1
|
Milella M, Rutigliano M, Pandolfo SD, Aveta A, Crocetto F, Ferro M, d'Amati A, Ditonno P, Lucarelli G, Lasorsa F. The Metabolic Landscape of Cancer Stem Cells: Insights and Implications for Therapy. Cells 2025; 14:717. [PMID: 40422220 DOI: 10.3390/cells14100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation with self-renewal and differentiation capacities believed to be responsible for tumor initiation, progression, and recurrence. These cells exhibit unique metabolic features that contribute to their stemness and survival in hostile tumor microenvironments. Like non-stem cancer cells, CSCs primarily rely on glycolysis for ATP production, akin to the Warburg effect. However, CSCs also show increased dependence on alternative metabolic pathways, such as oxidative phosphorylation (OXPHOS) and fatty acid metabolism, which provide necessary energy and building blocks for self-renewal and therapy resistance. The metabolic plasticity of CSCs enables them to adapt to fluctuating nutrient availability and hypoxic conditions within the tumor. Recent studies highlight the importance of these metabolic shifts in maintaining the CSC phenotype and promoting cancer progression. The CSC model suggests that a small, metabolically adaptable subpopulation drives tumor growth and therapy resistance. CSCs can switch between glycolysis and mitochondrial metabolism, enhancing their survival under stress and dormant states. Targeting CSC metabolism offers a promising therapeutic strategy; however, their adaptability complicates eradication. A multi-targeted approach addressing various metabolic pathways is essential for effective CSC elimination, underscoring the need for further research into specific CSC markers and mechanisms that distinguish their metabolism from normal stem cells for successful therapeutic intervention.
Collapse
Affiliation(s)
- Martina Milella
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Monica Rutigliano
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Savio Domenico Pandolfo
- Department of Urology, University of L'Aquila, 67100 L'Aquila, Italy
- Department of Neurosciences, Science of Reproduction and Odontostomatology, Federico II University, 80138 Naples, Italy
| | - Achille Aveta
- Department of Urology, University of L'Aquila, 67100 L'Aquila, Italy
| | - Felice Crocetto
- Department of Urology, University of L'Aquila, 67100 L'Aquila, Italy
| | - Matteo Ferro
- Urology Unit, Department of Health Science, University of Milan, 20122 Milan, Italy
| | - Antonio d'Amati
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
- SSD Urologia Clinicizzata, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Francesco Lasorsa
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
2
|
Sauer B, Kueckelhaus J, Lorenz NI, Bozkurt S, Schulte D, Weinem J, Benzarti M, Meiser J, Urban H, Villa G, Harter PN, Münch C, Rieger J, Steinbach JP, Heiland DH, Ronellenfitsch MW. An AMP-activated protein kinase-PGC-1α axis mediates metabolic plasticity in glioblastoma. Clin Transl Med 2024; 14:e70030. [PMID: 39552019 PMCID: PMC11570551 DOI: 10.1002/ctm2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 11/19/2024] Open
Abstract
Glioblastoma, the most frequent primary malignant brain tumour in adults, is characterised by profound yet dynamic hypoxia and nutrient depletion. To sustain survival and proliferation, tumour cells are compelled to acquire metabolic plasticity with the induction of adaptive metabolic programs. Here, we interrogated the pathways necessary to enable processing of nutrients other than glucose. We employed genetic approaches (stable/inducible overexpression, CRISPR/Cas9 knockout), pharmacological interventions with a novel inhibitor of AMP-activated protein kinase (AMPK) in glioblastoma cell culture systems and a proteomic approach to investigate mechanisms of metabolic plasticity. Moreover, a spatially resolved multiomic analysis was employed to correlate the gene expression pattern of PGC-1α with the local metabolic and genetic architecture in human glioblastoma tissue sections. A switch from glucose to alternative nutrients triggered an activation of AMPK, which in turn activated PGC-1α-dependent adaptive programs promoting mitochondrial metabolism. This sensor-effector mechanism was essential for metabolic plasticity with both functional AMPK and PGC-1α necessary for survival and growth of cells under nonglucose nutrient sources. In human glioblastoma tissue specimens, PGC-1α-expression correlated with nonhypoxic tumour niches defining a specific metabolic compartment. Our findings reveal a cell-intrinsic nutrient sensing and switching mechanism. The exposure to alternative fuels triggers a starvation signal that subsequently is passed on via AMPK and PGC-1α to induce adaptive programs necessary for broader spectrum nutrient metabolism. The integration of spatially resolved transcriptomic data confirms the relevance of PGC-1α especially in nonhypoxic tumour regions. Thus, the AMPK-PGC-1α axis is a candidate for therapeutic inhibition in glioblastoma. KEY POINTS/HIGHLIGHTS: AMPK activation induces PGC-1α expression in glioblastoma during nutrient scarcity. PGC-1α enables metabolic plasticity by facilitating metabolism of alternative nutrients in glioblastoma. PGC-1α expression is inversely correlated with hypoxic tumour regions in human glioblastomas.
Collapse
Affiliation(s)
- Benedikt Sauer
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| | - Jan Kueckelhaus
- Microenvironment and Immunology Research LaboratoryMedical CenterUniversity of FreiburgFreiburgGermany
- Department of NeurosurgeryMedical CenterUniversity of FreiburgFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of Medicine and Medical CenterComprehensive Cancer Center Freiburg (CCCF)University of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center FreiburgFreiburgGermany
| | - Nadja I. Lorenz
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| | - Süleyman Bozkurt
- Institute of Molecular Systems Medicine, Faculty of MedicineGoethe University FrankfurtFrankfurt am MainGermany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute)University Hospital, Goethe University FrankfurtFrankfurtGermany
| | - Jan‐Béla Weinem
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| | - Mohaned Benzarti
- Cancer Metabolism GroupDepartment of Cancer ResearchLuxembourg Institute of HealthLuxembourgLuxembourg
- Faculty of ScienceTechnology and MedicineUniversity of Luxembourg, 2 avenue de UniversitéEsch‐sur‐AlzetteLuxembourg
| | - Johannes Meiser
- Cancer Metabolism GroupDepartment of Cancer ResearchLuxembourg Institute of HealthLuxembourgLuxembourg
- Faculty of ScienceTechnology and MedicineUniversity of Luxembourg, 2 avenue de UniversitéEsch‐sur‐AlzetteLuxembourg
| | - Hans Urban
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| | - Giulia Villa
- Microenvironment and Immunology Research LaboratoryMedical CenterUniversity of FreiburgFreiburgGermany
- Department of NeurosurgeryMedical CenterUniversity of FreiburgFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of Medicine and Medical CenterComprehensive Cancer Center Freiburg (CCCF)University of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center FreiburgFreiburgGermany
| | - Patrick N. Harter
- Institute of Neurology (Edinger Institute)University Hospital, Goethe University FrankfurtFrankfurtGermany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and Ludwig‐Maximilians‐Universität (LMU)MunichGermany
- Center for Neuropathology and Prion Research, Faculty of MedicineLudwig‐Maximilians‐Universität (LMU)MunichGermany
| | - Christian Münch
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Molecular Systems Medicine, Faculty of MedicineGoethe University FrankfurtFrankfurt am MainGermany
- Cardio‐Pulmonary InstituteGoethe University FrankfurtFrankfurt am MainGermany
| | - Johannes Rieger
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- Division of Neuro‐OncologyHertie Institute of Clinical Brain ResearchUniversity Hospital TübingenTübingenGermany
| | - Joachim P. Steinbach
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research LaboratoryMedical CenterUniversity of FreiburgFreiburgGermany
- Department of NeurosurgeryMedical CenterUniversity of FreiburgFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of Medicine and Medical CenterComprehensive Cancer Center Freiburg (CCCF)University of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center FreiburgFreiburgGermany
| | - Michael W. Ronellenfitsch
- Dr. Senckenberg Institute of NeurooncologyUniversity HospitalGoethe University FrankfurtFrankfurt am MainGermany
- University Cancer Center Frankfurt (UCT), University HospitalGoethe University FrankfurtFrankfurt am MainGermany
- German Cancer Consortium (DKTK), partner site Frankfurt, a partnership between DKFZ and University Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
- Frankfurt Cancer Institute (FCI)University HospitalGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
3
|
Yang X, Li F, Shi Y, Wu Y, Yang R, Liu X, Zhang Y, Zhang G, Ma M, Luo Z, Han X, Xie Y, Liu S. Integrated network pharmacology and experimental verification to explore the potential mechanism of San Ying decoction for treating triple-negative breast cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:763-775. [PMID: 38516703 PMCID: PMC11177106 DOI: 10.3724/abbs.2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/04/2024] [Indexed: 03/23/2024] Open
Abstract
Traditional Chinese medicine (TCM) has been used to treat triple-negative breast cancer (TNBC), a breast cancer subtype with poor prognosis. Clinical studies have verified that the Sanyingfang formula (SYF), a TCM prescription, has obvious effects on inhibiting breast cancer recurrence and metastasis, prolonging patient survival, and reducing clinical symptoms. However, its active ingredients and molecular mechanisms are still unclear. In this study, the active ingredients of each herbal medicine composing SYF and their target proteins are obtained from the Traditional Chinese Medicine Systems Pharmacology database. Breast cancer-related genes are obtained from the GeneCards database. Major targets and pathways related to SYF treatment in breast cancer are identified by analyzing the above data. By conducting molecular docking analysis, we find that the active ingredients quercetin and luteolin bind well to the key targets KDR1, PPARG, SOD1, and VCAM1. In vitro experiments verify that SYF can reduce the proliferation, migration, and invasion ability of TNBC cells. Using a TNBC xenograft mouse model, we show that SYF could delay tumor growth and effectively inhibit the occurrence of breast cancer lung metastasis in vivo. PPARG, SOD1, KDR1, and VCAM1 are all regulated by SYF and may play important roles in SYF-mediated inhibition of TNBC recurrence and metastasis.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Institute of Traditional Chinese Medicine SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Feifei Li
- Institute of Traditional Chinese Medicine SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Youyang Shi
- Institute of Traditional Chinese Medicine SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Yuanyuan Wu
- Institute of Traditional Chinese Medicine SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Rui Yang
- Department of Breast SurgeryShanxi Provincial Cancer HospitalTaiyuan030013China
| | - Xiaofei Liu
- Department of Breast SurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250355China
| | - Yang Zhang
- Department of Breast SurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250355China
| | - Guangtao Zhang
- Institute of Traditional Chinese Medicine SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Mei Ma
- Institute of ToxicologySchool of Public HealthLanzhou UniversityLanzhou730000China
| | - Zhanyang Luo
- Institute of Traditional Chinese Medicine SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Xianghui Han
- Institute of Traditional Chinese Medicine SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Ying Xie
- Institute of Traditional Chinese Medicine SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Sheng Liu
- Institute of Traditional Chinese Medicine SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| |
Collapse
|
4
|
Alqahtani QH, Alkharashi LA, Alajami H, Alkharashi I, Alkharashi L, Alhinti SN. Pioglitazone enhances cisplatin's impact on triple-negative breast cancer: Role of PPARγ in cell apoptosis. Saudi Pharm J 2024; 32:102059. [PMID: 38601974 PMCID: PMC11004990 DOI: 10.1016/j.jsps.2024.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) has been recently shown to play a role in many cancers. The breast tissue of triple-negative breast cancer (TNBC) patients were found to have a significantly lower expression of PPARγ than the other subtypes. Furthermore, PPARγ activation was found to exert anti-tumor effects by inhibiting cell proliferation, differentiation, cell growth, cell cycle, and inducing apoptosis. To start with, we performed a bioinformatic analysis of data from OncoDB, which showed a lower expression pattern of PPARγ in different cancer types. In addition, high expression of PPARγ was associated with better breast cancer patient survival. Therefore, we tested the impact of pioglitazone, a PPARγ ligand, on the cytotoxic activity of cisplatin in the TNBC cell line. MDA-MB-231 cells were treated with either cisplatin (40 μM) with or without pioglitazone (30 or 60 μM) for 72 h. The MTT results showed a significant dose-dependent decrease in cell viability as a result of using cisplatin and pioglitazone combination compared with cisplatin alone. In addition, the protein expression of Bcl-2, a known antiapoptotic marker, decreased in the cells treated with cisplatin and pioglitazone combination at doses of 40 and 30 μM, respectively. On the other hand, cleaved- poly-ADP ribose polymerase (PARP) and -caspase-9, which are known as pro-apoptotic markers, were upregulated in the combination group compared with the solo treatments. Taken together, the addition of pioglitazone to cisplatin further reduced the viability of MDA-MB-231 cells and enhanced apoptosis compared with chemotherapy alone.
