1
|
Exploring the Potential Mechanism of Qi-Shen-Di-Huang Drug Formulary for Myasthenia Gravis (MG) based on UHPLC-QE-MS Network Pharmacology and Molecular Docking Techniques. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7416448. [PMID: 36225188 PMCID: PMC9550457 DOI: 10.1155/2022/7416448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022]
Abstract
Myasthenia gravis (MG) is a rare and refractory autoimmune disease, and Qi Shen Di Huang (QSDH) drug formulary is an in-hospital herbal decoction with proven clinical efficacy in treating MG. Currently, most of the research on the QSDH drug formulary has concentrated on its clinical efficacy, and there is a lack of systematic study on the material basis. The active compounds and their mechanism of action have not been entirely determined. Therefore, this study sought to identify the active compounds in the QSDH drug formulary and analyze the key targets and potential mechanisms. We used ultra-performance liquid chromatography Q Exactive-mass spectrometry (UHPLC-QE-MS) and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database to identify and screen 85 active ingredients corresponding to 59 potential targets (17 herbs) associated with myasthenia gravis, and further identified AKT1 as the primary core target and the PI3K/AKT signaling pathway as the most substantial enriched pathway. Molecular docking and UPLC-MS analysis identified quercetin, luteolin, wogonin, kaempferol, laccasein, and epigallocatechin gallate are the core compounds of the QSDH drug formulary. In vivo rat studies showed that the QSDH drug formulary reduced Lennon's clinical score and decreased acetylcholine receptor antibody levels in peripheral blood rats with experimental autoimmune myasthenia gravis. In addition, the QSDH drug formulary downregulated P-PI3K/PI3K and P-Akt/Akt protein expression. Collectively, these findings describe the role and potential mechanism of the QSDH drug formulary in the treatment of MG, which exerts potential value by acting on AKT targets and regulating the PI3K/AKT signaling pathway and providing a theoretical reference for QSDH drug formulary application in the clinical treatment of MG.
Collapse
|
2
|
Tieu S, Charchoglyan A, Wagter-Lesperance L, Karimi K, Bridle BW, Karrow NA, Mallard BA. Immunoceuticals: Harnessing Their Immunomodulatory Potential to Promote Health and Wellness. Nutrients 2022; 14:4075. [PMID: 36235727 PMCID: PMC9571036 DOI: 10.3390/nu14194075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022] Open
Abstract
Knowledge that certain nutraceuticals can modulate the immune system is not new. These naturally occurring compounds are known as immunoceuticals, which is a novel term that refers to products and systems that naturally improve an individual's immuno-competence. Examples of immunoceuticals include vitamin D3, mushroom glycans, flavonols, quercetin, omega-3 fatty acids, carotenoids, and micronutrients (e.g., zinc and selenium), to name a few. The immune system is a complex and highly intricate system comprising molecules, cells, tissues, and organs that are regulated by many different genetic and environmental factors. There are instances, such as pathological conditions, in which a normal immune response is suboptimal or inappropriate and thus augmentation or tuning of the immune response by immunoceuticals may be desired. With infectious diseases, cancers, autoimmune disorders, inflammatory conditions, and allergies on the rise in both humans and animals, the importance of the use of immunoceuticals to prevent, treat, or augment the treatment of these conditions is becoming more evident as a natural and often economical approach to support wellness. The global nutraceuticals market, which includes immunoceuticals, is a multi-billion-dollar industry, with a market size value of USD 454.55 billion in 2021, which is expected to reach USD 991.09 billion by 2030. This review will provide an overview of the immune system, the importance of immunomodulation, and defining and testing for immunocompetence, followed by a discussion of several key immunoceuticals with clinically proven and evidence-based immunomodulatory properties.
