1
|
Chen SD, Chu CY, Wang CB, Yang Y, Xu ZY, Qu YL, Man Y. Integrated-omics profiling unveils the disparities of host defense to ECM scaffolds during wound healing in aged individuals. Biomaterials 2024; 311:122685. [PMID: 38944969 DOI: 10.1016/j.biomaterials.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular matrix (ECM) scaffold membranes have exhibited promising potential to better the outcomes of wound healing by creating a regenerative microenvironment around. However, when compared to the application in younger individuals, the performance of the same scaffold membrane in promoting re-epithelialization and collagen deposition was observed dissatisfying in aged mice. To comprehensively explore the mechanisms underlying this age-related disparity, we conducted the integrated analysis, combing single-cell RNA sequencing (scRNA-Seq) with spatial transcriptomics, and elucidated six functionally and spatially distinctive macrophage groups and lymphocytes surrounding the ECM scaffolds. Through intergroup comparative analysis and cell-cell communication, we characterized the dysfunction of Spp1+ macrophages in aged mice impeded the activation of the type Ⅱ immune response, thus inhibiting the repair ability of epidermal cells and fibroblasts around the ECM scaffolds. These findings contribute to a deeper understanding of biomaterial applications in varied physiological contexts, thereby paving the way for the development of precision-based biomaterials tailored specifically for aged individuals in future therapeutic strategies.
Collapse
Affiliation(s)
- Shuai-Dong Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen-Yu Chu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen-Bing Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhao-Yu Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi-Li Qu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Man
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Jhilta A, Jadhav K, Singh R, Ray E, Kumar A, Singh AK, Verma RK. Breaking the Cycle: Matrix Metalloproteinase Inhibitors as an Alternative Approach in Managing Tuberculosis Pathogenesis and Progression. ACS Infect Dis 2024; 10:2567-2583. [PMID: 39038212 DOI: 10.1021/acsinfecdis.4c00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has long posed a significant challenge to global public health, resulting in approximately 1.6 million deaths annually. Pulmonary tuberculosis (TB) instigated by Mtb is characterized by extensive lung tissue damage, leading to lesions and dissemination within the tissue matrix. Matrix metalloproteinases (MMPs) exhibit endopeptidase activity, contributing to inflammatory tissue damage and, consequently, morbidity and mortality in TB patients. MMP activities in TB are intricately regulated by various components, including cytokines, chemokines, cell receptors, and growth factors, through intracellular signaling pathways. Primarily, Mtb-infected macrophages induce MMP expression, disrupting the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thereby impairing extracellular matrix (ECM) deposition in the lungs. Recent research underscores the significance of immunomodulatory factors in MMP secretion and granuloma formation during Mtb pathogenesis. Several studies have investigated both the activation and inhibition of MMPs using endogenous MMP inhibitors (i.e., TIMPs) and synthetic inhibitors. However, despite their promising pharmacological potential, few MMP inhibitors have been explored for TB treatment as host-directed therapy. Scientists are exploring novel strategies to enhance TB therapeutic regimens by suppressing MMP activity to mitigate Mtb-associated matrix destruction and reduce TB induced lung inflammation. These strategies include the use of MMP inhibitor molecules alone or in combination with anti-TB drugs. Additionally, there is growing interest in developing novel formulations containing MMP inhibitors or MMP-responsive drug delivery systems to suppress MMPs and release drugs at specific target sites. This review summarizes MMPs' expression and regulation in TB, their role in immune response, and the potential of MMP inhibitors as effective therapeutic targets to alleviate TB immunopathology.
Collapse
Affiliation(s)
- Agrim Jhilta
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Eupa Ray
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India 226014
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India 282004
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| |
Collapse
|
3
|
The role of Th17 cells: explanation of relationship between periodontitis and COPD? Inflamm Res 2022; 71:1011-1024. [PMID: 35781342 DOI: 10.1007/s00011-022-01602-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Abstract
Periodontitis and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases with common risk factors, such as long-term smoking, age, and social deprivation. Many observational studies have shown that periodontitis and COPD are correlated. Moreover, they share a common pathophysiological process involving local accumulation of inflammatory cells and cytokines and damage of soft tissues. The T helper 17 (Th17) cells and the related cytokines, interleukin (IL)-17, IL-22, IL-1β, IL-6, IL-23, and transforming growth factor (TGF)-β, play a crucial regulatory role during the pathophysiological process. This paper reviewed the essential roles of Th17 lineage in the occurrence of periodontitis and COPD. The gaps in the study of their common pathological mechanism were also evaluated to explore future research directions. Therefore, this review can provide study direction for the association between periodontitis and COPD and new ideas for the clinical diagnosis and treatment of the two diseases.