Collapse
Affiliation(s)
- Qamraa Hamad Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Layla Abdullah Alkharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hanaa Alajami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ishraq Alkharashi
- PharmD Student, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Layan Alkharashi
- PharmD Student, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shoug Nasser Alhinti
- PharmD Student, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Lichtiger L, Jezioro J, Rivera J, McDonald JD, Terry MB, Sahay D, Miller RL. Prenatal airborne polycyclic aromatic hydrocarbon exposure, altered regulation of peroxisome proliferator-activated receptor gamma (Ppar)γ, and links with mammary cancer. ENVIRONMENTAL RESEARCH 2023; 231:116213. [PMID: 37224940 PMCID: PMC10330651 DOI: 10.1016/j.envres.2023.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Environmental exposure to polycyclic aromatic hydrocarbons (PAH) has been shown to be associated with chronic disease outcomes through multiple mechanisms including altered regulation of the transcription factor peroxisome proliferator-activated receptor gamma (Ppar) γ. Because PAH exposure and Pparγ each have been associated with mammary cancer, we asked whether PAH would induce altered regulation of Pparγ in mammary tissue, and whether this association may underlie the association between PAH and mammary cancer. Pregnant mice were exposed to aerosolized PAH at proportions that mimic equivalent human exposures in New York City air. We hypothesized that prenatal PAH exposure would alter Pparγ DNA methylation and gene expression and induce the epithelial to mesenchymal transition (EMT) in mammary tissue of offspring (F1) and grandoffspring (F2) mice. We also hypothesized that altered regulation of Pparγ in mammary tissue would associate with biomarkers of EMT, and examined associations with whole body weight. We found that prenatal PAH exposure lowered Pparγ mammary tissue methylation among grandoffspring mice at postnatal day (PND) 28. However, PAH exposure did not associate with altered Pparγ gene expression or consistently with biomarkers of EMT. Finally, lower Pparγ methylation, but not gene expression, was associated with higher body weight among offspring and grandoffspring mice at PND28 and PND60. Findings suggest additional evidence of multi-generational adverse epigenetic effects of prenatal PAH exposure among grandoffspring mice.
Collapse
Affiliation(s)
- Lydia Lichtiger
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Jacqueline Jezioro
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Janelle Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Jacob D McDonald
- Department of Toxicology, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York City, NY, United States
| | - Debashish Sahay
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States.
| |
Collapse
|
6
|
Wu J, Kramer K, Crowe DL. Lysine metabolism is a novel metabolic tumor suppressor pathway in breast cancer. Oncogene 2023:10.1038/s41388-023-02766-8. [PMID: 37393340 DOI: 10.1038/s41388-023-02766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
The International Agency for Research on Cancer determined that obesity is the primary preventable cause of breast cancer. The nuclear receptor peroxisome proliferator activated receptor γ (PPARγ) binds inflammatory mediators in obesity and its expression is reduced in human breast cancer. We created a new model to better understand how the obese microenvironment alters nuclear receptor function in breast cancer. The obesity related cancer phenotype was PPARγ dependent; deletion of PPARγ in mammary epithelium which is a tumor suppressor in lean mice unexpectedly increased tumor latency, reduced the luminal progenitor (LP) tumor cell fraction, and increased autophagic and senescent cells. Loss of PPARγ expression in mammary epithelium of obese mice increased expression of 2-aminoadipate semialdehyde synthase (AASS) which regulates lysine catabolism to acetoacetate. PPARγ-associated co-repressors and activators regulated AASS expression via a canonical response element. AASS expression was significantly reduced in human breast cancer, and AASS overexpression or acetoacetate treatment inhibited proliferation and induced autophagy and senescence in human breast cancer cell lines. Genetic or pharmacologic HDAC inhibition promoted autophagy and senescence in mammary tumor cells in vitro and in vivo. We concluded that lysine metabolism is a novel metabolic tumor suppressor pathway in breast cancer.
Collapse
Affiliation(s)
- Jianchun Wu
- University of Illinois Cancer Center, 801 S. Paulina Street, Room 525, Chicago, IL, 60612, USA
| | - Kaitrin Kramer
- University of Illinois Cancer Center, 801 S. Paulina Street, Room 525, Chicago, IL, 60612, USA
| | - David L Crowe
- University of Illinois Cancer Center, 801 S. Paulina Street, Room 525, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Wang P, Zhu Y, Jia X, Ying X, Sun L, Ruan S. Clinical prognostic value of OSGIN2 in gastric cancer and its proliferative effect in vitro. Sci Rep 2023; 13:5775. [PMID: 37031243 PMCID: PMC10082810 DOI: 10.1038/s41598-023-32934-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023] Open
Abstract
This study explored the promoting effect of oxidative stress-induced growth inhibitor family member 2(OSGIN2) on gastric cancer (GC) through public databases and in vitro experiments. The potential relationship between OSGIN2 expression, prognosis, functional enrichment of associated differential genes, immune infiltration, and mutational information in gastric cancer were comprehensively investigated using bioinformatics analysis. OSGIN2 was knocked down using small interfering RNA (siRNA) transfection for subsequent cell function testing. The results showed that gastric carcinoma cells and tissues contained high levels of OSGIN2, which was associated with a poor prognosis for GC patients. It was important in the cell cycle, autophagy, etc., and was related to a variety of tumor-related signal pathways. Knockdown of OSGIN2 inhibited tumor cell proliferation and contributed to cell cycle arrest. It was also correlated with tumor immune infiltrating cells (TILs), affecting antitumor immune function. Our analysis highlights that OSING2, as a new biomarker, has diagnostic and prognostic value in gastric cancer and is a potentially effective target in GC treatment.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Ying Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiangchang Ying
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
| |
Collapse
|
9
|
Muhammad N, Ruiz F, Stanley J, Rashmi R, Cho K, Jayachandran K, Zahner MC, Huang Y, Zhang J, Markovina S, Patti GJ, Schwarz JK. Monounsaturated and Diunsaturated Fatty Acids Sensitize Cervical Cancer to Radiation Therapy. Cancer Res 2022; 82:4515-4527. [PMID: 36214635 PMCID: PMC9772149 DOI: 10.1158/0008-5472.can-21-4369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023]
Abstract
Obesity induces numerous physiological changes that can impact cancer risk and patient response to therapy. Obese patients with cervical cancer have been reported to have superior outcomes following chemoradiotherapy, suggesting that free fatty acids (FFA) might enhance response to radiotherapy. Here, using preclinical models, we show that monounsaturated and diunsaturated FFAs (uFFA) radiosensitize cervical cancer through a novel p53-dependent mechanism. UFFAs signaled through PPARγ and p53 to promote lipid uptake, storage, and metabolism after radiotherapy. Stable isotope labeling confirmed that cervical cancer cells increase both catabolic and anabolic oleate metabolism in response to radiotherapy, with associated increases in dependence on mitochondrial fatty acid oxidation for survival. In vivo, supplementation with exogenous oleate suppressed tumor growth in xenografts after radiotherapy, an effect that could be partially mimicked in tumors from high fat diet-induced obese mice. These results suggest that supplementation with uFFAs may improve tumor responses to radiotherapy, particularly in p53 wild-type tumors. SIGNIFICANCE Metabolism of monounsaturated and diunsaturated fatty acids improves the efficacy of radiotherapy in cancer through modulation of p53 activity. See related commentary by Jungles and Green, p. 4513.