Collapse
Affiliation(s)
- Sophie Tieu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauri Wagter-Lesperance
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Wang P, Li W, Yang Y, Cheng N, Zhang Y, Zhang N, Yin Y, Tong L, Li Z, Luo J. A polypeptide inhibitor of calcineurin blocks the calcineurin-NFAT signalling pathway in vivo and in vitro. J Enzyme Inhib Med Chem 2021; 37:202-210. [PMID: 34894973 PMCID: PMC8667882 DOI: 10.1080/14756366.2021.1998024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Calcineurin (CN) controls the immune response by regulating nuclear factor of activated T cells (NFAT). Inhibition of CN function is an effective treatment for immune diseases. The PVIVIT peptide is an artificial peptide based on the NFAT-PxIxIT motif, which exhibits stronger binding to CN. A bioactive peptide (named pep4) that inhibits the CN/NFAT interaction was designed. Pep4 contains a segment of A238L as the linker and the LxVP motif and PVIVIT motif as CN binding sites. Pep4 has strong binding capacity to CN and inhibits CN activity competitively. 11-arginine-modified pep4 (11 R-pep4) inhibits the nuclear translocation of NFAT and reduces the expression of IL-2. 11 R-pep4 improves the pathological characteristics of asthmatic mice to a certain extent. The above results indicated that pep4 is a high-affinity CN inhibitor. These findings will contribute to the discovery of new CN inhibitors and promising immunosuppressive drugs.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wenying Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yumeng Yang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Na Cheng
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuchen Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yanxia Yin
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Li Tong
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhimei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Xu J, Zhang X, Huang F, Li G, Leadlay PF. Efophylins A and B, Two C2-Asymmetric Macrodiolide Immunosuppressants from Streptomyces malaysiensis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1579-1586. [PMID: 33973788 DOI: 10.1021/acs.jnatprod.1c00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Genomics-inspired isolation led to the identification of two new natural congeneric C2-asymmetric macrodiolide immunosuppressants, named efophylins A (1) and B (2), from Streptomyces malaysiensis DSM 4137. Their structures were elucidated by spectroscopic and computational methods and were in agreement with biosynthetic predictions from the efophylin gene cluster. Compound 2 exhibited potent immunosuppressive activity and demonstrated to inhibit the activation of the NFAT and block NFAT dephosphorylation in vitro. The immunosuppressive activity of compound 2 is possibly at least in part via the CaN/NFAT signaling pathway.
Collapse
Affiliation(s)
- Jing Xu
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Xuexia Zhang
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - Fanglu Huang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Gang Li
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
5
|
Ali AS, Almalki AS, Alharthy BT. Effect of Kaempferol on Tacrolimus-Induced Nephrotoxicity and Calcineurin B1 Expression Level in Animal Model. J Exp Pharmacol 2020; 12:397-407. [PMID: 33149706 PMCID: PMC7604448 DOI: 10.2147/jep.s265359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/29/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The kidneys are considered one of the most susceptible organs for adverse drug effects, particularly in post-transplant conditions. Tacrolimus (FK506), a calcineurin inhibitor immunosuppressant, is an essential component in the transplantation regimen. Despite that, nephrotoxicity is a severe drawback for its chronic utilization, where oxidative stress might be implicated. Kaempferol (KMF) is a natural flavonoid that has many adaptable biological activities, including antioxidant action. OBJECTIVE Exploring the KMF protective effect on FK506-induced nephrotoxicity and the underlying role of calcineurin B1. METHODS Twenty-four male albino-Wistar rats were randomly divided into three equal groups. The control group received solvents: propylene glycol, i.p. and 0.5% carboxymethyl cellulose, PO; FK506 group was injected with FK506 (0.6 mg/kg, i.p.), and FK506+KMF group was given FK506 (0.6 mg/kg, i.p.) and KMF (10 mg/kg, PO). The treatment regimen for all groups was once daily for 30 days. ELISA technique applied for measuring FK506 trough level and nephrotoxicity biomarkers in serum (cystatin C and urea) on days 15 and 30, and in kidney tissue homogenate (MDA and calcineurin B1) on day 30. RESULTS In FK506-treated rats, the FK506 trough level was 7.84 ± 1.31 ug/l on day 15 and 9.54 ± 1.45 ug/l on day 30. FK506 use has significantly (P<0.01) increased biomarkers levels of cystatin C (325% and 477%), urea (177% and 245%), MDA (1253%), except calcineurin B1 that has decreased (97%). The KMF combination has resulted in a significant reduction in the FK506 trough level by day 30 (6.79 ± 1.35 ug/l, P<0.01). KMF has significantly ameliorated the levels of cystatin C (46% and 73%, P<0.001), urea (38% and 68%, P<0.001), MDA (75%, P<0.001), and calcineurin B1 (1833%, P<0.05). CONCLUSION Oxidative stress and calcineurin B1 are contributing factors in FK506-induced nephrotoxicity. Hence, inhibition of calcineurin enzyme is not limited to the immune cells. KMF could be a novel nephroprotective antioxidant.
