In conclusion, CUR showed a protective effect against damage to the liver and intestine caused by AFB1 in broilers through the Nrf2 signaling pathway, thereby improving the growth performance of broilers exposed to AFB1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (X.S.); (X.C.); (Y.J.); (J.S.); (S.W.); (H.Y.)
| |
Collapse
|
2
|
Muñoz-Zuluaga JE, Monroy-Hurtado JA, Muñoz-Duque JD, Franco-Montoya LN, Tamayo-Arango L. Morphological description of the alimentary canal and adnexal glands in Amazilia tzacatl, Amazilia saucerottei, Amazilia amabilis and Anthrachotorax nigricollis species. Anat Histol Embryol 2024; 53:e12989. [PMID: 37864435 DOI: 10.1111/ahe.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/22/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
The hummingbird family (Trochilidae) includes the smallest and most metabolically active vertebrates. They have a high energy demand because of their extraordinarily high metabolic rates during hovering while looking for food. The morphology of the digestive apparatus is related to the feeding habits of the species. The anatomy and histology of the digestive apparatus in these birds have not been thoroughly described except for their tongue. Therefore, this study aimed to describe the gross anatomy and histology of the alimentary canal and adnexal glands in four species from the hummingbird family: Amazilia tzacatl (n = 2), Amazilia saucerottei (n = 1), Amazilia amabilis (n = 1) and Anthracothorax nigricollis (n = 1). The alimentary canal was found to be very short. The epithelium of the oesophagus and crop showed variable degrees of keratinization and parakeratotic areas as normal conditions. A dorsal crop was observed as a differential characteristic of these birds. Like other birds, the ventricular mucosa in hummingbirds was covered and protected by the cuticle and showed a tunica muscularis constituted by three muscle layers. There was no isthmus between the proventriculus and ventriculus. The intestine presents a well-differentiated duodenum and jejunum. However, no ileum nor caeca were identified. The intestinal villi length, base width, crypt depth and area showed differences among the specimens studied among the small and large intestines. In addition, variations in thickness were observed in the smooth muscle tunica along the intestine. In all the studied species, the liver was composed of two lobes (right and left), and no gall bladder was observed during gross inspection or in histological sections. Finally, the pancreas was observed as a diffused organ forming islets related to all the small intestines. Some anatomical differences were observed among the studied species, mainly concerning Anthracothorax nigricollis. Hummingbirds showed very interesting and distinctive morphological characteristics. Hummingbirds possess unique and intriguing morphological characteristics. Future comparative studies related to the anatomy, histology and function of the digestive apparatus of hummingbirds are required. Expanding our understanding of the digestive morphophysiology in these bird species is crucial. However, it is necessary to conduct more comprehensive studies encompassing a wider range of hummingbird species and including a larger number of individuals to obtain more conclusive findings.
Collapse
Affiliation(s)
- John Edisson Muñoz-Zuluaga
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Julián Andrés Monroy-Hurtado
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Julián David Muñoz-Duque
- Grupo de Investigación Quirón, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Luz Natalia Franco-Montoya
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Lynda Tamayo-Arango
- Grupo de Investigación CIBAV, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Medellin, Colombia
| |
Collapse
|
3
|
Massoud D, Fouda M, Shaldoum F, Alrashdi BM, AbdRabou MA, Soliman SA, Abd-Elhafeez HH, Hassan M, Abumandour M. Characterization of the Small Intestine in the Southern White-breasted Hedgehog (Erinaceus concolor) Using Histological, Histochemical, Immunohistochemical, and Scanning Electron Microscopic Techniques. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2218-2225. [PMID: 37972292 DOI: 10.1093/micmic/ozad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
The present study was designed to investigate the microscopic features of the small intestine in the southern white-breasted hedgehog (Erinaceus concolor). The histochemical profile of the small intestine was investigated using periodic acid Schiff (PAS), alcian blue (AB, pH 2.5), and aldehyde fuchsin. The expression of SOX9 was also evaluated immunohistochemically, and the detailed morphology of intestinal mucosa was studied by using a scanning electron microscope. The intestinal wall was composed of the tunica mucosa, tunica submucosa, tunica muscularis, and tunica serosa. Plica circulares and muscularis mucosa were present only in the duodenum. The jejunal villi were the tallest and the ileal villi were the shortest. From the duodenum to the ileum, the population density of goblet cells decreased significantly. The goblet cells throughout the small intestine reacted positively with PAS and AB. The expression rate of SOX9 was not statistically different between the three parts of the small intestine (p > 0.05). In conclusion, despite the general characteristics of the small intestine in this species of hedgehog, there were some differences when compared with other mammalian and rodent species. These findings provide a baseline for future detailed research on the digestive system of the hedgehog species and other mammalian species.