Collapse
Affiliation(s)
- Naoshad Muhammad
- Department of Radiation Oncology, Washington University School of Medicine
| | - Fiona Ruiz
- Department of Radiation Oncology, Washington University School of Medicine
| | - Jennifer Stanley
- Department of Radiation Oncology, Washington University School of Medicine,Alvin J. Siteman Cancer Center, Washington University School of Medicine
| | | | - Kevin Cho
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine
| | - Michael C Zahner
- Department of Radiation Oncology, Washington University School of Medicine
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine
| | | | - Gary J. Patti
- Alvin J. Siteman Cancer Center, Washington University School of Medicine,Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine,Department of Cell Biology and Physiology, Washington University School of Medicine,Alvin J. Siteman Cancer Center, Washington University School of Medicine
| |
Collapse
|
10
|
Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells. Stem Cell Rev Rep 2021; 18:198-213. [PMID: 34355273 DOI: 10.1007/s12015-021-10216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 01/01/2023]
Abstract
Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renewal potential of CSCs with atypical activation of developmental signaling pathways involves the maintenance of stemness to support cancer progression. The acquisition of stemness in CSCs has been accomplished through genetic and epigenetic rewiring following the metabolic switch. In this context, "metabostemness" denotes the metabolic parameters that essentially govern the epitranscriptional gene reprogramming mechanism to dedifferentiate tumor cells into CSCs. Several metabolites often referred to as oncometabolites can directly remodel chromatin structure and thereby influence the operation of epitranscriptional circuits. This integrated metaboloepigenetic dimension of CSCs favors the differentiated cells to move in dedifferentiated macrostates. Some metabolic events might perform as early drivers of epitranscriptional reprogramming; however, subsequent metabolic hits may govern the retention of stemness properties in the tumor mass. Interestingly, selective removal of mitochondria through autophagy can promote metabolic plasticity and alter metabolic states during differentiation and dedifferentiation. In this connection, novel metabostemness-specific drugs can be generated as potential cancer therapeutics to target the metaboloepigenetic circuitry to eliminate CSCs.
Collapse
|
11
|
Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH. Potential Therapies Targeting Metabolic Pathways in Cancer Stem Cells. Cells 2021; 10:1772. [PMID: 34359941 PMCID: PMC8304173 DOI: 10.3390/cells10071772] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are heterogeneous cells with stem cell-like properties that are responsible for therapeutic resistance, recurrence, and metastasis, and are the major cause for cancer treatment failure. Since CSCs have distinct metabolic characteristics that plays an important role in cancer development and progression, targeting metabolic pathways of CSCs appears to be a promising therapeutic approach for cancer treatment. Here we classify and discuss the unique metabolisms that CSCs rely on for energy production and survival, including mitochondrial respiration, glycolysis, glutaminolysis, and fatty acid metabolism. Because of metabolic plasticity, CSCs can switch between these metabolisms to acquire energy for tumor progression in different microenvironments compare to the rest of tumor bulk. Thus, we highlight the specific conditions and factors that promote or suppress CSCs properties to portray distinct metabolic phenotypes that attribute to CSCs in common cancers. Identification and characterization of the features in these metabolisms can offer new anticancer opportunities and improve the prognosis of cancer. However, the therapeutic window of metabolic inhibitors used alone or in combination may be rather narrow due to cytotoxicity to normal cells. In this review, we present current findings of potential targets in these four metabolic pathways for the development of more effective and alternative strategies to eradicate CSCs and treat cancer more effectively in the future.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Cyuan Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Bo-Jung Chen
- Department of Pathology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Yu-Ting Wu
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan;
| | - Jiun-Ru Juan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Liang-Yun Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Yueh-Chun Teng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan;
| |
Collapse
|
12
|
Abstract
Cancer stem cells (CSCs) are heterogeneous cells with stem cell-like properties that are responsible for therapeutic resistance, recurrence, and metastasis, and are the major cause for cancer treatment failure. Since CSCs have distinct metabolic characteristics that plays an important role in cancer development and progression, targeting metabolic pathways of CSCs appears to be a promising therapeutic approach for cancer treatment. Here we classify and discuss the unique metabolisms that CSCs rely on for energy production and survival, including mitochondrial respiration, glycolysis, glutaminolysis, and fatty acid metabolism. Because of metabolic plasticity, CSCs can switch between these metabolisms to acquire energy for tumor progression in different microenvironments compare to the rest of tumor bulk. Thus, we highlight the specific conditions and factors that promote or suppress CSCs properties to portray distinct metabolic phenotypes that attribute to CSCs in common cancers. Identification and characterization of the features in these metabolisms can offer new anticancer opportunities and improve the prognosis of cancer. However, the therapeutic window of metabolic inhibitors used alone or in combination may be rather narrow due to cytotoxicity to normal cells. In this review, we present current findings of potential targets in these four metabolic pathways for the development of more effective and alternative strategies to eradicate CSCs and treat cancer more effectively in the future.
Collapse
|
13
|
PGC1α Loss Promotes Lung Cancer Metastasis through Epithelial-Mesenchymal Transition. Cancers (Basel) 2021; 13:cancers13081772. [PMID: 33917757 PMCID: PMC8068195 DOI: 10.3390/cancers13081772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
PGC1α oppositely regulates cancer metastasis in melanoma, breast, and pancreatic cancer; however, little is known about its impact on lung cancer metastasis. Transcriptome and in vivo xenograft analysis show that a decreased PGC1α correlates with the epithelial-mesenchymal transition (EMT) and lung cancer metastasis. The deletion of a single Pgc1α allele in mice promotes bone metastasis of KrasG12D-driven lung cancer. Mechanistically, PGC1α predominantly activates ID1 expression, which interferes with TCF4-TWIST1 cooperation during EMT. Bioinformatic and clinical studies have shown that PGC1α and ID1 are downregulated in lung cancer, and correlate with a poor survival rate. Our study indicates that TCF4-TWIST1-mediated EMT, which is regulated by the PGC1α-ID1 transcriptional axis, is a potential diagnostic and therapeutic target for metastatic lung cancer.
Collapse
|
14
|
The Unique Biology behind the Early Onset of Breast Cancer. Genes (Basel) 2021; 12:genes12030372. [PMID: 33807872 PMCID: PMC8000244 DOI: 10.3390/genes12030372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/19/2023] Open
Abstract
Breast cancer commonly affects women of older age; however, in developing countries, up to 20% of breast cancer cases present in young women (younger than 40 years as defined by oncology literature). Breast cancer in young women is often defined to be aggressive in nature, usually of high histological grade at the time of diagnosis and negative for endocrine receptors with poor overall survival rate. Several researchers have attributed this aggressive nature to a hidden unique biology. However, findings in this aspect remain controversial. Thus, in this article, we aimed to review published work addressing somatic mutations, chromosome copy number variants, single nucleotide polymorphisms, differential gene expression, microRNAs and gene methylation profile of early-onset breast cancer, as well as its altered pathways resulting from those aberrations. Distinct biology behind early-onset of breast cancer was clear among estrogen receptor-positive and sporadic cases. However, further research is needed to determine and validate specific novel markers, which may help in customizing therapy for this group of patients.
Collapse
|
15
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
16
|
Diet and PPARG2 Pro12Ala Polymorphism Interactions in Relation to Cancer Risk: A Systematic Review. Nutrients 2021; 13:nu13010261. [PMID: 33477496 PMCID: PMC7831057 DOI: 10.3390/nu13010261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ2 gene Pro12Ala allele polymorphism (PPARG2 Pro12Ala; rs1801282) has been linked to both cancer risk and dietary factors. We conducted the first systematic literature review of studies published before December 2020 using the PubMed database to summarize the current evidence on whether dietary factors for cancer may differ by individuals carrying C (common) and/or G (minor) alleles of the PPARG2 Pro12Ala allele polymorphism. The inclusion criteria were observational studies that investigated the association between food or nutrient consumption and risk of incident cancer stratified by PPARG2 Pro12Ala allele polymorphism. From 3815 identified abstracts, nine articles (18,268 participants and 4780 cancer cases) covering three cancer sites (i.e., colon/rectum, prostate, and breast) were included. CG/GG allele carriers were more impacted by dietary factors than CC allele carriers. High levels of protective factors (e.g., carotenoids and prudent dietary patterns) were associated with a lower cancer risk, and high levels of risk factors (e.g., alcohol and refined grains) were associated with a higher cancer risk. In contrast, both CG/GG and CC allele carriers were similarly impacted by dietary fats, well-known PPAR-γ agonists. These findings highlight the complex relation between PPARG2 Pro12Ala allele polymorphism, dietary factors, and cancer risk, which warrant further investigation.
Collapse
|
17
|
Cancer Stem Cell-Associated Pathways in the Metabolic Reprogramming of Breast Cancer. Int J Mol Sci 2020; 21:ijms21239125. [PMID: 33266219 PMCID: PMC7730588 DOI: 10.3390/ijms21239125] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming of cancer is now considered a hallmark of many malignant tumors, including breast cancer, which remains the most commonly diagnosed cancer in women all over the world. One of the main challenges for the effective treatment of breast cancer emanates from the existence of a subpopulation of tumor-initiating cells, known as cancer stem cells (CSCs). Over the years, several pathways involved in the regulation of CSCs have been identified and characterized. Recent research has also shown that CSCs are capable of adopting a metabolic flexibility to survive under various stressors, contributing to chemo-resistance, metastasis, and disease relapse. This review summarizes the links between the metabolic adaptations of breast cancer cells and CSC-associated pathways. Identification of the drivers capable of the metabolic rewiring in breast cancer cells and CSCs and the signaling pathways contributing to metabolic flexibility may lead to the development of effective therapeutic strategies. This review also covers the role of these metabolic adaptation in conferring drug resistance and metastasis in breast CSCs.