Collapse
Affiliation(s)
- Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abdullah Saddah Almalki
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Pharmacy, Ajyad Hospital, Ministry of Health, Riyadh, Saudi Arabia,Correspondence: Abdullah Saddah AlmalkiMakkah24268 – 9382, Kingdom of Saudi Arabia Tel +966 126401000 - Ext 20151Fax +966 126400855 Email
| | - Basma Tarek Alharthy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Liu C, Liu H, Lu C, Deng J, Yan Y, Chen H, Wang Y, Liang C, Wei J, Han L, Dai Z. Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model. Clin Exp Immunol 2019; 198:403-415. [PMID: 31407330 PMCID: PMC6857081 DOI: 10.1111/cei.13363] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease that mainly affects the skin barrier. Treatment for psoriasis mainly includes conventional immunosuppressive drugs. However, long-term treatment with global immunosuppressive agents may cause a variety of side effects, including nephrotoxicity and infections. Kaempferol, a natural flavonol present in various plants, is known to possess potent anti-inflammatory, anti-oxidant and anti-cancerous properties. However, it is unknown whether kaempferol is also anti-psoriatic. Here we established an imiquimod (IMQ)-induced psoriatic mouse model to explore the potential therapeutic effects of kaempferol on psoriatic skin lesions and inflammation. In this study, we demonstrated that treatment with kaempferol protected mice from developing psoriasis-like skin lesions induced by topical administration of IMQ. Kaempferol reduced CD3+ T cell infiltration and gene expression of major proinflammatory cytokines, including interleukin (IL)-6, IL-17A and tumor necrosis factor (TNF)-α, in the psoriatic skin lesion. It also down-regulated proinflammatory nuclear factor kappa B (NF-κB) signaling in the skin. The therapeutic effects were associated with a significant increase in CD4+ forkhead box protein 3 (FoxP3)+ regulatory T cell (Treg ) frequency in the spleen and lymph nodes as well as FoxP3-positive staining in the skin lesion. Conversely, depletion of CD4+ CD25+ Tregs reversed the therapeutic effects of kaempferol on the skin lesion. Kaempferol also lowered the percentage of IL-17A+ CD4+ T cells in the spleen and lymph nodes of IMQ-induced psoriatic mice. Finally, kaempferol suppressed the proliferation of T cells in vitro and their mTOR signaling. Thus, our findings suggest that kaempferol may be a therapeutic drug for treating human psoriasis in the near future.
Collapse
Affiliation(s)
- C. Liu
- Section of Immunology and Joint Immunology Programthe Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - H. Liu
- Section of Immunology and Joint Immunology Programthe Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - C. Lu
- Section of Immunology and Joint Immunology Programthe Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - J. Deng
- Section of Immunology and Joint Immunology Programthe Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Y. Yan
- Section of Immunology and Joint Immunology Programthe Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - H. Chen
- Section of Immunology and Joint Immunology Programthe Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Y. Wang
- Department of Cancer BiologyBeckman Research Institute of the City of HopeDuarteCAUSA
| | - C.‐L. Liang
- Section of Immunology and Joint Immunology Programthe Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - J. Wei
- Section of Immunology and Joint Immunology Programthe Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - L. Han
- Section of Immunology and Joint Immunology Programthe Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| | - Z. Dai
- Section of Immunology and Joint Immunology Programthe Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouGuangdongChina
| |
Collapse
|
7
|