Collapse
Affiliation(s)
- Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Maged Fouda
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Fayez Shaldoum
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Barakat M Alrashdi
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Mervat Ahmed AbdRabou
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Mervat Hassan
- Department of Theriogenology, Faculty of Veterinary Medicine, New Valley University, El-kharga 71511, Egypt
| | - Mohamed Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
4
|
Wang Z, Jiang X, Zhang L, Chen H. Protective effects of Althaea officinalis L. extract against N-diethylnitrosamine-induced hepatocellular carcinoma in male Wistar rats through antioxidative, anti-inflammatory, mitochondrial apoptosis and PI3K/Akt/mTOR signaling pathways. Food Sci Nutr 2023; 11:4756-4772. [PMID: 37576045 PMCID: PMC10420783 DOI: 10.1002/fsn3.3455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma is the fourth cause of death due to cancer and includes 90% of liver tumors. Therefore, in this study, it was tried to show that Althaea officinalis L. flower extract (ALOF) can protect hepatocytes against N-diethylnitrosamine (DEN)-induced hepatocellular carcinoma. Totally, 70 Wistar rats were divided into seven groups (n = 10/group) of sham, DEN, treatment with silymarin (SIL; DEN + SIL), treatment with ALOF (DEN + 250 and 500 ALOF), and cotreatment with SIL and ALOF (DEN + SIL + 250 and 500 ALOF). At the end of the study, the serum levels of liver indices (albumin, total protein, bilirubin, C-reactive protein, ALT, AST, and ALP), inflammatory cytokines (IL-6, IL-1β, IL-10, and TNF-α), and oxidants parameters (glutathione peroxidase [GPx], superoxide dismutase [SOD], catalase [CAT] activity along with nitric oxide [NO] levels) were evaluated. The level of Bax, Bcl-2, Caspase-3, p53, PI3K, mTOR, and AKT genes were measured. ALOF in cotreatment with SIL was able to regulate liver biochemical parameters, improve serum antioxidant indices, and decrease the level of proinflammatory cytokines significantly (p < .05). ALOF extract in both doses of 250 and 500 mg/kg in cotreatment with SIL caused a significant (p < .05) decrease in the p53-positive cells and a significant (p < .05) increase in Bcl-2-positive cells. Therefore, ALOF was able to modulate the proliferation of cancer cells and protect normal cells through the regulation of Bax/Bcl-2/p53 and PI3K/Akt/mTOR signaling pathways. It seems that ALOF can be used as a prodrug or complementary treatment in the protection of hepatocytes in induced damages caused by carcinogens.
Collapse
Affiliation(s)
- Zhenqian Wang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Xiao Jiang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Long Zhang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Han Chen
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| |
Collapse
|
5
|
Veress B, Peruzzi N, Eckermann M, Frohn J, Salditt T, Bech M, Ohlsson B. Structure of the myenteric plexus in normal and diseased human ileum analyzed by X-ray virtual histology slices. World J Gastroenterol 2022; 28:3994-4006. [PMID: 36157532 PMCID: PMC9367237 DOI: 10.3748/wjg.v28.i29.3994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The enteric nervous system (ENS) is situated along the entire gastrointestinal tract and is divided into myenteric and submucosal plexuses in the small and large intestines. The ENS consists of neurons, glial cells, and nerves assembled into ganglia, surrounded by telocytes, interstitial cells of Cajal, and connective tissue. Owing to the complex spatial organization of several interconnections with nerve fascicles, the ENS is difficult to examine in conventional histological sections of 3-5 μm.
AIM To examine human ileum full-thickness biopsies using X-ray phase-contrast nanotomography without prior staining to visualize the ENS.
METHODS Six patients were diagnosed with gastrointestinal dysmotility and neuropathy based on routine clinical and histopathological examinations. As controls, full-thickness biopsies were collected from healthy resection ileal regions after hemicolectomy for right colon malignancy. From the paraffin blocks, 4-µm thick sections were prepared and stained with hematoxylin and eosin for localization of the myenteric ganglia under a light microscope. A 1-mm punch biopsy (up to 1 cm in length) centered on the myenteric plexus was taken and placed into a Kapton® tube for mounting in the subsequent investigation. X-ray phase-contrast tomography was performed using two custom-designed laboratory setups with micrometer resolution for overview scanning. Subsequently, selected regions of interest were scanned at a synchrotron-based end-station, and high-resolution slices were reported. In total, more than 6000 virtual slices were analyzed from nine samples.
RESULTS In the overview scans, the general architecture and quality of the samples were studied, and the myenteric plexus was localized. High-resolution scans revealed details, including the ganglia, interganglional nerve fascicles, and surrounding tissue. The ganglia were irregular in shape and contained neurons and glial cells. Spindle-shaped cells with very thin cellular projections could be observed on the surface of the ganglia, which appeared to build a network. In the patients, there were no alterations in the general architecture of the myenteric ganglia. Nevertheless, several pathological changes were observed, including vacuolar degeneration, autophagic activity, the appearance of sequestosomes, chromatolysis, and apoptosis. Furthermore, possible expulsion of pyknotic neurons and defects in the covering cellular network could be observed in serial slices. These changes partly corresponded to previous light microscopy findings.