Collapse
|
18
|
Tian H, Zhang B, Li L, Wang G, Li H, Zheng J. Manipulation of Mitochondrial Plasticity Changes the Metabolic Competition Between "Foe" and "Friend" During Tumor Malignant Transformation. Front Oncol 2020; 10:1692. [PMID: 32974209 PMCID: PMC7471250 DOI: 10.3389/fonc.2020.01692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
Mitochondria as the cellular energy powerhouses provide a common site for multiple metabolic reactions in order to cover energy and biomolecule demands, thus integrating the diverse metabolic pathways to endow cells with metabolic adaptation. Mitochondrial plasticity is normally regulated by mitochondrial dynamics, mitochondrial metabolism and mitochondrial biogenesis. Given that tumor cells and T cells share the metabolic similarities of survival, proliferation, expansion as well as effector function, manipulation of mitochondrial plasticity would change the metabolic competition between “foe” and “friend” during tumor malignant progression. On the one hand, for “foe” tumor cells, mitochondrial plasticity provides the enhancement of tumor metastasis and the development of resistance to‘ diverse antitumor drugs. On the other hand, for “friend” T cells, mitochondrial plasticity promotes the generation of long-term memory T (TM) cells and alleviates the exhaustion of tumor-infiltrating lymphocytes (TILs). Therefore, downregulation of mitochondrial plasticity of tumor cells through engineering tumor-targeting nanoparticles may effectively potentiate metabolic vulnerability and re-sensitize tumor to relevant therapeutic treatment. On the contrary, upregulation of mitochondrial plasticity of T cells through optimizing adoptive cellular immunotherapy (ACI) or chimeric antigen receptor (CAR)-T cell therapy would provide T cells with the robust metabolic fitness and the persistent immune function, thus blocking tumor metastasis and reoccurrence.
Collapse
Affiliation(s)
- Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Baofu Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - JunNian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Eskandari D, Khodabandehloo N, Gholami A, Samadanifard H, Hejrati A. Investigation of the association between metabolic syndrome and breast cancer patients. Eur J Transl Myol 2020; 30:8776. [PMID: 32499883 PMCID: PMC7254422 DOI: 10.4081/ejtm.2019.8776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
One of the most serious cancers among women is breast cancer. This disease is the first reason for the death of women due to cancer. Increasing breast cancer risk may associate with many factors including genetic, reproductive factors, people's lifestyle, metabolic syndrome (MS) and hormones. MS has been known as a risk factor for prostate, pancreatic, breast and colorectal cancers. The purpose of this review is to identify the relationship between MS components and breast cancer individually. This study was performed by researching electronic database references including PubMed, Google Scholar, CINAHL ProQuest, and web of science through 2019. The effect of MS with its components and breast cancer was reported in many studies. Nevertheless, a thorough understanding of the mechanisms involved remains a challenge. However, one can take several preventive measures, including a proper diet, which is one of the most important determinants of metabolic status. Also, general preventive recommendations are including reducing alcohol consumption, red meat and total fat in the diet. Moreover, increasing the consumption of vegetable and fruit reduce the proportion of MS patients to improve the outcome of breast cancer patients.
Collapse
Affiliation(s)
- Delaram Eskandari
- Department of endocrinology, School of Medicine, Hazrat-e Rasool Hospital, Iran University of Medical Sciences. Tehran, Iran
| | - Niloofar Khodabandehloo
- School of Medicine, Hazrat-e Rasool Hospital, Iran University of Medical Sciences. Tehran, Iran
| | - Abbas Gholami
- Department of Internal Medicine, School of Medicine, Hazrat-e Rasool Hospital, Iran University of Medical Sciences. Tehran, Iran
| | - Hosein Samadanifard
- Department of endocrinology, School of Medicine, Hazrat-e Rasool Hospital, Iran University of Medical Sciences. Tehran, Iran
| | - Alireza Hejrati
- Department of Internal Medicine, School of Medicine, Hazrat-e Rasool Hospital, Iran University of Medical Sciences. Tehran, Iran
| |
Collapse
|
20
|
Mohammadi I, Mahdavi AH, Rabiee F, Nasr Esfahani MH, Ghaedi K. Positive effects of conjugated linoleic acid (CLA) on the PGC1-α expression under the inflammatory conditions induced by TNF-α in the C2C12 cell line. Gene 2020; 735:144394. [DOI: 10.1016/j.gene.2020.144394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
|
21
|
Prieto I, Alarcón CR, García-Gómez R, Berdún R, Urgel T, Portero M, Pamplona R, Martínez-Ruiz A, Ruiz-Sanz JI, Ruiz-Larrea MB, Jove M, Cerdán S, Monsalve M. Metabolic adaptations in spontaneously immortalized PGC-1α knock-out mouse embryonic fibroblasts increase their oncogenic potential. Redox Biol 2019; 29:101396. [PMID: 31926622 PMCID: PMC6921228 DOI: 10.1016/j.redox.2019.101396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
PGC-1α controls, to a large extent, the capacity of cells to respond to changing nutritional requirements and energetic demands. The key role of metabolic reprogramming in tumor development has highlighted the potential role of PGC-1α in cancer. To investigate how loss of PGC-1α activity in primary cells impacts the oncogenic characteristics of spontaneously immortalized cells, and the mechanisms involved, we used the classic 3T3 protocol to generate spontaneously immortalized mouse embryonic fibroblasts (iMEFs) from wild-type (WT) and PGC-1α knockout (KO) mice and analyzed their oncogenic potential in vivo and in vitro. We found that PGC-1α KO iMEFs formed larger and more proliferative primary tumors than WT counterparts, and fostered the formation of lung metastasis by B16 melanoma cells. These characteristics were associated with the reduced capacity of KO iMEFs to respond to cell contact inhibition, in addition to an increased ability to form colonies in soft agar, an enhanced migratory capacity, and a reduced growth factor dependence. The mechanistic basis of this phenotype is likely associated with the observed higher levels of nuclear β-catenin and c-myc in KO iMEFs. Evaluation of the metabolic adaptations of the immortalized cell lines identified a decrease in oxidative metabolism and an increase in glycolytic flux in KO iMEFs, which were also more dependent on glutamine for their survival. Furthermore, glucose oxidation and tricarboxylic acid cycle forward flux were reduced in KO iMEF, resulting in the induction of compensatory anaplerotic pathways. Indeed, analysis of amino acid and lipid patterns supported the efficient use of tricarboxylic acid cycle intermediates to synthesize lipids and proteins to support elevated cell growth rates. All these characteristics have been observed in aggressive tumors and support a tumor suppressor role for PGC-1α, restraining metabolic adaptations in cancer.
Collapse
Affiliation(s)
- Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Carmen Rubio Alarcón
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Raquel García-Gómez
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Rebeca Berdún
- Institut de Recerca Biomédica Lleida, Avda, Alcalde Rovira Roure 80, 25198, Lleida, Spain.
| | - Tamara Urgel
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Manuel Portero
- Institut de Recerca Biomédica Lleida, Avda, Alcalde Rovira Roure 80, 25198, Lleida, Spain.
| | - Reinald Pamplona
- Institut de Recerca Biomédica Lleida, Avda, Alcalde Rovira Roure 80, 25198, Lleida, Spain.
| | - Antonio Martínez-Ruiz
- Unidad de Ivestigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP). Maestro Vives 3, 28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| | - José Ignacio Ruiz-Sanz
- Departamento de Fisiología, Facultad de Medicina y Enfermería, Universidad del País Vasco, Euskal Herriko Unibertsitea, Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - M Begoña Ruiz-Larrea
- Departamento de Fisiología, Facultad de Medicina y Enfermería, Universidad del País Vasco, Euskal Herriko Unibertsitea, Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Mariona Jove
- Institut de Recerca Biomédica Lleida, Avda, Alcalde Rovira Roure 80, 25198, Lleida, Spain.
| | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
22
|
Zhu X, Shen W, Yao K, Wang H, Liu B, Li T, Song L, Diao D, Mao G, Huang P, Li C, Zhang H, Zou Y, Qiu Y, Zhao Y, Wang W, Yang Y, Hu Z, Auwerx J, Loscalzo J, Zhou Y, Ju Z. Fine-Tuning of PGC1α Expression Regulates Cardiac Function and Longevity. Circ Res 2019; 125:707-719. [PMID: 31412728 DOI: 10.1161/circresaha.119.315529] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE PGC1α (peroxisome proliferator-activated receptor gamma coactivator 1α) represents an attractive target interfering bioenergetics and mitochondrial homeostasis, yet multiple attempts have failed to upregulate PGC1α expression as a therapy, for instance, causing cardiomyopathy. OBJECTIVE To determine whether a fine-tuning of PGC1α expression is essential for cardiac homeostasis in a context-dependent manner. METHODS AND RESULTS Moderate cardiac-specific PGC1α overexpression through a ROSA26 locus knock-in strategy was utilized in WT (wild type) mice and in G3Terc-/- (third generation of telomerase deficient; hereafter as G3) mouse model, respectively. Ultrastructure, mitochondrial stress, echocardiographic, and a variety of biological approaches were applied to assess mitochondrial physiology and cardiac function. While WT mice showed a relatively consistent PGC1α expression from 3 to 12 months old, age-matched G3 mice exhibited declined PGC1α expression and compromised mitochondrial function. Cardiac-specific overexpression of PGC1α (PGC1αOE) promoted mitochondrial and cardiac function in 3-month-old WT mice but accelerated cardiac aging and significantly shortened life span in 12-month-old WT mice because of increased mitochondrial damage and reactive oxygen species insult. In contrast, cardiac-specific PGC1α knock in in G3 (G3 PGC1αOE) mice restored mitochondrial homeostasis and attenuated senescence-associated secretory phenotypes, thereby preserving cardiac performance with age and extending health span. Mechanistically, age-dependent defect in mitophagy is associated with accumulation of damaged mitochondria that leads to cardiac impairment and premature death in 12-month-old WT PGC1αOE mice. In the context of telomere dysfunction, PGC1α induction replenished energy supply through restoring the compromised mitochondrial biogenesis and thus is beneficial to old G3 heart. CONCLUSIONS Fine-tuning the expression of PGC1α is crucial for the cardiac homeostasis because the balance between mitochondrial biogenesis and clearance is vital for regulating mitochondrial function and homeostasis. These results reinforce the importance of carefully evaluating the PGC1α-boosting strategies in a context-dependent manner to facilitate clinical translation of novel cardioprotective therapies.