Collapse
|
4
|
Pollara G, Turner CT, Rosenheim J, Chandran A, Bell LCK, Khan A, Patel A, Peralta LF, Folino A, Akarca A, Venturini C, Baker T, Ecker S, Ricciardolo FLM, Marafioti T, Ugarte-Gil C, Moore DAJ, Chain BM, Tomlinson GS, Noursadeghi M. Exaggerated IL-17A activity in human in vivo recall responses discriminates active tuberculosis from latent infection and cured disease. Sci Transl Med 2021; 13:13/592/eabg7673. [PMID: 33952677 PMCID: PMC7610803 DOI: 10.1126/scitranslmed.abg7673] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Host immune responses at the site of Mycobacterium tuberculosis (Mtb) infection can mediate pathogenesis of tuberculosis (TB) and onward transmission of infection. We hypothesized that pathological immune responses would be enriched at the site of host-pathogen interactions modelled by a standardized tuberculin skin test (TST) challenge in patients with active TB compared to those without disease, and interrogated immune responses by genome-wide transcriptional profiling. We show exaggerated interleukin (IL)-17A and Th17 responses among 48 individuals with active TB compared to 191 with latent TB infection, associated with increased neutrophil recruitment and matrix metalloproteinase-1 expression, both involved in TB pathogenesis. Curative antimicrobial treatment reversed these observed changes. Increased IL-1β and IL-6 responses to mycobacterial stimulation were evident in both circulating monocytes and in molecular changes at the site of TST in individuals with active TB, supporting a model in which monocyte-derived IL-1β and IL-6 promote Th17 differentiation within tissues. Modulation of these cytokine pathways may provide a rational strategy for host-directed therapy in active TB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anna Folino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | | | | - Cesar Ugarte-Gil
- School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru.,TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - David A J Moore
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK.,Laboratorio de Investigación de Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | |
Collapse
|
5
|
Cui G, Li Z, Florholmen J, Goll R. Dynamic stromal cellular reaction throughout human colorectal adenoma-carcinoma sequence: A role of TH17/IL-17A. Biomed Pharmacother 2021; 140:111761. [PMID: 34044278 DOI: 10.1016/j.biopha.2021.111761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Accumulating data suggest that the tumour stroma rapidly undergoes dynamic mechanical and cellular changes by which creates a supportive milieu to promote disease progression and metastasis. Cytokines are reported to play a key role in the modulation of tumour stromal response. METHODS The activation of TH17/interleukin (IL)-17A network in association with tumour stromal proliferative and cellular response in samples from 50 patients with colorectal adenoma, 45 with colorectal cancer (CRCs) were elucidated with quantitative real-time PCR (q-PCR), immunohistochemistry and double immunofluorescence. RESULTS q-PCR results showed that retinoic acid-receptor-related orphan receptor-C, a critical transcriptional factor for TH17 cell differentiation, was significantly increased at the adenoma stage and slightly decreased at the CRC stage, but was still higher than that at normal controls. The level of TH17 signature cytokine IL-17A was shown in an increasing gradient throughout the adenoma-carcinoma sequence. Immunohistochemistry revealed an activated proliferative rate evaluated by Ki67 and population expansion of myofibroblasts in the adenoma/CRC stroma. Notably, densities of IL-17A-expressing cells were associated with populations of Ki67-positive cells and myofibroblasts in the adenoma/CRC stroma. Finally, CD146-positive stromal cells are an important participator for stroma remodelling, double immunofluorescence image demonstrated that IL-17 receptor C, one of the key elements for IL-17 receptor complex, was highly expressed in CD146-positive adenoma/CRC stromal cells. CONCLUSIONS An activated TH17/IL-17A network in the tumour microenvironment is significantly associated with dynamic stromal cellular response throughout the adenoma-carcinoma sequence, which might provide a supportive environment for the initiation and progression of CRC.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Faculty of Heath Science, Nord University at Levanger, Norway.
| | - Zhenfeng Li
- Research Group of Gastrointestinal Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jon Florholmen
- Research Group Gastroenterology Nutrition, Arctic University Norway, Tromsø, Norway
| | - Rasmus Goll
- Research Group Gastroenterology Nutrition, Arctic University Norway, Tromsø, Norway
| |
Collapse
|
6
|
Zhu J, Wang Y, Cao Z, Du M, Hao Y, Pan J, He H. Irisin promotes cementoblast differentiation via p38 MAPK pathway. Oral Dis 2020; 26:974-982. [DOI: 10.1111/odi.13307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/25/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Jiaqi Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Yunlong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Mingyuan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Yunru Hao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Jiawen Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
7
|
Shindo S, Hosokawa Y, Hosokawa I, Shiba H. Interleukin (IL)-35 Suppresses IL-6 and IL-8 Production in IL-17A-Stimulated Human Periodontal Ligament Cells. Inflammation 2019; 42:835-840. [PMID: 30484005 DOI: 10.1007/s10753-018-0938-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interleukin (IL)-35 is a novel anti-inflammatory cytokine that is produced by regulatory T cells. IL-35 is reported to suppress IL-17A-producing helper T (Th17) cell activation. IL-17A is related to progression of periodontitis. Furthermore, IL-35 and IL-17A are detected in human gingival crevicular fluid. However, the effect of IL-35 and interaction between IL-35 and IL-17A on pro-inflammatory cytokine production in human periodontal resident cells are still unclear. The aim of this study was to clarify the effect of IL-35 on IL-6 and IL-8 production in human periodontal ligament cells (HPDLCs) stimulated with IL-17A. IL-35 inhibited IL-6 and IL-8 production in IL-17A-stimulated HPDLCs. Moreover, western blot analysis showed that IL-35 suppressed extracellular signal-regulated kinase (ERK) and nuclear factor (NF)-κB p65 phosphorylation in IL-17A-stimulated HPDLCs. Our findings suggested that IL-35 produced from regulatory T cells might inhibit progression of periodontitis by decreasing IL-17A-induced levels of IL-6 and IL-8.
Collapse
Affiliation(s)
- Satoru Shindo
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Yoshitaka Hosokawa
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, Tokushima, 770-8504, Japan
| | - Ikuko Hosokawa
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima, Tokushima, 770-8504, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| |
Collapse
|
8
|
Sabir N, Hussain T, Mangi MH, Zhao D, Zhou X. Matrix metalloproteinases: Expression, regulation and role in the immunopathology of tuberculosis. Cell Prolif 2019; 52:e12649. [PMID: 31199047 PMCID: PMC6668971 DOI: 10.1111/cpr.12649] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) leads to approximately 1.5 million human deaths every year. In pulmonary tuberculosis (TB), Mtb must drive host tissue destruction to cause pulmonary cavitation and dissemination in the tissues. Matrix metalloproteinases (MMPs) are endopeptidases capable of degrading all components of pulmonary extracellular matrix (ECM). It is well established that Mtb infection leads to upregulation of MMPs and also causes disturbance in the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thus altering the extracellular matrix deposition. In TB, secretion of MMPs is mainly regulated by NF-κB, p38 and MAPK signalling pathways. In addition, recent studies have demonstrated the immunomodulatory roles of MMPs in Mtb pathogenesis. Researchers have proposed a new regimen of improved TB treatment by inhibition of MMP activity to hinder matrix destruction and to minimize the TB-associated morbidity and mortality. The proposed regimen involves adjunctive use of MMP inhibitors such as doxycycline, marimastat and other related drugs along with front-line anti-TB drugs to reduce granuloma formation and bacterial load. These findings implicate the possible addition of economical and well-tolerated MMP inhibitors to current multidrug regimens as an attractive mean to increase the drug potency. Here, we will summarize the recent advancements regarding expression of MMPs in TB, their immunomodulatory role, as well as their potential as therapeutic targets to control the deadly disease.