Gang W, Yu-Zhu W, Yang Y, Feng S, Xing-Li F, Heng Z. The critical role of calcineurin/NFAT (C/N) pathways and effective antitumor prospect for colorectal cancers. J Cell Biochem 2019; 120:19254-19273. [PMID: 31489709 DOI: 10.1002/jcb.29243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Transcription factors (TFs) like a nuclear factor of activated T-cells (NFAT) and its controller calcineurin are highly expressed in primary intestinal epithelial cells (IECs) due to delamination, damage by tumor-associated flora and selective activation in the intestinal tract tumor are crucial in the progression and growth of colorectal cancer (CRC). This study sought to summarize the current findings concerning the dysregulated calcineurin/NFAT (C/N) signaling involved in CRC initiation and progression. These signalings include proliferation, T-cell functions, and glycolysis with high lactate production that remodels the acidosis, which genes in tumor cells provide an evolutionary advantage, or even increased their attack phenotype. Moreover, the relationship between C/N and gut microbiome in CRC, especially role of NFAT and toll-like receptor signaling in regulating intestinal microbiota are also discussed. Furthermore, this review will discuss the proteins and genes relating to C/N induced acidosis in CRC, which includes ASIC2 regulated C/N1 and TFs associated with the glycolytic by-product that affect T-cell functions and CRC cell growth. It is revealed that calcineurin or NFAT targeting to antitumor, selective calcineurin inhibition or targets in NFAT signaling may be useful for clinical treatment of CRC. This can further aid in the identification of specific targets via cancer patient-personalized approach. Future studies should be focused on targeting to C/N or TLR signaling by the combination of therapeutic agents to regulate T-cell functions and gut microbiome for activating potent anticancer property with the prospect of potentiating the antitumor therapy for CRC.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eight People's Hospital, Jiangsu University, Shanghai, China
| | - Wang Yu-Zhu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Yang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shi Feng
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fu Xing-Li
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhang Heng
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Lee JU, Kim LK, Choi JM. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases. Front Immunol 2018; 9:2747. [PMID: 30538703 PMCID: PMC6277705 DOI: 10.3389/fimmu.2018.02747] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promotor region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| |
Collapse
|
9
|
Inhibition of nuclear factor of activated T cells (NFAT) c3 activation attenuates acute lung injury and pulmonary edema in murine models of sepsis. Oncotarget 2018. [PMID: 29535830 PMCID: PMC5828182 DOI: 10.18632/oncotarget.24320] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Specific therapies targeting cellular and molecular events of sepsis induced Acute Lung Injury (ALI) pathogenesis are lacking. We have reported a pivotal role for Nuclear Factors of Activated T cells (NFATc3) in regulating macrophage phenotype during sepsis induced ALI and subsequent studies demonstrate that NFATc3 transcriptionally regulates macrophage CCR2 and TNFα gene expression. Mouse pulmonary microvascular endothelial cell monolayer maintained a tighter barrier function when co-cultured with LPS stimulated NFATc3 deficient macrophages whereas wild type macrophages caused leaky monolayer barrier. More importantly, NFATc3 deficient mice showed decreased neutrophilic lung inflammation, improved alveolar capillary barrier function, arterial oxygen saturation and survival benefit in lethal CLP sepsis mouse models. In addition, survival of wild type mice subjected to the lethal CLP sepsis was not improved with broad-spectrum antibiotics, whereas the survival of NFATc3 deficient mice was improved to 40–60% when treated with imipenem. Passive adoptive transfer of NFATc3 deficient macrophages conferred protection against LPS induced ALI in wild type mice. Furthermore, CP9-ZIZIT, a highly potent, cell-permeable peptide inhibitor of Calcineurin inhibited NFATc3 activation. CP9-ZIZIT effectively reduced sepsis induced inflammatory cytokines and pulmonary edema in mice. Thus, this study demonstrates that inhibition of NFATc3 activation by CP9-ZIZIT provides a potential therapeutic option for attenuating sepsis induced ALI/pulmonary edema.
