1
|
Gül D, Schweitzer A, Khamis A, Knauer SK, Ding GB, Freudelsperger L, Karampinis I, Strieth S, Hagemann J, Stauber RH. Impact of Secretion-Active Osteoblast-Specific Factor 2 in Promoting Progression and Metastasis of Head and Neck Cancer. Cancers (Basel) 2022; 14:2337. [PMID: 35565465 PMCID: PMC9106029 DOI: 10.3390/cancers14092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment success of head and neck cancer (HNC) is still hampered by tumor relapse due to metastases. Our study aimed to identify biomarkers by exploiting transcriptomics profiles of patient-matched metastases, primary tumors, and normal tissue mucosa as well as the TCGA HNC cohort data sets. Analyses identified osteoblast-specific factor 2 (OSF-2) as significantly overexpressed in lymph node metastases and primary tumors compared to normal tissue. High OSF-2 levels correlate with metastatic disease and reduced overall survival of predominantly HPV-negative HNC patients. No significant correlation was observed with tumor localization or therapy response. These findings were supported by the fact that OSF-2 expression was not elevated in cisplatin-resistant HNC cell lines. OSF-2 was strongly expressed in tumor-associated fibroblasts, suggesting a tumor microenvironment-promoting function. Molecular cloning and expression studies of OSF-2 variants from patients identified an evolutionary conserved bona fide protein secretion signal (1MIPFLPMFSLLLLLIVNPINA21). OSF-2 enhanced cell migration and cellular survival under stress conditions, which could be mimicked by the extracellular administration of recombinant protein. Here, OSF-2 executes its functions via ß1 integrin, resulting in the phosphorylation of PI3K and activation of the Akt/PKB signaling pathway. Collectively, we suggest OSF-2 as a potential prognostic biomarker and drug target, promoting metastases by supporting the tumor microenvironment and lymph node metastases survival rather than by enhancing primary tumor proliferation or therapy resistance.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Andrea Schweitzer
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Aya Khamis
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, El Azareta, Alexandria, Egypt
| | - Shirley K. Knauer
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Universitätsstraße, 45117 Essen, Germany;
| | - Guo-Bin Ding
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| | - Laura Freudelsperger
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Ioannis Karampinis
- Academic Thoracic Center, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany;
| | - Jan Hagemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| |
Collapse
|
2
|
Ratajczak-Wielgomas K, Kmiecik A, Dziegiel P. Role of Periostin Expression in Non-Small Cell Lung Cancer: Periostin Silencing Inhibits the Migration and Invasion of Lung Cancer Cells via Regulation of MMP-2 Expression. Int J Mol Sci 2022; 23:ijms23031240. [PMID: 35163164 PMCID: PMC8835752 DOI: 10.3390/ijms23031240] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
The involvement of periostin (POSTN) in non-small-cell lung cancer (NSCLC) migration, invasion, and its underlying mechanisms has not been well established. The present study aims to determine epithelial POSTN expression in NSCLC and to assess associations with clinicopathological factors and prognosis as well as to explore the effects of POSTN knockdown on tumor microenvironment and the migration and invasion of lung cancer cells. Immunohistochemistry was used to evaluate epithelial POSTN expression in NSCLC. POSTN mRNA expression in the dissected lung cancer cells was confirmed by laser capture microdissection and real-time PCR. A549 cells were used for transfecting shRNA-POSTN lentiviral particles. Wound healing and Transwell invasion assays were used to assess the migratory and invasive abilities of A549 cells transfected with POSTN-specific short hairpin (sh)RNA. The results demonstrated significantly higher cytoplasmic POSTN expression in the whole NSCLC group compared to non-malignant lung tissue (NMLT). POSTN expression in cancer cells may be considered to be an independent prognostic factor for survival in NSCLC. POSTN knockdown significantly inhibited A549 cell migration and invasion capabilities in vitro. The activity and the expression level of matrix metalloproteinase-2 (MMP-2) were significantly decreased in A549.shRNA compared to control cells. In summary, POSTN may regulate lung cancer cell invasiveness by modulating the expression of MMP-2 and may represent a potential target for novel therapeutic intervention for NSCLC.
Collapse
Affiliation(s)
- Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
- Correspondence: ; Tel.: +48-7-1784-1365; Fax: +48-7-1784-0082
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
- Department of Human Biology, Faculty of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
3
|
Liu T, Zhou L, Xiao Y, Andl T, Zhang Y. BRAF Inhibitors Reprogram Cancer-Associated Fibroblasts to Drive Matrix Remodeling and Therapeutic Escape in Melanoma. Cancer Res 2022; 82:419-432. [DOI: 10.1158/0008-5472.can-21-0614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
|
4
|
Ma WQ, Sun XJ, Zhu Y, Liu NF. Metformin attenuates hyperlipidaemia-associated vascular calcification through anti-ferroptotic effects. Free Radic Biol Med 2021; 165:229-242. [PMID: 33513420 DOI: 10.1016/j.freeradbiomed.2021.01.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/14/2022]
Abstract
Ferroptosis is a form of regulated cell death that involves metabolic dysfunction resulting from iron-dependent excessive lipid peroxidation. Elevated plasma levels of free fatty acids are tightly associated with cardiometabolic risk factors in patients with obesity, diabetes mellitus, and metabolic syndrome. Metformin (Met) is an antidiabetic drug with beneficial cardiovascular disease effects. The aim of this study was to determine the effects of Met on ferroptosis induced by lipid overload and the effects of these changes on vascular smooth muscle cells (VSMCs) calcification. We developed a hyperlipidaemia-related vascular calcification in vivo model with rats fed a high-fat diet combined with vitamin D3 plus nicotine, and palmitic acid (PA), the most abundant long-chain saturated fatty acid in plasma, was used to induce lipid overload and develop an oxidative stress-related calcification model in vitro. The results showed that Met inhibits hyperlipidaemia-associated calcium deposition in the rat aortic tissue. In vitro, treatment of VSMCs with PA stimulates ferroptosis concomitant with increased calcium deposition in VSMCs, while pretreatment with Met attenuates these effects. Furthermore, PA also promotes the protein expression of the extracellular matrix protein periostin (POSTN) and its secretion into the extracellular environment. More importantly, upregulation of POSTN increased the sensitivity of cells to ferroptosis. Mechanistically, upregulation of POSTN suppresses SLC7A11 expression through the inhibition of p53 in VSMCs, which contributes to a decrease in glutathione synthesis and therefore triggers ferroptosis. Interestingly, overexpression of p53 attenuates the inhibitory effect of POSTN on SLC7A11 expression, accompanied by increased Gpx4 expression. Furthermore, p53 knockdown suppresses Met-mediated anti-ferroptosis effects in PA-treated VSMCs, which may be related to the downregulation of SLC7A11 expression. In addition, supplementation of VSMCs with Met enhances the antioxidative capacity of VSMCs through Nrf2 signalling activation. Collectively, targeting POSTN in VSMCs may provide a new strategy for vascular calcification prevention or treatment.