CONCLUSION The analysis of serial virtual slices could provide new information that cannot be obtained by classical light microscopy. The advantages, disadvantages, and future possibilities of this method are also discussed.
Collapse
Affiliation(s)
- Bela Veress
- Department of Pathology, Skåne Universiity Hospital, Malmö 205 02, Sweden
| | - Niccolò Peruzzi
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund 221 00, Sweden
| | - Marina Eckermann
- Institute for X-Ray Physics, University of Göttingen, Göttingen 37077, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen 37077, Germany
- ESRF, The European Synchrotron, Grenoble 38043, France
| | - Jasper Frohn
- Institute for X-Ray Physics, University of Göttingen, Göttingen 37077, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Göttingen 37077, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen 37077, Germany
| | - Martin Bech
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund 221 00, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, Lund University, Malmö S-205 02, Sweden
| |
Collapse
|
6
|
Abdelhakeem F, Mohamed SA, Mohammed AK, Madkour FA. Tracking the developmental events in the duodenum of the quail embryo: Using light and electron microscope. Microsc Res Tech 2022; 85:2965-2983. [PMID: 35557020 DOI: 10.1002/jemt.24146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022]
Abstract
The present study described the full morphology of the duodenum of the Japanese quail during the embryonic stage from 3rd day of incubation till hatching using the light and electron (scanning and transmission) microscope. The specimens were collected, analyzed and described anatomically, morphometrically and microscopically. The first recognition of the prospective duodenum was at the 4th day of incubation and developed continuously by age progression. The prospective duodenum consisted of a flat pseudostratified epithelium, mesenchyme and covering mesothelium. On day 8th of incubation, the epithelium developed three evaginations lead to formation three previllous ridges protruding inside the duodenal lumen, which later at the 9th day differentiated into numbers of projections; villi. On the 9th day, the epithelium lined the villi transformed into a simple columnar type, the duodenal villi appeared as pyramidal-shaped projections, had wide base and narrow apex and by age progression, the duodenal villi went through changes in number, size and shape. On hatching day, the duodenal epithelium consisted of enterocytes interspersed with secretory goblet cells, which stained positive for both Periodic Acid Schiff (PAS) and Alcian blue AB and represented filled with metachromatic granules. The muscular wall started as mesenchymal condensation on the 6th day then differentiated into the circular smooth muscle layer on the 9th day of incubation. Giving detailed information about the morphological development of the duodenum during the incubation period of quail embryo helps in reaching a satisfactory explanation about how the duodenum plays a vital role in digestion, absorption and immunity.
Collapse
Affiliation(s)
- Fatma Abdelhakeem
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Department of Anatomy and Embryology, South Valley University, Qena, Egypt
| | - Salma A Mohamed
- Department of Anatomy and Embryology, South Valley University, Qena, Egypt
| | | | - Fatma A Madkour
- Department of Anatomy and Embryology, South Valley University, Qena, Egypt
| |
Collapse
|
7
|
Shawki NA, Mahmoud FA, Mohamed MY. Seasonal Variations in the Digestive Tract of the Little Owl, Athene noctua: Anatomical, Histological, and Scanning Electron Microscopical Studies. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-14. [PMID: 35331361 DOI: 10.1017/s1431927622000368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The digestive tract of the little owl, Athene noctua (Strigiformes: Strigidae), is described in two different seasons. The digestive tract of this bird follows the basic model for that of a predatory bird. The cervical esophagus is not expanded to form a crop. The internal surface of the esophagus forms numerous longitudinal folds provided with numerous mucous glands. These longitudinal folds increase in number and vary in depth posteriorly. The folds of the proventriculus are composed of simple branched tubular glands. The ventriculus is lined by a thin layer of koilin. The number of goblet cells gradually increases from the duodenum to the rectum, and the lymphatic tissue diffuses within the lamina propria. The esophageal glands secrete acid mucopolysaccharides, while the gastric glands of the stomach, the goblet cells, and crypts of Lieberkühn secrete acid mucopolysaccharides. Proteins were observed in the different histological structures of the digestive tract. Morphometric and histometric studies showed differences between summer and winter in the esophagus and glandular stomach (especially in winter), but no seasonal differences were seen in the muscular stomach, or small and large intestines.
Collapse
Affiliation(s)
- Nahed A Shawki
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut, Egypt
| | - Fatma A Mahmoud
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut, Egypt
| | - Mayada Y Mohamed
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut, Egypt
| |
Collapse
|