Collapse
Affiliation(s)
- Naveed Sabir
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Mazhar Hussain Mangi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Wang Y, Li H, Feng Y, Jiang P, Su J, Huang C. Dual micelles-loaded gelatin nanofibers and their application in lipopolysaccharide-induced periodontal disease. Int J Nanomedicine 2019; 14:963-976. [PMID: 30787610 PMCID: PMC6368126 DOI: 10.2147/ijn.s182073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Combined therapies utilizing inhibitors to remove pathogens are needed to suppress lipopolysaccharide (LPS)-induced periodontal disease. We prepared a novel, multi-agent delivery scaffold for periodontal treatment. METHODS In this study, we synthesized SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor) drug-loaded poly(ethylene glycol)-block-caprolactone copolymer via dialysis method. The physical property of micelles was characterized through dynamic light scattering and transmission electron microscopy. The cell growth and LPS-induced MMP-2 and MMP-13 expression were evaluated through CCK-8, real-time PCR and Western blot assay. The release of SP600125 and SB203580 from different scaffolds was estimated. Microcomputed tomography and histology were used for evaluating the effect of the micelles-loaded nanofibers on the treatment of class II furcation defects in dogs. RESULTS The drug was then successfully incorporated into gelatin fibers during electrospinning process. We confirmed that the micelles had spherical structure and an average particle size of 160 nm for SP600125-micelles (SP-Ms) and 150 nm for SB203580-micelles (SB-Ms). The nanofiber scaffold showed excellent encapsulation capability, in vitro drug-release behavior, and cell compatibility. Real-time PCR and Western blot assay further indicated that LPS-induced MMP-2 and MMP-13 expression was significantly inhibited by the scaffold. CONCLUSION The results suggested that the dual drug-loaded system developed in this study might become a highly effective therapy for periodontal disease.
Collapse
Affiliation(s)
- Yabing Wang
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China,
| | - Haoxuan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China,
| | - Yanhuizhi Feng
- Department of Periodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Peilin Jiang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China,
| | - Jiansheng Su
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China,
| | - Chen Huang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China,
| |
Collapse
|
10
|
Wu R, Liao Y, Shen W, Liu Y, Zhang J, Zheng M, Chen G, Su Y, Zhao M, Lu Q. Overexpression of Wilms' tumor 1 in skin lesions of psoriasis is associated with abnormal proliferation and apoptosis of keratinocytes. Mol Med Rep 2018; 18:3973-3982. [PMID: 30132523 DOI: 10.3892/mmr.2018.9391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/12/2018] [Indexed: 11/05/2022] Open
Abstract
Psoriasis vulgaris (PV) is a chronic inflammatory skin disease, which is characterized by the abnormal proliferation and apoptosis of keratinocytes. Previous studies have demonstrated that transcription factor Wilms' tumor 1 (WT1) is involved in a number of pathophysiological processes, including organ development, tumorigenesis and cell proliferation. However, the role of WT1 in PV remains unclear. In the present study, WT1 expression was analyzed by reverse transcription‑quantitative polymerase chain reaction and western blot analyses. WT1 was stably overexpressed or inhibited in HaCaT cells using Lipofectamine® 2000, and cell proliferation and apoptosis were determined using a Cell Counting Kit‑8 or Fluorescein Isothiocyanate Annexin V Apoptosis Detection kit II, respectively. We demonstrated that compared with normal controls, the mRNA and protein expression levels of WT1 were significantly increased in non‑lesional skins (human, P<0.0001 and P=0.0291, respectively; mouse, P=0.0020 and P=0.0150, respectively) and lesional skins (human, P<0.0001 and P=0.0060, respectively; mouse, P=0.0010 and P=0.0172, respectively) of patients with PV, in addition to the imiquimod (IMQ)‑induced psoriasis‑like mouse model. WT1 mRNA and protein expression levels in lesional skins were slightly increased compared with those in non‑lesional skins from patients with psoriasis (P=0.2510 and P=0.1690, respectively) and IMQ‑treated mice (P=0.9590 and P=0.2552, respectively), although there were no statistical differences. Knockdown of WT1 inhibited the proliferation of HaCaT cells [day (D)4, P=0.0454; D5, P=0.0021] and promoted their apoptosis (P=0.0007), while overexpressing WT1 exhibited the opposite effects (proliferation D3, P=0.0216; D4, P=0.0356; D5, P=0.0188; apoptosis, P=0.0003). Furthermore, it was identified that the inflammatory cytokines interleukin‑17A (IL‑17A), interferon‑γ and IL‑22 induced the overexpression of WT1 in HaCaT cells. The results of the present study suggested that inflammatory cytokine‑induced WT1 overexpression may promote the formation of psoriatic skin lesions via regulation of the proliferation and apoptosis of keratinocytes.
Collapse
Affiliation(s)
- Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuan Liao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Weiyun Shen
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Genghui Chen
- Beijing Wenfeng Tianji Pharmaceuticals Ltd., Beijing 100027, P.R. China
| | - Yuwen Su
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
11
|
Mogulevtseva JA, Mezentsev AV, Bruskin SA. RNAI-MEDIATED SILENCING OF MATRIX METALLOPROTEINASE 1 IN EPIDERMAL KERATINOCYTES INFLUENCES THE BIOLOGICAL EFFECTS OF INTERLEUKIN 17A. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are important for the pathogenesis of psoriasis and other autoimmune disorders. In the extracellular matrix, accumulation of proinflammatory cytokines, such as interleukin 17A (IL-17A), leads to induction of several MMPs, including MMP1. MMPs change the composition and other properties of the extracellular matrix. These changes facilitate tissue remodeling and promote the development of psoriatic plaques. The aim of this study was to explore how MMP1 silencing might influence the biological effects of IL-17A on migration and proliferation of human epidermal keratinocytes and the expression of genes involved in their division and differentiation. The experiments were performed with MMP1-deficient and control epidermal keratinocytes, HaCaT-MMP1 and HaCaT-KTR, respectively. Cell proliferation and migration were assessed by comparative analysis of the growth curves and scratch assay, respectively. To quantify cell migration, representative areas of cell cultures were photographed at the indicated time points and compared to each other. Changes in gene expression were analyzed by real-time PCR. The obtained results demonstrated that MMP1 silencing in the cells treated with IL-17A resulted in downregulation of MMP9 and -12, FOSL1, CCNA2, IVL, KRT14 and -17 as well as upregulation of MMP2, CCND1 and LOR. Moreover, MMP1 silencing led to a decrease in cell proliferation and an impairment of cell migration. Thus, MMP1-deficiency in epidermal keratinocytes can be beneficial for psoriasis patients that experience an accumulation of IL-17 in lesional skin. Knocking MMP1 down could influence migration and proliferation of epidermal keratinocytes in vivo, as well as help to control the expression of MMP1, -2, -9 и -12, CCNA2, CCND1, KRT14 and -17 that are crucial for the pathogenesis of psoriasis.