Collapse
Affiliation(s)
- Xudong Zhu
- From the Institute of Aging Research, Hangzhou Normal University School of Medicine, China (X.Z., H.W., T.L.)
| | - Weiyan Shen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, China (W.S., H.W., B.L., D.D., Z.J.)
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China (K.Y., Z.H.)
| | - Hu Wang
- From the Institute of Aging Research, Hangzhou Normal University School of Medicine, China (X.Z., H.W., T.L.).,Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, China (W.S., H.W., B.L., D.D., Z.J.)
| | - Bo Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, China (W.S., H.W., B.L., D.D., Z.J.)
| | - Tangliang Li
- From the Institute of Aging Research, Hangzhou Normal University School of Medicine, China (X.Z., H.W., T.L.)
| | - Lijuan Song
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (L.S.)
| | - Daojun Diao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, China (W.S., H.W., B.L., D.D., Z.J.)
| | - Genxiang Mao
- Department of Geriatrics, Zhejiang Provincial Key Lab of Geriatrics, Geriatrics Research Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, China (G.M.)
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Sciences, Ministry of Justice, China (P.H., C.L.)
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Sciences, Ministry of Justice, China (P.H., C.L.)
| | - Hongbo Zhang
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Federale de Lausanne, Switzerland (H.Z., J.A.)
| | - Yejun Zou
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology (Y. Zou, Y. Zhao, Y.Y.)
| | - Yugang Qiu
- School of Rehabilitation Medicine, Weifang Medical University, China (Y.Q.)
| | - Yuzheng Zhao
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology (Y. Zou, Y. Zhao, Y.Y.)
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, China (W.W.)
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology (Y. Zou, Y. Zhao, Y.Y.)
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China (K.Y., Z.H.)
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Federale de Lausanne, Switzerland (H.Z., J.A.)
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Yong Zhou
- Beijing Sanbo Brain Hospital, Capital Medical University, China (Y. Zhou)
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, China (W.S., H.W., B.L., D.D., Z.J.)
| |
Collapse
|
23
|
Kataoka H, Mori T, Okimura H, Matsushima H, Ito F, Koshiba A, Tanaka Y, Akiyama K, Maeda E, Sugahara T, Tarumi Y, Kusuki I, Khan KN, Kitawaki J. Peroxisome proliferator-activated receptor-γ coactivator 1α-mediated pathway as a possible therapeutic target in endometriosis. Hum Reprod 2019; 34:1019-1029. [DOI: 10.1093/humrep/dez067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hisashi Kataoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hiroyuki Okimura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hiroshi Matsushima
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Fumitake Ito
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Akemi Koshiba
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Yukiko Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Kanoko Akiyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Eiko Maeda
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Takuya Sugahara
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Yosuke Tarumi
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Izumi Kusuki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Khaleque N Khan
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
24
|
Yan R, Wang Y, Shi M, Xiao Y, Liu L, Liu L, Guo B. Regulation of PTEN/AKT/FAK pathways by PPARγ impacts on fibrosis in diabetic nephropathy. J Cell Biochem 2019; 120:6998-7014. [PMID: 30652342 DOI: 10.1002/jcb.27937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Renal tubular epithelial-to-mesenchymal transition (EMT) and tubulointerstitial fibrosis (TIF) are important pathological features of diabetic nephropathy (DN). However, the regulatory mechanism underlying EMT and TIF are still unclear. Previous studies showed that the decrease in the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was closely related to the aggravation of DN, but no published study showed how PTEN participated in the regulation of EMT and TIF. In this study, the rat proximal tubular epithelial cells (NRK52E) and C57BL mice and human kidney tissues were used as the research objects to investigate the mechanism underlying the regulatory effect of peroxisome proliferator-activated receptors γ (PPARγ) on PTEN and its influence on EMT and TIF, the regulation of PTEN's dual activity of lipid phosphatase/protein phosphatase by the serine threonine protein kinase B(AKT)/focal adhesion kinase (FAK) signaling pathway, and the role of PTEN in EMT and TIF. The results showed that PPARγ regulated the expression of PTEN at a transcriptional level and further regulated EMT and TIF. This dual activity could regulate the phosphorylation level of AKT and FAK and also affect FAK transcription. However, the 129 mutant of PTEN (PTEN-G129E) lost the lipid phosphatase activity, and its protein phosphatase activity was involved only in EMT and renal fibrosis through regulating FAK phosphorylation. This study systematically elucidated the role of PPARγ/PTEN/AKT/FAK signaling pathway in EMT and TIF during the pathogenesis of DN.
Collapse
Affiliation(s)
- Rui Yan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Lirong Liu
- Department of Clinical Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
25
|
Gera R, Mokbel L, Jiang WG, Mokbel K. mRNA Expression of CDK2AP1 in Human Breast Cancer: Correlation with Clinical and Pathological Parameters. Cancer Genomics Proteomics 2018; 15:447-452. [PMID: 30343278 DOI: 10.21873/cgp.20103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1) interacts with CDK2AP2, modulates the actions of transforming growth factor-B1, cyclin-dependent kinase 2 and retinoblastoma protein, and closely interacts with micro-RNA21 and micro-RNA25. Our objective was to determine if CDK2AP1 mRNA expression levels were consistent with tumour-suppressive functions in breast cancer. MATERIALS AND METHODS A total of 134 samples were analysed. CDK2AP1 mRNA levels were measured using quantitative polymerase chain reaction (RT-PCR) and normalised against glyceraldehyde 3-phosphate dehydrogenase mRNA. Levels in breast cancer and adjacent non-cancerous breast tissue were analysed against pathological and clinical parameters (TNM staging, survival over a 10-year follow-up period). RESULTS Normalised CDK2AP1 expression was 38-fold higher in adjacent non-cancerous breast tissue than in breast cancer. CDK2AP1 expression in disease-free patients at 10 years was more than threefold that of patients who died of breast cancer. However, neither of these differences in expression levels reached statistical significance. CDK2AP1 mRNA levels were higher in TNM1 compared to TNM3 (p=0.016) and with TNM4 (p=0.016). There were no significant associations between CDK2AP1 expression and estrogen receptor status, tumour grade and tumour type. There was no significant difference in overall survival between patients with high and those with low CDK2AP1 mRNA levels after a median follow-up of 10 years (Kaplan-Meier analysis, p=0.872). CONCLUSION To our knowledge, this is the first study in the literature to examine the mRNA expression of CDK2AP1 in human breast cancer over a long-term follow-up period. A compelling relationship exists between high CDK2AP1 mRNA expression and lower TNM classification of breast cancer, which is consistent with CDK2AP1 having a tumour-suppressive function.
Collapse
Affiliation(s)
- Ritika Gera
- The London Breast Institute, The Princess Grace Hospital, London, U.K
| | - Leon Mokbel
- The London Breast Institute, The Princess Grace Hospital, London, U.K
| | - Wen G Jiang
- Metastasis & Angiogenesis Research Group, University Department of Surgery, Cardiff University School of Medicine, Cardiff University, Cardiff, U.K
| | - Kefah Mokbel
- The London Breast Institute, The Princess Grace Hospital, London, U.K.
| |
Collapse
|
26
|
Huang LL, Long RT, Jiang GP, Jiang X, Sun H, Guo H, Liao XH. Augmenter of liver regeneration promotes mitochondrial biogenesis in renal ischemia-reperfusion injury. Apoptosis 2018; 23:695-706. [PMID: 30259216 DOI: 10.1007/s10495-018-1487-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondria are the center of energy metabolism in the cell and the preferential target of various toxicants and ischemic injury. Renal ischemia-reperfusion (I/R) injury triggers proximal tubule injury and the mitochondria are believed to be the primary subcellular target of I/R injury. The promotion of mitochondrial biogenesis (MB) is critical for the prevention I/R injury. The results of our previous study showed that augmenter of liver regeneration (ALR) has anti-apoptotic and anti-oxidant functions. However, the modulatory mechanism of ALR remains unclear and warrants further investigation. To gain further insight into the role of ALR in MB, human kidney (HK)-2 cells were treated with lentiviruses carrying ALR short interfering RNA (siRNA) and a model of hypoxia reoxygenation (H/R) injury in vitro was created. We observed that knockdown of ALR promoted apoptosis of renal tubular cells and aggravated mitochondrial injury, as evidenced by the decrease in the mitochondrial respiratory proteins adenosine triphosphate (ATP) synthase subunit β, cytochrome c oxidase subunit 1, and nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) beta subcomplex 8. Meanwhile, the production of reactive oxygen species was increased and ATP levels were decreased significantly in HK-2 cells, as compared with the siRNA/control group (p < 0.05). In addition, the mitochondrial DNA copy number and membrane potential were markedly decreased. Furthermore, critical transcriptional regulators of MB (i.e., peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, mitochondrial transcription factor A, sirtuin-1, and nuclear respiratory factor-1) were depleted in the siRNA/ALR group. Taken together, these findings unveil essential roles of ALR in the inhibition of renal tubular cell apoptosis and attenuation of mitochondrial dysfunction by promoting MB in AKI.
Collapse
Affiliation(s)
- Li-Li Huang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Rui-Ting Long
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Gui-Ping Jiang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiao Jiang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hui Guo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiao-Hui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
27
|
Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 2018; 475:1611-1634. [PMID: 29743249 PMCID: PMC5941316 DOI: 10.1042/bcj20170164] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023]
Abstract
Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.