Collapse
Affiliation(s)
- Wen-Qi Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University 87 Dingjiaqiao, Nanjing, 210009, PR China.
| |
Collapse
|
5
|
Shen Z, Wu L, Hao W, Li Q, Zhou C. Expression of the long noncoding RNA RP11-169D4.1-001 in Hypopharyngeal Squamous cell carcinoma tissue and its clinical significance. J Clin Lab Anal 2019; 34:e23019. [PMID: 31512299 PMCID: PMC6977134 DOI: 10.1002/jcla.23019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background Increased research efforts have demonstrated that lncRNAs are associated with multiple head and neck tumors and play important roles in cancer. We previously found that RP11‐169D4.1‐001 plays a tumor‐suppressive role in laryngeal cancer, but its function in human hypopharyngeal squamous cell carcinoma (HSCC) remains unknown. Thus, this research aimed to analyze the relationship between RP11‐169D4.1‐001 expression and HSCC clinicopathological features. Methods Real‐time quantitative reverse transcription‐polymerase chain reaction (qRT‐PCR) was used to detect the expression of RP11‐169D4.1‐001 in 70 pairs of HSCC and adjacent normal tissues. Results The expression level of RP11‐169D4.1‐001 in HSCC tissues was significantly lower than that in adjacent normal tissues (P = .001). The expression of RP11‐169D4.1‐001 had no significant relationship with tumor differentiation, stage, smoking, drinking, age, tumor location, or treatment. RP11‐169D4.1‐001 expression was associated with T category (P = .008) and lymph node metastasis (P = .001). Survival data were assessed by Kaplan‐Meier curves. Patients with high RP11‐169D4.1‐001 expression were found to have a shorter overall survival than patients with low RP11‐169D4.1‐001 expression. Multivariate analysis also indicated that target RNA was an independent factor for prognosis. The ROC curve was constructed to clarify the diagnostic value of RP11‐169D4.1‐001. Conclusions RP11‐169D4.1‐001 may serve as a new biomarker and potential drug target and can be used as a new biomarker and a potential drug target for the detection and treatment of hypopharyngeal cancer, respectively. Furthermore, RP11‐169D4.1‐001 expression may be an independent prognostic factor affecting the survival of hypopharyngeal cancer patients.
Collapse
Affiliation(s)
- Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Linrong Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wenjuan Hao
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Ye D, Zhou C, Wang S, Deng H, Shen Z. Tumor suppression effect of targeting periostin with siRNA in a nude mouse model of human laryngeal squamous cell carcinoma. J Clin Lab Anal 2018; 33:e22622. [PMID: 29978598 DOI: 10.1002/jcla.22622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The incidence of laryngeal carcinoma is increasing, however, the mechanism is not fully understood. We aimed to investigate the efficacy of periostin gene silencing by siRNA on tumor inhibition, in a novel nude mouse model of human laryngeal squamous cell carcinoma, and to explore possible inhibitory mechanisms. METHODS Tumors were established in nude mice by transplantation of LSCC AMC-HN-8 cell line. Forty-eight nude mice were randomly divided into groups of eight each, and treated with high (1.0 OD) or low (0.5 OD) doses of periostin-siRNA or appropriate control solutions. Tumor growth was observed and used to calculate an inhibition rate (%). Routine pathological and electron microscopic examination were used to determine tumor apoptosis and proliferation. Changes in periostin mRNA and protein levels were analyzed. RESULTS Tumor growth was significantly inhibited in mice treated by high dose periostin-siRNA compared to untreated and those treated with low dose periostin-siRNA (P < 0.05). Pathological examination showed increased tumor necrosis and apoptotic changes in treated mice, which was confirmed by electron microscopy. Periostin mRNA and protein expression were significantly reduced in tumors from mice treated with high dose periostin-siRNA, compared to controls and low-dose periostin-siRNA treatment groups (P < 0.05). CONCLUSION Periostin silencing was associated with growth inhibition of tumor cells in a nude mouse model of LSCC. The underlying mechanism may be due to receptor-mediated induction of relevant signal transduction pathways that modulate the microenvironment needed for cancer cell survival. Periostin is expected to become a new target for cancer therapy.
Collapse
Affiliation(s)
- Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Sijia Wang
- Ningbo Xiaoshi High School, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|