Collapse
|
12
|
Singh S, Maniakis‐Grivas G, Singh UK, Asher RM, Mauri F, Elkington PT, Friedland JS. Interleukin-17 regulates matrix metalloproteinase activity in human pulmonary tuberculosis. J Pathol 2018; 244:311-322. [PMID: 29210073 PMCID: PMC5838784 DOI: 10.1002/path.5013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 10/21/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is characterized by extensive pulmonary matrix breakdown. Interleukin-17 (IL-17) is key in host defence in TB but its role in TB-driven tissue damage is unknown. We investigated the hypothesis that respiratory stromal cell matrix metalloproteinase (MMP) production in TB is regulated by T-helper 17 (TH -17) cytokines. Biopsies of patients with pulmonary TB were analysed by immunohistochemistry (IHC), and patient bronchoalveolar lavage fluid (BALF) MMP and cytokine concentrations were measured by Luminex assays. Primary human airway epithelial cells were stimulated with conditioned medium from human monocytes infected with Mycobacterium tuberculosis (Mtb) and TH -17 cytokines. MMP secretion, activity, and gene expression were determined by ELISA, Luminex assay, zymography, RT-qPCR, and dual luciferase reporter assays. Signalling pathways were examined using phospho-western analysis and siRNA. IL-17 is expressed in TB patient granulomas and MMP-3 is expressed in adjacent pulmonary epithelial cells. IL-17 had a divergent, concentration-dependent effect on MMP secretion, increasing epithelial secretion of MMP-3 (p < 0.001) over 72 h, whilst decreasing that of MMP-9 (p < 0.0001); mRNA levels were similarly affected. Both IL-17 and IL-22 increased fibroblast Mtb-dependent MMP-3 secretion but IL-22 did not modulate epithelial MMP-3 expression. Both IL-17 and IL-22, but not IL-23, were significantly up-regulated in BALF from TB patients. IL-17-driven MMP-3 was dependent on p38 MAP kinase and the PI3K p110α subunit. In summary, IL-17 drives airway stromal cell-derived MMP-3, a mediator of tissue destruction in TB, alone and with monocyte-dependent networks in TB. This is regulated by p38 MAP kinase and PI3K pathways. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shivani Singh
- Infectious Diseases and ImmunityImperial CollegeLondonUK
| | | | - Utpal K Singh
- Tuberculosis Unit, Department of MedicineNalanda University HospitalsAgam KuanPatnaIndia
| | - Radha M Asher
- Infectious Diseases and ImmunityImperial CollegeLondonUK
| | - Francesco Mauri
- Department of Histopathology, Hammersmith HospitalsImperial College LondonUK
| | | | | |
Collapse
|
13
|
Chen T, Battsengel S, Kuo C, Pan L, Lin Y, Yao C, Chen Y, Lin F, Kuo W, Huang C. Stem cells rescue cardiomyopathy induced by
P. gingivalis
‐LPS via miR‐181b. J Cell Physiol 2018; 233:5869-5876. [DOI: 10.1002/jcp.26386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Tung‐Sheng Chen
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
| | - Sarnai Battsengel
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
- Intermed Hospital, Chinggis Avenue 41, Khan‐Uul district15th KhorooUildverUlaanbaatarMongolia
| | - Chia‐Hua Kuo
- Department of Sports SciencesUniversity of TaipeiTaipeiTaiwan
| | - Lung‐Fa Pan
- Division of CardiologyArmed Force Taichung General HospitalTaichungTaiwan
- Department of Medical Imaging and Radiological SciencesCentral Taiwan University of Science and TechnologyTaichungTaiwan
| | - Yueh‐Min Lin
- Department of PathologyChanghua Christian HospitalChanghuaTaiwan
- Jen‐Teh Junior College of MedicineNursing and ManagementMiaoliTaiwan
| | - Chun‐Hsu Yao
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Department of Biomedical Imaging and Radiological ScienceChina Medical UniversityTaichungTaiwan
- Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungTaiwan
- Department of Biomedical InformaticsAsia UniversityTaichungTaiwan
| | - Yueh‐Sheng Chen
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Department of Biomedical Imaging and Radiological ScienceChina Medical UniversityTaichungTaiwan
- Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungTaiwan
- Department of Cosmeceutics and Graduate Institute of CosmeceuticsChina Medical UniversityTaichungTaiwan
| | - Feng‐Huei Lin
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesMiaoli CountyTaiwan
- Institute of Biomedical EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Wen Kuo
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
| | - Chih‐Yang Huang
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
- Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungTaiwan
- Department of Health and Nutrition BiotechnologyAsia UniversityTaichungTaiwan
| |
Collapse
|
14
|
Younis LT, Abu Hassan MI, Taiyeb Ali TB, Bustami TJ. 3D TECA hydrogel reduces cellular senescence and enhances fibroblasts migration in wound healing. Asian J Pharm Sci 2017; 13:317-325. [PMID: 32104405 PMCID: PMC7032142 DOI: 10.1016/j.ajps.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate the effect of 3D TECA hydrogel on the inflammatory-induced senescence marker, and to assess the influence of the gel on the periodontal ligament fibroblasts (PDLFs) migration in wound healing in vitro. PDLFs were cultured with 20 ng/ml TNF-α to induce inflammation in the presence and absence of 50 µM 3D TECA gel for 14 d. The gel effect on the senescence maker secretory associated-β-galactosidase (SA-β-gal) activity was measured by a histochemical staining. Chromatin condensation and DNA synthesis of the cells were assessed by 4′,6-diamidino-2-phenylindole and 5-ethynyl-2′-deoxyuridine fluorescent staining respectively. For evaluating fibroblasts migration, scratch wound healing assay and Pro-Plus Imaging software were used. The activity of senescence marker, SA-β-gal, was positive in the samples with TNF-α-induced inflammation. SA-β-gal percentage is suppressed (>65%, P < 0.05) in the treated cells with TECA gel as compared to the non-treated cells. Chromatin foci were obvious in the non-treated samples. DNA synthesis was markedly recognized by the fluorescent staining in the treated compared to non-treated cultures. Scratch wound test indicated that the cells migration rate was significantly higher (14.9 µm2/h, P < 0.05) in the treated versus (11 µm2/h) for control PDLFs. The new formula of 3D TECA suppresses the inflammatory-mediated cellular senescence and enhanced fibroblasts proliferation and migration. Therefore, 3D TECA may be used as an adjunct to accelerate repair and healing of periodontal tissues.