Collapse
|
28
|
Gravel SP. Deciphering the Dichotomous Effects of PGC-1α on Tumorigenesis and Metastasis. Front Oncol 2018; 8:75. [PMID: 29629336 PMCID: PMC5876244 DOI: 10.3389/fonc.2018.00075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022] Open
Abstract
Metabolic reprogramming confers cancer cells the ability to grow and survive under nutrient-depleted or stressful microenvironments. The amplification of oncogenes, the loss of tumor suppressors, as well as context- and lineage-specific determinants can converge and profoundly affect the metabolic status of cancer cells. Cumulating evidences suggest that highly glycolytic cells under the influence of oncogenes such as BRAF, or evolving in hypoxic microenvironments, will promote metastasis through modulation of multiple steps of tumorigenesis such as the epithelial-to-mesenchymal transition (EMT). On the contrary, increased reliance on mitochondrial respiration is associated with hyperplasic rather than metastatic disease. The PGC-1α transcriptional coactivator, a master regulator of mitochondrial biogenesis, has recently been shown to exert antimetastatic effects in cancer, notably through inhibition of EMT. Besides, PGC-1α has the opposite role in specific cancer subtypes, in which it appears to provide growth advantages. Thus, the regulation and role of PGC-1α in cancer is not univocal, and its use as a prognostic marker appears limited given its highly dynamic nature and its multifaceted regulation by transcriptional and posttranslational mechanisms. Herein, we expose key oncogenic and lineage-specific modules that finely regulate PGC-1α to promote or dampen the metastatic process. We propose a unifying model based on the systematic analysis of its controversial implication in cancer from cell proliferation to EMT and metastasis. This short review will provide a good understanding of current challenges associated with the study of PGC-1α.
Collapse
Affiliation(s)
- Simon-Pierre Gravel
- Laboratory of Metabolic Immunopharmacology, Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
29
|
Cai FF, Xu C, Pan X, Cai L, Lin XY, Chen S, Biskup E. Prognostic value of plasma levels of HIF-1a and PGC-1a in breast cancer. Oncotarget 2018; 7:77793-77806. [PMID: 27780920 PMCID: PMC5363621 DOI: 10.18632/oncotarget.12796] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023] Open
Abstract
Cellular adaptive mechanisms are crucial for tumorigenesis and a common feature in solid tumor progression. Hypoxia-inducible factor-1α (HIF-1α) facilitates the biological response to hypoxia, advancing angiogenesis and metastatic potential of the tumor. The peroxisome proliferator–activated receptor γ coactivators 1α (PGC-1α) enhances mitochondrial biogenesis, favored by migratory/invasive cancer cells. We conducted a prospective, long-term follow up study to determine whether HIF-1α and PGC-1α can be implemented as predictive biomarker in breast cancer. HIF-1α and PGC-1α plasma concentrations were measured in patients and in healthy controls by enzyme linked immune sorbent assay. Breast cancer patients had significantly higher HIF-1α and PGC-1α levels, which correlated with clinicopathological features, overall with more aggressive cancer characteristics. Disease free and overall survival of breast cancer patients with high HIF-1α and PGC-1α were significantly poorer than in patients with low plasma levels. In multivariate analysis, high amount of PGC-1α showed independent prognostic value. Our data suggests that HIF-1α and PGC-1α may be promising, noninvasive, biomarkers with a high potential for future clinical implication to identify subgroups of patients with poorer prognosis and to indicate early, subclinical metastasis.
Collapse
Affiliation(s)
- Feng-Feng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Cheng Xu
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xin Pan
- Department of Central Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Lu Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiao-Yan Lin
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Su Chen
- Department of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Ewelina Biskup
- Department of Oncology, Department of Internal Medicine, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
30
|
PGC1α: Friend or Foe in Cancer? Genes (Basel) 2018; 9:genes9010048. [PMID: 29361779 PMCID: PMC5793199 DOI: 10.3390/genes9010048] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
The PGC1 family (Peroxisome proliferator-activated receptor γ (PPARγ) coactivators) of transcriptional coactivators are considered master regulators of mitochondrial biogenesis and function. The PGC1α isoform is expressed especially in metabolically active tissues, such as the liver, kidneys and brain, and responds to energy-demanding situations. Given the altered and highly adaptable metabolism of tumor cells, it is of interest to investigate PGC1α in cancer. Both high and low levels of PGC1α expression have been reported to be associated with cancer and worse prognosis, and PGC1α has been attributed with oncogenic as well as tumor suppressive features. Early in carcinogenesis PGC1α may be downregulated due to a protective anticancer role, and low levels likely reflect a glycolytic phenotype. We suggest mechanisms of PGC1α downregulation and how these might be connected to the increased cancer risk that obesity is now known to entail. Later in tumor progression PGC1α is often upregulated and is reported to contribute to increased lipid and fatty acid metabolism and/or a tumor cell phenotype with an overall metabolic plasticity that likely supports drug resistance as well as metastasis. We conclude that in cancer PGC1α is neither friend nor foe, but rather the obedient servant reacting to metabolic and environmental cues to benefit the tumor cell.
Collapse
|
31
|
Yun SH, Roh MS, Jeong JS, Park JI. Peroxisome proliferator-activated receptor γ coactivator-1α is a predictor of lymph node metastasis and poor prognosis in human colorectal cancer. Ann Diagn Pathol 2017; 33:11-16. [PMID: 29566941 DOI: 10.1016/j.anndiagpath.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 11/28/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ coactivator-1α (PGC-1α) expression levels are correlated with clinical outcome in breast cancer. However, the potential biological and clinical significance of PPARγ and PGC-1α in colorectal cancer remains unknown. Here we investigated PPARγ and PGC-1α expression in colorectal cancer, and the associations of these expression levels with clinicopathological features. We also evaluated the roles of PPARγ and PGC-1α as prognostic factors in colorectal cancer. We performed immunohistochemical analysis to investigate PPARγ and PGC-1α expression in human colorectal cancer tissues and adjacent normal tissues from 108 primary colorectal cancer patients. We then examined how these expression levels correlated with clinicopathological features. Using the Kaplan-Meier method, we evaluated 3-year disease-free survival (DFS) and overall survival (OS) in patients with tumors expressing different levels of PPARγ and PGC-1α. Our results revealed that PPARγ expression was not significantly correlated with age at surgery, gender, differentiation, depth of infiltration, relapse, or TNM stage. Additionally, PGC-1α expression was not significantly correlated with age at surgery, differentiation, depth of infiltration, relapse, or TNM stage. However, PGC-1α expression was significantly correlated with nodal metastasis (p=0.020). Survival analysis demonstrated reduced OS in the PGC-1α-positive group compared to the PGC-1α-negative group (p=0.03). Our present findings suggest that PGC-1α may be useful for predicting nodal metastasis, and may represent a biomarker for poor prognosis in colorectal cancer.
Collapse
Affiliation(s)
- Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Republic of Korea
| | - Mee-Sook Roh
- Department of Pathology, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Republic of Korea
| | - Jin-Sook Jeong
- Department of Pathology, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Republic of Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Republic of Korea.
| |
Collapse
|
32
|
Gao X, Zhang X, Hu J, Xu X, Zuo Y, Wang Y, Ding J, Xu H, Zhu S. Aconitine induces apoptosis in H9c2 cardiac cells via mitochondria‑mediated pathway. Mol Med Rep 2017; 17:284-292. [PMID: 29115599 PMCID: PMC5780139 DOI: 10.3892/mmr.2017.7894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022] Open
Abstract
Aconitine, a diterpenoid alkaloids derived from Aconitum plants, is widely employed to treat various diseases. The aim of the present study was to investigate the apoptotic effect of aconitine in H9c2 cardiac cells. H9c2 cell apoptosis induced by aconitine was detected by a Cell Counting kit-8 assay, DAPI staining, Annexin V-FITC/propidium iodide double staining and western blotting. The effects of aconitine on reactive oxygen species levels and mitochondrial membrane potential were confirmed by fluorescence microscopy and flow cytometry. In addition, ATP contents were determined using a ATP-dependent bioluminescence assay kit. The levels of peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) expression and apoptosis-associated proteins including Caspase-3, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and Cytochrome c were also assessed. Taken together, the results indicated that aconitine may inhibit cell viability, decrease PGC-1α expression, induce mitochondrial dysfunctions, upregulate Cytochrome c, Bax and Caspase-3, and downregulate Bcl-2, suggesting that aconitine may induce apoptosis through mitochondria-mediated signaling pathways in H9c2 cells.
Collapse
Affiliation(s)
- Xiangting Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xincai Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jun Hu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xuehua Xu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yuanyi Zuo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yun Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jingfeng Ding
- Department of Forensic Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, P.R. China
| | - Hongfei Xu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
33
|
Wang W, Xu ZZ, Costanzo M, Boone C, Lange CA, Myers CL. Pathway-based discovery of genetic interactions in breast cancer. PLoS Genet 2017; 13:e1006973. [PMID: 28957314 PMCID: PMC5619706 DOI: 10.1371/journal.pgen.1006973] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/10/2017] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions.