Collapse
|
10
|
Saikia G, Gogoi SR, Boruah JJ, Ram BM, Begum P, Ahmed K, Sharma M, Ramakrishna G, Ramasarma T, Islam NS. Peroxo Compounds of Vanadium(V) and Niobium(V) as Potent Inhibitors of Calcineurin Activity towards RII-Phosphopeptide. ChemistrySelect 2017. [DOI: 10.1002/slct.201700935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gangutri Saikia
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Sandhya Rani Gogoi
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Jeena Jyoti Boruah
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Babul Moni Ram
- Department of molecular and cellular medicine; Institute of liver and biliary sciences; D1 Vasant Kunj New Delhi 110070 India
| | - Pakiza Begum
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Kabirun Ahmed
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Mitu Sharma
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Gayatri Ramakrishna
- Department of molecular and cellular medicine; Institute of liver and biliary sciences; D1 Vasant Kunj New Delhi 110070 India
| | | | - Nashreen S. Islam
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| |
Collapse
|
11
|
Gao S, Li W, Lin G, Liu G, Deng W, Zhai C, Bian C, He G, Hu Z. Norisoboldine, an alkaloid from Radix linderae, inhibits NFAT activation and attenuates 2,4-dinitrofluorobenzene-induced dermatitis in mice. Immunopharmacol Immunotoxicol 2016; 38:327-33. [PMID: 27315014 DOI: 10.1080/08923973.2016.1202961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CONTEXT The nuclear factor of activated T-cells (NFAT) is a family of transcription factors, essential for T-cell activation. Norisoboldine (NOR), an isoquinoline alkaloid from Radix linderae, has been demonstrated to possess anti-inflammatory activity. OBJECTIVE This study examines NOR's effect on NFAT activation and its therapeutic potential for atopic dermatitis (AD). MATERIALS AND METHODS The transcriptional activity of NFAT was examined with luciferase reporter assay, using K562-luc cells, stimulated with 20 ng/mL PMA plus 1 μM ionomycin. NFAT dephosphorylation was examined by immuno-blotting in K562-luc cells and Jurkat cells. Interleukin-2 (IL-2) expression in Jurkat cells was examined by real-time PCR. A mouse model of dermatitis, induced by 2,4-dinitrochlorobenzene (DNCB), was used to test NOR's therapeutic potential for AD. RESULTS NOR, dose-dependently, inhibited PMA and ionomycin-induced NFAT reporter gene expression in K562-luc cells in the range of 2-50 μM. NOR also inhibited PMA and ionomycin-induced NFAT dephosphorylation in K562-luc cells and Jurkat cells. Consequently, NOR suppressed PMA plus ionomycin-induced IL-2 expression in Jurkat cells. The administration of NOR (10 mg/kg, i.p.), alleviated DNCB-induced dermatitis in mice, by the reduction of ear swelling and attenuation of inflammatory infiltration into ear tissue. Moreover, mRNA levels of INF-γ, TNF-α, IL-4 and IL-6 in ears of NOR-treated mice were reduced by 78.4, 77.8, 72.3 and 73.9%, respectively, compared with untreated controls. DISCUSSION AND CONCLUSION This study demonstrates that NOR inhibits NFAT activation in T-cells and alleviates AD-like inflammatory reaction in a DNCB-induced dermatitis model, highlighting NOR as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Shuang Gao
- a Department of Biochemical Pharmacy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Wencai Li
- a Department of Biochemical Pharmacy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Guochao Lin
- a Department of Biochemical Pharmacy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | | | - Wenjuan Deng
- b Infinitus (China) Company Ltd , Guangzhou , China
| | | | | | - Gaiying He
- c Shanghai LB Nature Co. Ltd , Shanghai , China
| | - Zhenlin Hu
- a Department of Biochemical Pharmacy, School of Pharmacy , Second Military Medical University , Shanghai , China
| |
Collapse
|
12
|
So JS, Kim GC, Song M, Lee CG, Park E, Kim HJ, Kim YS, Jun CD, Im SH. 6-Methoxyflavone inhibits NFAT translocation into the nucleus and suppresses T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:2772-2783. [PMID: 25114106 DOI: 10.4049/jimmunol.1400285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
NFAT plays a crucial role in the immune system by regulating the transcription of inducible genes during immune responses. In T cells, NFAT proteins govern various cellular events related to T cell development, activation, tolerance induction, and differentiation. We previously reported the NFAT1-dependent enhancer activity of conserved noncoding sequence (CNS)-9, a distal cis-acting element, in the regulation of IL-10 transcription in T cells. In this study, we developed a T cell-based reporter system to identify compounds that modulate the regulatory activity of CNS-9. Among the identified candidates, 6-methoxyflavone (6-MF) significantly inhibited the enhancer activity of CNS-9, thereby reducing IL-10 expression in T cells without affecting cell viability. 6-MF also downregulated the transcription of NFAT1 target genes such as IL-4, IL-13, and IFN-γ. Treatment of 6-MF inhibited the translocation of NFAT1 into the nucleus, which consequently interrupted NFAT1 binding to the target loci, without affecting the expression or dephosphorylation of NFAT1. Treatment of 6-MF to CD4(+) T cells or B cells isolated from mice with atopic dermatitis significantly reduced disease-associated cytokine production, as well as the levels of IgE. In addition, oral administration of 6-MF to atopic dermatitis mice ameliorated disease symptoms by reducing serum IgE levels and infiltrating lymphocytes. Conclusively, our results suggest that 6-MF can be a potential candidate for the development of an effective immunomodulator via the suppression of NFAT-mediated T cell activation.