Collapse
Affiliation(s)
- Luay Thanoon Younis
- Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | | | - Tara Bai Taiyeb Ali
- Faculty of Dentistry, Universiti Teknologi MARA, MAHSA University, Jenjarom 42610, Malaysia
| | | |
Collapse
|
15
|
Interleukin-12-mediated expression of matrix metalloproteinases in human periodontal ligament fibroblasts involves in NF-κB activation. Biosci Rep 2017; 37:BSR20170973. [PMID: 29054963 PMCID: PMC5696454 DOI: 10.1042/bsr20170973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin-12 (IL-12) is a proinflammatory cytokine, and its increased level correlates with the severity of periodontitis. However, its role in the pathogenesis of tooth periapical lesions is controversial and has not been completely clarified. The present study aimed to investigate whether IL-12 affects the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in human periodontal ligament fibroblasts (hPDLFs). After treatment with IL-12 for different times, real-time PCR and Western blotting were used to determine the mRNA and protein levels of MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, TIMP-1, and TIMP-2, respectively. ELISA was applied to measure MMPs and TIMPs secretion production. The results indicated that IL-12 significantly increased the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-13, but down-regulated MMP-2 and MMP-9 mRNA and protein expression in the hPDLFs. Furthermore, IL-12 (10 ng/ml) enhanced the secreted protein production of MMP-1, MMP-3, and MMP-13, and conversely lowered MMP-2 and MMP-9 secretion levels. However, IL-12 treatment did not exert a significant effect on the mRNA and protein levels of TIMP-1 and TIMP-2 and their secreted production. Additionally, IL-12 increased the phosphorylated levels of IκBα and nuclear factor-κB P65 (NF-κB P65), and promoted NF-κB P65 subunit nuclear translocation. Pretreatment with NF-κB inhibitor not only attenuated IL-12-induced IκBα and NF-κB P65 phosphorylation and inhibited NF-κB P65 subunit into nucleus, but also antagonized IL-12-mediated MMP-1, MMP-2, MMP-3, MMP-9, and MMP-13 expression in the hPDLFs. These findings indicate that NF-κB-dependent activation is possibly indispensable for IL-12-mediated MMP expression in hPDLFs.
Collapse
|
16
|
Wang Y, He H, Cao Z, Fang Y, Du M, Liu Z. Regulatory effects of bone morphogenetic protein-4 on tumour necrosis factor-α-suppressed Runx2 and osteoprotegerin expression in cementoblasts. Cell Prolif 2017; 50. [PMID: 28244247 DOI: 10.1111/cpr.12344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Root resorption is a common phenomenon presented in periodontitis and orthodontic treatment, both of which are accompanied by an elevated TNF-α expression level in the periodontal tissues. Previously, we proved that TNF-α showed an inhibitory effect on cementoblast differentiation, mineralization and proliferation. However, the effect of TNF-α on Runx2 and osteoprotegerin (OPG) expression remains undetermined. This study aimed to identify the influence of TNF-α on Runx2 and OPG expression in cementoblasts and to test whether BMP-2,-4,-6,-7 would affect TNF-α-regulated Runx2 and OPG. MATERIALS AND METHODS An immortalized murine cementoblast cell line OCCM-30 was used in this study. The expression of Runx2 and OPG were examined by qRT-PCR after stimulating cells with TNF-α. The role of signalling pathways, including MAPK, PI3K-Akt and NF-κB, were studied with the use of specific inhibitors. Cells were treated with TNF-α in combination with BMP-2,-4,-6 or -7, then the expression of Runx2 and OPG, the activity of MAPK and NF-κB pathways, and the proliferation ability were evaluated by qRT-PCR, Western blot and MTS assay respectively. RESULTS TNF-α inhibited Runx2 and OPG mRNAs in OCCM-30 cells, and the inhibitory effects were further aggravated by blocking p38 MAPK or NF-κB pathway. TNF-α-inhibited Runx2 and OPG were up-regulated by BMP-4. The p38 MAPK and Erk1/2 pathways were further activated by the combined treatment of BMP-4 and TNF-α compared with TNF-α alone. Finally, the TNF-α-suppressed proliferation was not obviously affected by BMP-2,-4,-6 or -7. CONCLUSIONS TNF-α inhibited Runx2 and OPG in cementoblasts, and the p38 MAPK and NF-κB pathways acted in a negative-feedback way to attenuate the inhibitory effects. TNF-α-inhibited Runx2 and OPG could be effectively up-regulated by BMP-4; however, further investigations are needed to fully elaborate the underlying mechanisms.
Collapse
Affiliation(s)
- Yunlong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR, China
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR, China
| | - Yi Fang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR, China
| | - Mingyuan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR, China
| | - Zhijian Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR, China
| |
Collapse
|
17
|
Wei T, Cong X, Wang XT, Xu XJ, Min SN, Ye P, Peng X, Wu LL, Yu GY. Interleukin-17A promotes tongue squamous cell carcinoma metastasis through activating miR-23b/versican pathway. Oncotarget 2017; 8:6663-6680. [PMID: 28035060 PMCID: PMC5351661 DOI: 10.18632/oncotarget.14255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/01/2016] [Indexed: 01/15/2023] Open
Abstract
Interleukin-17A (IL-17A), a proinflammatory cytokine mainly produced by T helper 17 cells, exerts protumor or antitumor effects in different cancer entities. However, the exact role of IL-17A in carcinogenesis and progression of tongue squamous cell carcinoma (TSCC) remains unclear. Here, we found that the levels of IL-17A in serum and tumor samples were significantly increased in TSCC patients and positively correlated with tumor metastasis and clinical stage. Besides, IL-17A enhanced cell migration and invasion in SCC15, a TSCC cell line. Furthermore, IL-17A inversely correlated with miR-23b expression in TSCC specimens. In vitro, NF-κB inhibited miR-23b transcription by directly binding to its promoter region. IL-17A downregulated miR-23b expression via activating NF-κB signaling pathway characterized by increasing p65 expression in the nuclear and elevating the levels of p-IKKα and p-IκBα. Overexpression of miR-23b inhibited, whereas knockdown of miR-23b promoted migration and invasion abilities of SCC15 cells. Moreover, extracellular matrix protein versican was proved to be the direct target of miR-23b through luciferase assay. IL-17A increased versican levels in vitro and knockdown of versican by siRNA inhibited SCC15 cell migration and invasion. Taken together, these results reveal a novel mechanism that IL-17A in TSCC microenvironment promotes the migration and invasion of TSCC cells through targeting miR-23b/versican pathway.