Collapse
Affiliation(s)
- Wen Wang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Zack Z. Xu
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States of America
- HealthPartners Institute, Minneapolis, MN, United States of America
| | | | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Carol A. Lange
- Departments of Medicine and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
34
|
Tengan CH, Moraes CT. NO control of mitochondrial function in normal and transformed cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:573-581. [PMID: 28216426 PMCID: PMC5487294 DOI: 10.1016/j.bbabio.2017.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/19/2017] [Accepted: 02/15/2017] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) is a signaling molecule with multiple facets and involved in numerous pathological process, including cancer. Among the different pathways where NO has a functionally relevant participation, is the control of mitochondrial respiration and biogenesis. NO is able to inhibit the electron transport chain, mainly at Complex IV, regulating oxygen consumption and ATP generation, but at the same time, can also induce increase in reactive oxygen and nitrogen species. The presence of reactive species can induce oxidative damage or participate in redox signaling. In this review, we discuss how NO affects mitochondrial respiration and mitochondrial biogenesis, and how it influences the development of mitochondrial deficiency and cancer. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Celia H Tengan
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo, 781, setimo andar, frente, 04039-032, São Paulo, SP, Brazil.
| | - Carlos T Moraes
- University of Miami Miller School of Medicine, Dept. of Neurology and Cell Biology, 1420 NW 9th Avenue, Rm.229, Miami, FL 33136, USA.
| |
Collapse
|
35
|
PGC-1α attenuates hydrogen peroxide-induced apoptotic cell death by upregulating Nrf-2 via GSK3β inactivation mediated by activated p38 in HK-2 Cells. Sci Rep 2017; 7:4319. [PMID: 28659586 PMCID: PMC5489530 DOI: 10.1038/s41598-017-04593-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Ischemia/reperfusion injury triggers acute kidney injury (AKI) by aggravating oxidative stress mediated mitochondria dysfunction. The peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a master player that regulates mitochondrial biogenesis and the antioxidant response. We postulated that PGC-1α functions as cytoprotective effector in renal cells and that its regulation mechanism is coordinated by nuclear factor erythroid 2-related factor 2 (Nrf-2). In this study, to understand the effect and molecular mechanisms of PGC-1α, we developed an empty vector or PGC-1α-overexpressing stable cell lines in HK-2 cells (Mock or PGC-1α stable cells). PGC-1α overexpression increased the viability of cells affected by H2O2 mediated injury, protected against H2O2-mediated apoptotic events and inhibited reactive oxygen species accumulation in the cytosol and mitochondria as compared to that in Mock cells. The cytoprotective effect of PGC-1α was related to Nrf-2 upregulation, which was counteracted by Nrf-2-specific knockdown. Using inhibitor of p38, we found that regulation of the p38/glycogen synthase kinase 3β (GSK3β)/Nrf-2 axis was involved in the protective effects of PGC-1α. Taken together, we suggest that PGC-1α protects human renal tubule cells from H2O2-mediated apoptotic injury by upregulating Nrf-2 via GSK3β inactivation mediated by activated p38.
Collapse
|
36
|
Cho SY, Kim SH, Yi MH, Zhang E, Kim E, Park J, Jo EK, Lee YH, Park MS, Kim Y, Park J, Kim DW. Expression of PGC1α in glioblastoma multiforme patients. Oncol Lett 2017; 13:4055-4076. [PMID: 28599408 PMCID: PMC5453058 DOI: 10.3892/ol.2017.5972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/13/2017] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) is a key modulator of mitochondrial biogenesis. It is a coactivator of multiple transcription factors and regulates metabolic processes. However, little is known about the expression and function of PGC1α in glioblastoma multiforme (GBM), the most prevalent and invasive type of brain tumor. The purpose of the present study was to investigate the biological function, localization and expression of PGC1α in GBM. It was observed that PGC1α expression is increased in the tumor cells, and a higher level of expression was observed in the mitochondria. Bioinformatics analyses identified that metabolic and mitochondrial genes were highly expressed in GBM cells, with a high PGC1α mRNA expression. Notably, mitochondrial function-associated genes were highly expressed in cells alongside high PGC1α expression. Collectively, the results of the present study indicate that PGC1α is associated with mitochondrial dysfunction in GBM and may have a role in tumor pathogenesis and progression.
Collapse
Affiliation(s)
- Sang Yeon Cho
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Enji Zhang
- Department of Anesthesiology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Eunjee Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Jisoo Park
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Young Ho Lee
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Min Soo Park
- Department of Physiology, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jongsun Park
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| |
Collapse
|
37
|
Rangaraj A, Ye L, Sanders AJ, Price PE, Harding KG, Jiang WG. Molecular and cellular impact of Psoriasin (S100A7) on the healing of human wounds. Exp Ther Med 2017; 13:2151-2160. [PMID: 28565822 PMCID: PMC5443246 DOI: 10.3892/etm.2017.4275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Psoriasin, which is also known as S100A7, is a member of the S100 protein family, a group of calcium-responsive signalling proteins. Psoriasin expression remains high in patients with psoriasis, whereas it is downregulated in patients with invasive breast carcinoma. This observation suggests that this protein may be a notable marker of keratinocyte function and differentiation during wound healing. The aim of the present study was to determine the cellular impact of Psoriasin in keratinocytes, which are the primary cell type associated with wound healing. Psoriasin expression in wound tissues was examined using reverse transcription-quantitative polymerase chain reaction and immunochemical staining. Knockdown of Psoriasin in HaCaT cells was performed using anti-Psoriasin ribozyme transgenes and the effect on growth, adhesion and migration of keratinocytes was subsequently determined using in vitro cellular functional assays. Psoriasin expression is upregulated in wounds, particularly at the wound edges. The present study demonstrated that Psoriasin is expressed in keratinocytes and is a fundamental regulator of keratinocyte migration. Significant increases in the rate of keratinocyte adhesion, migration and growth were observed in Psoriasin-deficient cells (P<0.01 vs. control). Application of small inhibitors identified the potential association of neural Wiskott-Aldrich syndrome protein, focal adhesion primase and rho-associated protein kinase signalling pathways with Psoriasin-regulated cell adhesion and motility. In conclusion, Psoriasin serves an important role in the wound healing process, suggesting that it may be utilized as a potential wound healing biomarker.
Collapse
Affiliation(s)
- Aravindan Rangaraj
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, CF14 4XN Cardiff, UK.,Department of Wound Healing, Cardiff University School of Medicine, CF14 4XN Cardiff, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, CF14 4XN Cardiff, UK
| | - Andrew James Sanders
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, CF14 4XN Cardiff, UK
| | - Patricia Elaine Price
- Department of Wound Healing, Cardiff University School of Medicine, CF14 4XN Cardiff, UK
| | - Keith Gordon Harding
- Department of Wound Healing, Cardiff University School of Medicine, CF14 4XN Cardiff, UK
| | - Wen Guo Jiang
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, CF14 4XN Cardiff, UK
| |
Collapse
|
38
|
Zhang S, Liu X, Liu J, Guo H, Xu H, Zhang G. PGC-1 alpha interacts with microRNA-217 to functionally regulate breast cancer cell proliferation. Biomed Pharmacother 2017; 85:541-548. [DOI: 10.1016/j.biopha.2016.11.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
|
39
|
Liu D, Zhou JL, Hong F, Zhang YQ. Lung inflammation caused by long-term exposure to titanium dioxide in mice involving in NF-κB signaling pathway. J Biomed Mater Res A 2016; 105:720-727. [DOI: 10.1002/jbm.a.35945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Dong Liu
- Department of Applied Biology, School of Basic Medical and Biological Sciences; Soochow University; RM702-2303, Renai Road No. 199 Dushuhu Higher Edu. Town Suzhou 215123 People's Republic of China
| | - Jie-Lu Zhou
- Department of Scientific and Educational Affairs; Suzhou Kowloon Hospital Affiliated with Shanghai Jiao Tong University School of Medicine; Suzhou 215021 People's Republic of China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences; Soochow University; RM702-2303, Renai Road No. 199 Dushuhu Higher Edu. Town Suzhou 215123 People's Republic of China
| |
Collapse
|
40
|
Ganeb SS, El-Brashy AEWS, Baraka EA, Aboelazm AA, Abdul Basset SA. Peroxisome proliferator-activated receptor gamma expression in peripheral monocytes from rheumatoid arthritis patients. THE EGYPTIAN RHEUMATOLOGIST 2016; 38:141-146. [DOI: 10.1016/j.ejr.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
41
|
Tan Z, Luo X, Xiao L, Tang M, Bode AM, Dong Z, Cao Y. The Role of PGC1α in Cancer Metabolism and its Therapeutic Implications. Mol Cancer Ther 2016; 15:774-82. [DOI: 10.1158/1535-7163.mct-15-0621] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
|
42
|
Tumor suppressor control of the cancer stem cell niche. Oncogene 2015; 35:4165-78. [PMID: 26686086 DOI: 10.1038/onc.2015.475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023]
Abstract
Mammary stem cells (MSCs) expansion is associated with aggressive human breast cancer. The nuclear receptor peroxisome proliferator activated receptor γ (PPARγ) is a breast cancer tumor suppressor, but the mechanisms of this suppression are not completely characterized. To determine whether PPARγ regulates MSC expansion in mammary cancer, we deleted PPARγ expression in the mammary epithelium of an in vivo model of basal breast cancer. Loss of PPARγ expression reduced tumor latency, and expanded the CD24+/CD49f(hi) MSC population. PPARγ-null mammary tumors exhibited increased angiogenesis, which was detected in human breast cancer. In vivo inhibition of a PPARγ-regulated miR-15a/angiopoietin-1 pathway blocked increased angiogenesis and MSC expansion. PPARγ bound and activated a canonical response element in the miR-15a gene. PPARγ-null tumors were sensitive to the targeted anti-angiogenic drug sunitinib but resistant to cytotoxic chemotherapy. Normalization of tumor vasculature with sunitinib resulted in objective response to cytotoxic chemotherapy. Chemotherapy-treated PPARγ-null mammary tumors exhibited luminal phenotype and expansion of unipotent CD61+ luminal progenitor cells. Transplantation of chemotherapy-treated luminal progenitor cells recapitulated the luminal phenotype. These results have important implications for anti-angiogenic therapy in breast cancer patients.
Collapse
|
43
|
Wang SC, Ye L, Sanders AJ, Ruge F, Harding KG, Jiang WG. Tumour endothelial marker-8 in wound healing and its impact on the proliferation and migration of keratinocytes. Int J Mol Med 2015; 37:293-8. [PMID: 26677171 PMCID: PMC4716791 DOI: 10.3892/ijmm.2015.2434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
Chronic wound management represents a significant burden on healthcare systems and negatively impacts on the quality of patient life. New strategies to understand and identify wounds that will not heal in a normal manner are required. Tumour endothelial marker‑8 (TEM‑8) has been implicated in the wound healing and angiogenesis processes. TEM‑8 expression was examined at the transcript level in a cohort of acute (n=10) and chronic (n=14) wounds and in normal skin (n=10). Protein analysis of TEM‑8 was also undertaken for this cohort using immunohistochemistry (IHC). TEM‑8 impact on keratinocyte cell growth and migration was assessed following TEM‑8 ribozyme transgene transfection of human HaCaT keratinocytes using cell growth and electric cell‑substrate impedance sensing (ECIS)‑based assays. Expression of TEM‑8 was observed to be increased in acute wounds compared to chronic wounds and normal skin using quantitative polymerase chain reaction transcript analysis and IHC staining of wound tissues. Knockdown of TEM‑8 in HaCaT cells, using two independent ribozyme transgenes, resulted in significant decreases in cell growth as well as reductions in the rate of migration assessed using an ECIS‑based system. TEM‑8 may be differentially expressed between wound types and loss of this molecule impacts HaCaT growth and migration, potentially implicating this molecule as a factor involved in successful progression of wound healing.