Collapse
Affiliation(s)
- Jae-Seon So
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021
| | - Gi-Cheon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
| | - Minkyung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021
| | - Choong-Gu Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
| | - Eunbee Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea; Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea
| | - Ho Jin Kim
- National Cancer Center, Korea, Goyang 410-769, Republic of Korea
| | - Young Sup Kim
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea; and
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 790-784, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
13
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
14
|
Abstract
Calcineurin (CN), a unique protein phosphatase, plays an important role in immune regulation. In this study we used CN as a target enzyme to investigate the immunosuppressive properties of a series of natural compounds from Garcinia mangostana L., and discovered an active compound, isogarcinol. Enzymatic assays showed that isogarcinol inhibited CN in a dose-dependent manner. At concentrations resulting in relatively low cytotoxicity isogarcinol significantly inhibited proliferation of murine spleen T-lymphocytes induced by concanavalin A (ConA) and the mixed lymphocyte reaction (MLR). In addition, it performed much better in acute toxicity tests and via oral administration in mice than cyclosporin A (CsA), with few adverse reactions and low toxicity in experimental animals. Oral administration of isogarcinol in mice resulted in a dose-dependent decrease in delayed type hypersensitivity (DTH) and prolonged graft survival in allogeneic skin transplantation. These findings suggest that isogarcinol could serve as a new oral immunomodulatory drug for preventing transplant rejection, and for long-term medication in autoimmune diseases.
Collapse
|
15
|
Liu H, Tu L, Wang Q, Sun Y, Ma Y, Cen J, Wei Q, Luo J. Modulation of calcineurin activity in mouse brain by chronic oral administration of cyclosporine A. IUBMB Life 2013; 65:445-53. [DOI: 10.1002/iub.1139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
|
16
|
Cheung KW, Sze DMY, Chan WK, Deng RX, Tu W, Chan GCF. Brazilian green propolis and its constituent, Artepillin C inhibits allogeneic activated human CD4 T cells expansion and activation. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:463-471. [PMID: 21964192 DOI: 10.1016/j.jep.2011.09.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/07/2011] [Accepted: 09/18/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis has long been used as a popular folk medicine by various ethnic groups due to its wide spectrum of alleged biological and pharmaceutical properties including anti-microbial, anti-cancer and anti-inflammatory functions. All these can be linked to the modulation of immune function. Therefore, it will be relevant for us to find out whether there is any novel compound that can account for such action and the mechanism involved. AIM OF THE STUDY We investigated the immune modulating effect of Brazilian green propolis (PBrazil) and its constituent Artepillin C (Art-C) by using mixed leukocytes reaction. MATERIALS AND METHODS The cytotoxic effect of Art-C on non-tumorigenic human liver cell line miHA and non-tumorigenic human kidney cell line HK-2 as well as human peripheral blood mononuclear cells (PBMCs) were measured by XTT cell proliferation assay. The effect of PBrazil and Art-C on T cell proliferation and activation were determined by using carboxyfluorescein succinimidyl ester (CFSE) and by CD25 expression, respectively. Cytokines including tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), interleukins such as IL-2, IL-17 were measured by intracellular cytokine staining and IL-10 was measured by ELISA. The effect of PBrazil and Art-C on regulatory T cells (Treg) induction was determined by the Foxp3 expression. The apoptotic effect of these compounds on CFSE labeled alloreactive T cells was measured by using Annexin V. RESULTS Using mixed leukocytes reaction we demonstrated for the first time that both Art-C and PBrazil significantly inhibited the alloreactive CD4 T cell proliferation, activation, and suppressed the expressions of IL-2, IFN-γ and IL-17 in these alloreactive CD4 T cells. The inhibitions of Art-C and PBrazil on CD4 T cells were not due to direct cytotoxic effect on PBMC or inducing regulatory T cells differentiation. Both Art-C and PBrazil were found to selectively induce apoptosis in proliferating T cells. The anti-proliferative effect of Art-C and PBrazil were reversible and were also applied to the activated T cells. CONCLUSIONS In conclusion, our results indicated that Art-C and PBrazil can suppress alloreactive CD4 T cell responses in vitro, suggesting that Art-C could be used as a potential immunosuppressant, either solely or as adjunct agent in treating graft versus host disease.