Collapse
Affiliation(s)
- Tai Wei
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xiang-Ting Wang
- Department of Cell and Developmental Biology, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Xiao-Jian Xu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Sai-Nan Min
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Peng Ye
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
18
|
Potthoff SA, Stamer S, Grave K, Königshausen E, Sivritas SH, Thieme M, Mori Y, Woznowski M, Rump LC, Stegbauer J. Chronic p38 mitogen-activated protein kinase inhibition improves vascular function and remodeling in angiotensin II-dependent hypertension. J Renin Angiotensin Aldosterone Syst 2016; 17:17/3/1470320316653284. [PMID: 27407119 PMCID: PMC5843849 DOI: 10.1177/1470320316653284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/19/2016] [Indexed: 11/16/2022] Open
Abstract
Introduction: An excess of angiotensin II (Ang II) causes hypertension and vascular injury. Activation of mitogen-activated protein kinase p38 (p38-MAPK) plays a substantial role in Ang II-dependent organ damage. Recently, we showed that p38-MAPK activation regulates the pressor response to Ang II. This study evaluates the effect of chronic p38-MAPK inhibition in Ang II-dependent hypertension. Materials and methods: C57Bl/6J mice were infused with Ang II for 14 days and either treated with the p38-MAPK inhibitor BIRB796 (50 mg/kg/day) or the vehicle as the control. We assessed vascular function in the aorta and isolated perfused kidneys. Results: Chronic p38-MAPK inhibition did not alter blood pressure at the baseline, but attenuated Ang II-induced hypertension significantly (baseline: 122 ± 2 versus 119 ± 4 mmHg; Ang II: 173 ± 3 versus 155 ± 3 mmHg; p < 0.001). In addition, BIRB796 treatment improved vascular remodeling by reducing the aortic media-to-lumen ratio and decreasing the expression of the membrane metalloproteinases (MMP) MMP-1 and MMP-9. Moreover, renal vascular dysfunction induced by chronic Ang II infusion was significantly ameliorated in the BIRP796-treated mice. Acute p38-MAPK inhibition also improved vascular function in the aorta and kidneys of Ang II-treated mice, highlighting the important role of p38-MAPK activation in the pathogenesis of vascular dysfunction. Conclusions: Our findings indicated there is an important role for p38-MAPK in regulating blood pressure and vascular injury, and highlighted its potential as a pharmaceutical target.
Collapse
Affiliation(s)
- S A Potthoff
- Department of Nephrology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - S Stamer
- Department of Nephrology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - K Grave
- Department of Nephrology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - E Königshausen
- Department of Nephrology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - S H Sivritas
- Department of Nephrology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - M Thieme
- Department of Nephrology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Y Mori
- Department of Nuclear Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - M Woznowski
- Department of Nephrology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - L C Rump
- Department of Nephrology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - J Stegbauer
- Department of Nephrology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
Abstract
Adult or postprimary tuberculosis (TB) accounts for most TB cases. Its hallmark is pulmonary cavitation, which occurs as a result of necrosis in the lung in individuals with tuberculous pneumonia. Postprimary TB has previously been known to be associated with vascular thrombosis and delayed-type hypersensitivity, but their roles in pulmonary cavitation are unclear. A necrosis-associated extracellular cluster (NEC) refers to a cluster of drug-tolerant Mycobacterium tuberculosis attached to lysed host materials and is proposed to contribute to granulomatous TB. Here we suggest that NECs, perhaps due to big size, produce a distinct host response leading to postprimary TB. We propose that vascular thrombosis and pneumonia arise from NEC and that these processes are promoted by inflammatory cytokines produced from cell-mediated delayed-type hypersensitivity, such as interleukin-17 and gamma interferon, eventually triggering necrosis in the lung and causing cavitation. According to this view, targeting NEC represents a necessary strategy to control adult TB.
Collapse
|
20
|
Naringin inhibits the invasion and migration of human glioblastoma cell via downregulation of MMP-2 and MMP-9 expression and inactivation of p38 signaling pathway. Tumour Biol 2015; 37:3831-9. [PMID: 26474590 DOI: 10.1007/s13277-015-4230-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
Gliomas are the most common and malignant primary brain tumors. They are associated with a poor prognosis despite the availability of multiple therapeutic options. Naringin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative and anti-cancer properties. However, there are no reports describing its effects on the invasion and migration of glioblastoma cell lines. Our results showed that the treatment of U251 glioma cell lines with different concentrations of naringin inhibited the invasion and migration of these cells. In addition, we revealed a decrease in the levels of matrix metalloproteinases (MMP-2) and (MMP-9) expression as well as proteinase activity in U251 glioma cells. In contrast, the expression of tissue inhibitor of metalloproteinases (TIMP-1) and (TIMP-2) was increased. Furthermore, naringin treatment decreased significantly the phosphorylated level of p38. Combined treatment with a p38 inhibitor (SB203580) resulted in the synergistic reduction of MMP-2 and MMP-9 expressions correlated with an increase of TIMP-1 and TIMP-2 expressions and the anti-invasive properties. However, p38 chemical activator (anisomycin) could block these effects produced by naringin, suggesting a direct downregulation of the p38 signaling pathway. These data suggest that naringin may have therapeutic potential for controlling invasiveness of malignant gliomas by inhibiting of p38 signal transduction pathways.
Collapse
|
21
|
Jiang SJ, Li W, Li YJ, Fang W, Long X. Dickkopf‑related protein 1 induces angiogenesis by upregulating vascular endothelial growth factor in the synovial fibroblasts of patients with temporomandibular joint disorders. Mol Med Rep 2015; 12:4959-66. [PMID: 26239269 PMCID: PMC4581813 DOI: 10.3892/mmr.2015.4101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/17/2015] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis has an important role in the progression of temporomandibular joint disorders (TMD). The aim of the present study was to explore the association between dickkopf-related protein 1 (DKK-1) and angiogenesis in TMD. The expression levels of DKK-1 and vascular endothelial growth factor (VEGF) were quantified by an ELISA assay of the synovial fluid from patients with TMD. The correlation between DKK-1 and VEGF was analyzed by Pearson correlation test. Synovial fibroblasts were isolated from patients with TMD and were subsequently treated with recombinant human DKK-1, anti-DKK-1 antibody, hypoxia inducible factor-1α (HIF-1α), or small interfering RNA (siRNA). The expression levels of DKK-1, HIF-1α, and VEGF were subsequently quantified. The present study also investigated the effects of DKK-1 on the migration of human umbilical vein endothelial cells (HUVEC). Increased expression levels of DKK-1 were concordant with increased expression levels of VEGF in the synovial fluid from patients with TMD. In the synovial fibroblasts, DKK-1 increased the expression levels of VEGF, and promoted HIF-1α nuclear localization. In addition, DKK-1 induced HUVEC migration, and HIF-1α siRNA inhibited DKK-1-induced cell migration. The results of the present study indicate that DKK-1 is associated with angiogenesis in the synovial fluid of patients with TMD. Furthermore, HIF-1α may be associated with DKK-1-induced HUVEC activation.
Collapse
Affiliation(s)
- Sheng-Jun Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Wei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Ying-Jie Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Wei Fang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
22
|
Wang Y, He H, Liu Z, Cao Z, Wang X, Yang K, Fang Y, Han M, Zhang C, Huo F. Effects of TNF-α on Cementoblast Differentiation, Mineralization, and Apoptosis. J Dent Res 2015; 94:1225-32. [PMID: 26088424 DOI: 10.1177/0022034515590349] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tumor necrosis factor–α (TNF-α) is involved in various inflammatory processes, including periodontitis. Although the influences of TNF-α on periodontal ligament fibroblasts and osteoblasts have been widely documented, its effects on cementoblasts, the cells responsible for cementum production, remain largely unknown. In this study, we found that TNF-α suppressed the mineralization ability of cementoblasts by inhibiting differentiation and inducing apoptosis. Various signaling pathways, such as p53, PP2AC, p38, Erk1/2, JNK, PI3K-Akt, and NF-κB, were activated during this process. The use of a specific inhibitor and siRNA transfection confirmed that the effects of TNF-α on differentiation and apoptosis in cementoblasts were partially abrogated by inhibiting p53 activity. By contrast, the effects of TNF-α were even exacerbated by the inhibition of the p38, Erk1/2, JNK, PI3K-Akt, and NF-κB pathways. Moreover, p53 activity was further enhanced by blocking the p38, Erk1/2, JNK, and PI3K-Akt signaling pathways. Taken together, these results suggested that the differentiation inhibition and apoptosis in cementoblasts induced by TNF-α were partially dependent on p53 activity. The p38, Erk1/2, JNK, PI3K-Akt, and NF-κB pathways were also activated but acted as balancing players to limit rather than conduct the negative effects of TNF-α. These balancing effects were dependent, or at least partially dependent, on p53, except for the NF-κB pathway.
Collapse
Affiliation(s)
- Y.L. Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H. He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z.J. Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z.G. Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - X.Y. Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - K. Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y. Fang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - M. Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - F.Y. Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Wang YL, Fang M, Wang XM, Liu WY, Zheng YJ, Wu XB, Tao R. Proinflammatory effects and molecular mechanisms of interleukin-17 in intestinal epithelial cell line HT-29. World J Gastroenterol 2014; 20:17924-17931. [PMID: 25548490 PMCID: PMC4273142 DOI: 10.3748/wjg.v20.i47.17924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/24/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the proinflammatory effects and molecular mechanisms of interleukin (IL)-17 in intestinal epithelial cell line HT-29. METHODS HT-29 cells were cultured with IL-17, tumor necrosis factor (TNF)-α, or the combination of both IL-17 and TNF-α. Real-time PCR and Western blot were used to measure the gene expression levels of neutrophil chemokines CXCL1, CXCL2, CXCL5, CXCL6, IL-8 and TH-17 cell chemokine CCL20, the phosphorylation levels of p38 and TNF-α, and the expression level of IL-8, after using the p38 inhibitor in HT-29 cells. The stable Act1 knockdown HT-29 cell line was established to further test the phosphorylation changes of p38, after using IL-17 and TNF-α. RESULTS After HT-29 cells were cultured with IL-17 and TNF-α, the expression levels of neutrophil chemokines (CXCL1, CXCL2, CXCL5, CXCL6, IL-8) and Th17 chemokine (CCL20) significantly improved (24.96 ± 2.53, 28.47 ± 2.87, 38.08 ± 2.72, 33.47 ± 2.41, 31.7 ± 2.38, 44.37 ± 2.73, respectively), and the differences were all statistically significant (P < 0.01). Western blot results showed that IL-17 obviously enhanced the phosphorylation level of p38, which was induced by TNF-α. Compared with the control group, the expression level of IL-8 significantly declined (9.47 ± 1.36 vs 3.06 ± 0.67, P < 0.01) when TH-29 cells were cultured with IL-17 and TNF-α. p38 inhibition assay showed that the p38 pathway played an essential role in the inflammatory response induced by IL-17. p38 phosphorylation levels could not be changed after using IL-17 and TNF-α in the stable Act1 knockdown HT-29 cell line. CONCLUSION IL-17 significantly promoted the gene expression levels of TNF-α-induced neutrophil chemokines and Th17 cell chemokine. It is obvious that IL-17 and TNF-α have synergistic effects on p38.