Collapse
Affiliation(s)
- Ka-Wai Cheung
- Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
17
|
Lin MK, Yu YL, Chen KC, Chang WT, Lee MS, Yang MJ, Cheng HC, Liu CH, Chen DC, Chu CL. Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells. Immunobiology 2011; 216:1103-9. [DOI: 10.1016/j.imbio.2011.05.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/12/2011] [Accepted: 05/01/2011] [Indexed: 12/14/2022]
|
18
|
Li J, Tu Y, Tong L, Zhang W, Zheng J, Wei Q. Immunosuppressive activity on the murine immune responses of glycyrol from Glycyrrhiza uralensis via inhibition of calcineurin activity. PHARMACEUTICAL BIOLOGY 2010; 48:1177-1184. [PMID: 20860439 DOI: 10.3109/13880200903573169] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CONTEXT Calcineurin (CN), a unique protein phosphatase, plays an important role in immune regulation. Our laboratory has established an effective molecular drug-screening model based on CN activity. OBJECTIVE Our aim is to search for an effective immunosuppressant from Glycyrrhiza uralensis (Leguminosae). MATERIALS AND METHODS As guided by CN inhibitory test, an active compound was purified and identified as glycyrol. Immunosuppressive activity of glycyrol in vitro was assayed by T lymphocytes proliferation and mixed lymphocyte reaction (MLR). In addition, delayed-type hypersensitivity reaction (DTH) and skin allograft test in vivo were also carried out. Further, we have investigated the effect of glycyrol on phorbol 12-myristate 13-acetate (PMA)/ionomycin (Io)-stimulated IL-2 expression in Jurkat cells. RESULTS The enzymatic assay showed glycyrol (IC(50) = 84.6 μM) inhibited calcineurin activity in a dose-dependent manner. Glycyrol, at the non-cytotoxic concentration, significantly inhibited proliferation of murine spleen T lymphocytes induced by Concanavalin A (Con A) and mixed lymphocyte reaction (MLR) in vitro. In addition, mice treated with glycyrol had shown the dose-dependent decrease in delayed type hypersensitivity (DTH) and prolonged the graft survival by 59% compared to the control group (*p < 0.05). RT-PCR showed glycyrol suppressed IL-2 production in a concentration-dependent manner. DISCUSSION AND CONCLUSION Our results show the immunosuppressive activity of glycyrol and this activity should be due to its inhibitory effect on CN activity, thereby suppressing IL-2 production and regulating T lymphocytes. Thus, glycyrol could be a candidate for development as a novel immunomodulatory drug.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing, China
| | | | | | | | | | | |
Collapse
|
19
|
Rosado JA, Pariente JA, Salido GM, Redondo PC. SERCA2b activity is regulated by cyclophilins in human platelets. Arterioscler Thromb Vasc Biol 2010; 30:419-25. [PMID: 20139366 DOI: 10.1161/atvbaha.109.194530] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The role of cyclophilins (chaperones that are widely expressed in different cell types, including human platelets) was explored in sarcoendoplasmic calcium (Ca(2+)) adenosine triphosphatase (SERCA) activity. METHODS AND RESULTS Cyclophilin inhibition by cyclosporin A (CsA) evoked a time- and concentration-dependent reduction of Ca(2+) uptake by SERCA2b. However, other Ca(2+)-adenosine triphosphatases expressed in platelets, such as SERCA3 and plasma membrane Ca(2+) adenosine triphophatase, remained unaltered after CsA treatment. Cypermethrin, a non-CsA-related calcineurin inhibitor, did not alter SERCA2b activity. Furthermore, SERCA2b was affected by other CsA analogues, which do not interfere with calcineurin, such as PKF-211-811-NX5 (NIM811) and sanglifehrin A. Inhibition of the immunophilin family members using FK506 (tacrolimus) did not alter SERCA2b ability to sequester Ca(2+) into the dense tubular system. Coimmunoprecipitation experiments confirmed that cyclophilin A associates with SERCA2b and stromal interaction molecule-1 in resting platelets. This interaction is attenuated by the physiological agonist thrombin but enhanced by treatment with CsA or sanglifehrin A. CONCLUSIONS Cyclophilin A is a regulator of SERCA2b in human platelets.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, University of Extremadura, Avd. Universidad s/n, Cáceres 10071, Spain
| | | | | | | |
Collapse
|
20
|