Collapse
|
24
|
Zhu L, Yang J, Zhang J, Lei D, Xiao L, Cheng X, Lin Y, Peng B. In vitro and in vivo evaluation of a nanoparticulate bioceramic paste for dental pulp repair. Acta Biomater 2014; 10:5156-5168. [PMID: 25182220 DOI: 10.1016/j.actbio.2014.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/21/2014] [Accepted: 08/12/2014] [Indexed: 12/18/2022]
Abstract
Bioactive materials play an important role in facilitating dental pulp repair when living dental pulp is exposed after injuries. Mineral trioxide aggregate is the currently recommended material of choice for pulp repair procedures though has several disadvantages, especially the inconvenience of handling. Little information is yet available about the early events and molecular mechanisms involved in bioceramic-mediated dental pulp repair. We aimed to characterize and determine the apatite-forming ability of the novel ready-to-use nanoparticulate bioceramic iRoot BP Plus, and investigate its effects on the in vitro recruitment of human dental pulp stem cells (DPSCs), as well as its capacity to induce dentin bridge formation in an in vivo model of pulp repair. It was found that iRoot BP Plus was nanosized and had excellent apatite-forming ability in vitro. Treatment with iRoot BP Plus extracts promoted the adhesion, migration and attachment of DPSCs, and optimized focal adhesion formation (Vinculin, p-Paxillin and p-Focal adhesion kinase) and stress fibre assembly. Consistent with the in vitro results, we observed the formation of a homogeneous dentin bridge and the expression of odontogenic (dentin sialoprotein, dentin matrix protein 1) and focal adhesion molecules (Vinculin, p-Paxillin) at the injury site of pulp repair model by iRoot BP Plus. Our findings provide valuable insights into the mechanism of bioceramic-mediated dental pulp repair, and the novel revolutionary ready-to-use nanoparticulate bioceramic paste shows promising therapeutic potential in dental pulp repair application.
Collapse
|
25
|
Lin D, Li L, Sun Y, Wang W, Wang X, Ye Y, Chen X, Xu Y. IL-17 regulates the expressions of RANKL and OPG in human periodontal ligament cells via TRAF6/TBK1-JNK/NF-κB pathways. Immunology 2014; 144:472-485. [PMID: 25263088 PMCID: PMC4557684 DOI: 10.1111/imm.12395] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/28/2014] [Accepted: 09/22/2014] [Indexed: 01/13/2023] Open
Abstract
Interleukin-17 (IL-17 or IL-17A), a pleiotropic cytokine produced by T helper (Th) 17 cells, is involved in the pathogenesis of various autoimmune and inflammatory disorders, including periodontitis. Although the ability of pro-inflammation in periodontitis have been widely investigated, the other biological functions of IL-17, including its role in bone remodeling and the underlying molecular mechanism, have not been well clarified. In the present study, IL-17 could significantly enhance the expression of receptor activator for nuclear factor-κB ligand (RANKL) and inhibit the expression of osteoprotegerin (OPG) in human periodontal ligament cells (hPDLCs), the two critical indicators for osteoclastogenesis, suggesting IL-17 may play a destructive role in the pathogenesis of periodontal bone remodeling. Pharmaceutical signal inhibitors targeted at MAPKs, Akt or NF-κB signals, inhibited IL-17-induced RANKL and OPG regulation. Notably, the enhancement of RANKL was significantly blocked by the inhibitors of JNK and NF-κB signals. The upstream signals were further investigated with the small interfering RNA (siRNA). Both TRAF6 and TBK1 were found to be the critically signal molecules for IL-17-dependent RANKL regulation in hPDLCs. These findings may provide comprehensive understanding of the role of IL-17 in the pathogenesis of periodontitis and might also provide a reasonable way for periodontitis therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Danping Lin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityJiangsu, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityJiangsu, China
- Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical NanjingJiangsu, China
| | - Ying Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityJiangsu, China
- Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical NanjingJiangsu, China
| | - Weidong Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityJiangsu, China
| | - Xiaoqian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityJiangsu, China
| | - Yu Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityJiangsu, China
| | - Xu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityJiangsu, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityJiangsu, China
- Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical NanjingJiangsu, China
| |
Collapse
|
26
|
Zhang Z, Lv J, Lei X, Li S, Zhang Y, Meng L, Xue R, Li Z. Baicalein reduces the invasion of glioma cells via reducing the activity of p38 signaling pathway. PLoS One 2014; 9:e90318. [PMID: 24587321 PMCID: PMC3938668 DOI: 10.1371/journal.pone.0090318] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/28/2014] [Indexed: 12/05/2022] Open
Abstract
Baicalein, one of the major flavonids in Scutellaria baicalensis, has historically been used in anti-inflammatory and anti-cancer therapies. However, the anti-metastatic effect and related mechanism(s) in glioma are still unclear. In this study, we thus utilized glioma cell lines U87MG and U251MG to explore the effect of baicalein. We found that administration of baicalein significantly inhibited migration and invasion of glioma cells. In addition, after treating with baicalein for 24 h, there was a decrease in the levels of matrix metalloproteinase-2 (MMP-2) and MMP-9 expression as well as proteinase activity in glioma cells. Conversely, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 was increased in a dose-dependent manner. Moreover, baicalein treatment significantly decreased the phosphorylated level of p38, but not ERK1/2, JNK1/2 and PI3K/Akt. Combined treatment with a p38 inhibitor (SB203580) and baicalein resulted in the synergistic reduction of MMP-2 and MMP-9 expression and then increase of TIMP-1 and TIMP-2 expression; and the invasive capabilities of U87MG cells were also inhibited. However, p38 chemical activator (anisomycin) could block these effects produced by baicalein, suggesting baicalein directly downregulate the p38 signaling pathway. In conclusion, baicalein inhibits glioma cells invasion and metastasis by reducing cell motility and migration via suppression of p38 signaling pathway, suggesting that baicalein is a potential therapeutic agent for glioma.
Collapse
Affiliation(s)
- Zhenni Zhang
- Anesthesia Department, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jianrui Lv
- Anesthesia Department, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xiaoming Lei
- Anesthesia Department, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Siyuan Li
- Anesthesia Department, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yong Zhang
- Anesthesia Department, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Lihua Meng
- Anesthesia Department, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Rongliang Xue
- Anesthesia Department, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, Xi'an Jiaotong University, Xi'an, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, School of Medicine, Xi'an Jiaotong University, Xi'an, P. R. China
- General Surgeon Department of Cadre's Ward, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, P. R. China
- * E-mail:
| |
Collapse
|