Erdmann F, Weiwad M, Kilka S, Karanik M, Pätzel M, Baumgrass R, Liebscher J, Fischer G. The novel calcineurin inhibitor CN585 has potent immunosuppressive properties in stimulated human T cells. J Biol Chem 2009; 285:1888-98. [PMID: 19923214 DOI: 10.1074/jbc.m109.024844] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Ca2+/calmodulin-dependent protein phosphatase calcineurin is a key mediator in antigen-specific T cell activation. Thus, inhibitors of calcineurin, such as cyclosporin A or FK506, can block T cell activation and are used as immunosuppressive drugs to prevent graft-versus-host reactions and autoimmune diseases. In this study we describe the identification of 2,6- diaryl-substituted pyrimidine derivatives as a new class of calcineurin inhibitors, obtained by screening of a substance library. By rational design of the parent compound we have attained the derivative 6-(3,4-dichloro-phenyl)-4-(N,N-dimethylaminoethylthio)-2-phenyl-pyrimidine (CN585) that noncompetitively and reversibly inhibits calcineurin activity with a K(i) value of 3.8 mum. This derivative specifically inhibits calcineurin without affecting other Ser/Thr protein phosphatases or peptidyl prolyl cis/trans isomerases. CN585 shows potent immunosuppressive effects by inhibiting NFAT nuclear translocation and transactivation, cytokine production, and T cell proliferation. Moreover, the calcineurin inhibitor exhibits no cytotoxicity in the effective concentration range. Therefore, calcineurin inhibition by CN585 may represent a novel promising strategy for immune intervention.
Collapse
Affiliation(s)
- Frank Erdmann
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle/Saale.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sieber M, Baumgrass R. Novel inhibitors of the calcineurin/NFATc hub - alternatives to CsA and FK506? Cell Commun Signal 2009; 7:25. [PMID: 19860902 PMCID: PMC2774854 DOI: 10.1186/1478-811x-7-25] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/27/2009] [Indexed: 01/16/2023] Open
Abstract
The drugs cyclosporine A (CsA) and tacrolimus (FK506) revolutionized organ transplantation. Both compounds are still widely used in the clinic as well as for basic research, even though they have dramatic side effects and modulate other pathways than calcineurin-NFATc, too. To answer the major open question - whether the adverse side effects are secondary to the actions of the drugs on the calcineurin-NFATc pathway - alternative inhibitors were developed. Ideal inhibitors should discriminate between the inhibition of (i) calcineurin and peptidyl-prolyl cis-trans isomerases (PPIases; the matchmaker proteins of CsA and FK506), (ii) calcineurin and the other Ser/Thr protein phosphatases, and (iii) NFATc and other transcription factors. In this review we summarize the current knowledge about novel inhibitors, synthesized or identified in the last decades, and focus on their mode of action, specificity, and biological effects.
Collapse
Affiliation(s)
- Matthias Sieber
- Deutsches Rheuma-Forschungszentrum Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | |
Collapse
|
22
|
Studies on the interactions of kaempferol to calcineurin by spectroscopic methods and docking. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1269-75. [PMID: 19439201 DOI: 10.1016/j.bbapap.2009.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 01/05/2023]
Abstract
Kaempferol, in our previous study, was a new immunosuppressant on calcineurin (CN), the Ca(2+)/calmodulin (CaM)-dependent protein phosphatase. Here, we examined the interactions of kaempferol with CN by fluorescence spectroscopy (FS), circular dichroism spectroscopy (CD) and docking. Data of kaempferol with CN catalytic subunit (CN A) and its truncated mutant CNAa obtained by FS method showed that the binding stoichiometry of kaempferol/CN A was 1:1, catalytic domain of CN A was the concrete domain for kaempferol binding while other domains contributed a lot to this binding. Distances from kaempferol to each tryptophan (Trp) in CN A by energy transfer experiments and the subsequent docking study interestingly provided the same binding sites for kaempferol, which all located in the non-active site area of CN A catalytic domain, also consisted with our previous conclusion from CN activity assay. Furthermore, CD results showed a much tighter structure of CN A for the inhibitor binding; on the other hand, presence of Ca(2+) and Mn(2+) decreased kaempferol binding on CN A.
Collapse
|