Collapse
Affiliation(s)
- Sheila C Wang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Keith G Harding
- Department of Wound Healing, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
44
|
Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α. Proc Natl Acad Sci U S A 2015; 112:E5669-78. [PMID: 26438876 DOI: 10.1073/pnas.1516219112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years an extensive effort has been made to elucidate the molecular pathways involved in metabolic signaling in health and disease. Here we show, surprisingly, that metabolic regulation and the heat-shock/stress response are directly linked. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator of metabolic genes, acts as a direct transcriptional repressor of heat-shock factor 1 (HSF1), a key regulator of the heat-shock/stress response. Our findings reveal that heat-shock protein (HSP) gene expression is suppressed during fasting in mouse liver and in primary hepatocytes dependent on PGC-1α. HSF1 and PGC-1α associate physically and are colocalized on several HSP promoters. These observations are extended to several cancer cell lines in which PGC-1α is shown to repress the ability of HSF1 to activate gene-expression programs necessary for cancer survival. Our study reveals a surprising direct link between two major cellular transcriptional networks, highlighting a previously unrecognized facet of the activity of the central metabolic regulator PGC-1α beyond its well-established ability to boost metabolic genes via its interactions with nuclear hormone receptors and nuclear respiratory factors. Our data point to PGC-1α as a critical repressor of HSF1-mediated transcriptional programs, a finding with possible implications both for our understanding of the full scope of metabolically regulated target genes in vivo and, conceivably, for therapeutics.
Collapse
|
45
|
Pace RT, Burg KJL. The potential in breast tissue engineering for the combined effects of linoleic acid and tamoxifen. J Histotechnol 2015. [DOI: 10.1179/2046023614y.0000000052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Abduljabbar R, Al-Kaabi MM, Negm OH, Jerjees D, Muftah AA, Mukherjee A, Lai CF, Buluwela L, Ali S, Tighe PJ, Green A, Ellis I, Rakha E. Prognostic and biological significance of peroxisome proliferator-activated receptor-gamma in luminal breast cancer. Breast Cancer Res Treat 2015; 150:511-22. [PMID: 25794775 DOI: 10.1007/s10549-015-3348-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/29/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is an adopted orphan receptor that belongs to the nuclear receptor superfamily of transcription factors. PPARγ is regarded as a differentiation factor and it plays an important role in regulating adipogenesis, cell growth, proliferation and tumour progression. In breast cancer (BC), PPARγ agonists were reported to inhibit proliferation and growth invasion and promote phenotypic changes associated with a less malignant and more differentiated status. This study aims to assess the prognostic and biological roles of PPARγ protein expression in a large cohort of BC patients (n = 1100) with emphasis on the luminal oestrogen receptor (ER) positive class. Immunohistochemistry was used to assess the levels of PPARγ expression in BC series prepared as tissue microarrays (TMAs). PPARγ antibody specificity was confirmed using Western blotting. PPARγ nuclear expression was detected in 79 % of the cases and its expression was positively correlated with the hormonal receptors (ER, progesterone receptor and androgen receptor). PPARγ levels were significantly higher in tumours with lobular subtype, smaller size and lower grade, while HER2-positive, ductal or medullary tumours were associated with lower PPARγ levels. Survival analysis showed that PPARγ is associated with better outcome in the whole series as well as in luminal ER-positive class. Cox regression model showed that PPARγ is an independent predictor of outcome. Higher PPARγ was associated with longer survival in patients with ER-positive tumours who did not receive hormone therapy. PPARγ is a good prognostic marker associated with hormone receptors. In patients with luminal BCs, PPARγ is a marker of better prognosis and is associated with longer survival.
Collapse
Affiliation(s)
- Rezvan Abduljabbar
- Division of Cancer and Stem Cells, School of Medicine, University Of Nottingham, City Hosital Campus, Nottingham, NG5 1PB, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chemotherapy and chemoprevention by thiazolidinediones. BIOMED RESEARCH INTERNATIONAL 2015; 2015:845340. [PMID: 25866814 PMCID: PMC4383438 DOI: 10.1155/2015/845340] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/29/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
Abstract
Thiazolidinediones (TZDs) are synthetic ligands of Peroxisome-Proliferator-Activated Receptor gamma (PPARγ). Troglitazone, rosiglitazone, and pioglitazone have been approved for treatment of diabetes mellitus type II. All three compounds, together with the first TZD ciglitazone, also showed an antitumor effect in preclinical studies and a beneficial effect in some clinical trials. This review summarizes hypotheses on the role of PPARγ in tumors, on cellular targets of TZDs, antitumor effects of monotherapy and of TZDs in combination with other compounds, with a focus on their role in the treatment of differentiated thyroid carcinoma. The results of chemopreventive effects of TZDs are also considered. Existing data suggest that the action of TZDs is highly complex and that actions do not correlate with cellular PPARγ expression status. Effects are cell-, species-, and compound-specific and concentration-dependent. Data from human trials suggest the efficacy of TZDs as monotherapy in prostate cancer and glioma and as chemopreventive agent in colon, lung, and breast cancer. TZDs in combination with other therapies might increase antitumor effects in thyroid cancer, soft tissue sarcoma, and melanoma.
Collapse
|
48
|
Shin SW, Yun SH, Park ES, Jeong JS, Kwak JY, Park JI. Overexpression of PGC‑1α enhances cell proliferation and tumorigenesis of HEK293 cells through the upregulation of Sp1 and Acyl-CoA binding protein. Int J Oncol 2015; 46:1328-42. [PMID: 25585584 DOI: 10.3892/ijo.2015.2834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ coactivator-1α (PGC‑1α), a coactivator interacting with multiple transcription factors, regulates several metabolic processes. Although recent studies have focused on the role of PGC‑1α in cancer, the underlying molecular mechanism has not been clarified. Therefore, we evaluated the role of PGC‑1α in cell proliferation and tumorigenesis using human embryonic kidney (HEK)293 cells and colorectal cancer cells. We established stable HEK293 cell lines expressing PGC‑1α and examined cell proliferation, anchorage-independent growth, and oncogenic potential compared to parental HEK293 cells. To identify the molecular PGC‑1α targets for increased cell proliferation and tumorigenesis, the GeneFishing™ DEG (differentially expressed genes) screening system was used. Western blot analysis and immunofluorescence staining were performed for a regulated gene product to confirm the results. Forced expression of PGC‑1α in HEK293 cells promoted cell proliferation and anchorage-independent growth in soft agar. In addition, HEK293 cells that highly expressed PGC‑1α showed enhanced tumor formation when subcutaneously injected into the bilateral flanks of immunodeficient mice. The results of the GeneFishing DEG screening system identified one upregulated gene (Acyl-CoA binding protein; ACBP). Real-time RT-PCR, western blot analysis, and immunofluorescence staining showed that ACBP was markedly increased in HEK293 cells stably overexpressing PGC‑1α (PGC‑1α-HEK293 cells) compared to those expressing an empty vector. In PGC‑1α, ACBP, and specificity protein 1 (Sp1) siRNA knockdown experiments in PGC‑1α-HEK293 and SNU-C4 cells, we also observed inhibition of cell proliferation, reduced expression of antioxidant enzymes, and increased H2O2-induced reactive oxygen species production and apoptosis. These findings suggest that PGC‑1α may promote cell proliferation and tumorigenesis through upregulation of ACBP. We provide evidence that increased Sp1 expression might contribute to enhanced ACBP expression by PGC‑1α. The current results also suggest that PGC‑1α, whose expression is related to enhanced cell proliferation and tumorigenesis, may be a good candidate molecular target for cancer therapy.
Collapse
Affiliation(s)
- Sung-Won Shin
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Eun-Seon Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin-Sook Jeong
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jong-Young Kwak
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
49
|
Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 2015; 282:647-72. [DOI: 10.1111/febs.13175] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/31/2014] [Accepted: 12/10/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Josep A. Villena
- Laboratory of Metabolism and Obesity; Vall d'Hebron-Institut de Recerca; Universitat Autònoma de Barcelona; Spain
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas); Instituto de Salud Carlos III; Barcelona Spain
| |
Collapse
|
50
|
Knower KC, Chand AL, Eriksson N, Takagi K, Miki Y, Sasano H, Visvader JE, Lindeman GJ, Funder JW, Fuller PJ, Simpson ER, Tilley WD, Leedman PJ, Graham JD, Muscat GEO, Clarke CL, Clyne CD. Distinct nuclear receptor expression in stroma adjacent to breast tumors. Breast Cancer Res Treat 2014; 142:211-23. [PMID: 24122391 DOI: 10.1007/s10549-013-2716-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022]
Abstract
The interaction between breast tumor epithelial and stromal cells is vital for initial and recurrent tumor growth. While breast cancer-associated stromal cells provide a favorable environment for proliferation and metastasis, the molecular mechanisms contributing to this process are not fully understood. Nuclear receptors (NRs) are intracellular transcription factors that directly regulate gene expression. Little is known about the status of NRs in cancer-associated stroma. Nuclear Receptor Low-Density Taqman Arrays were used to compare the gene expression profiles of all 48 NR family members in a collection of primary cultured cancer-associated fibroblasts (CAFs) obtained from estrogen receptor (ER)α positive breast cancers (n = 9) and normal breast adipose fibroblasts (NAFs) (n = 7). Thirty-three of 48 NRs were expressed in both the groups, while 11 NRs were not detected in either. Three NRs (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1); estrogen-related receptor beta (ERR-β); and RAR-related orphan receptor beta (ROR-β)) were only detected in NAFs, while one NR (liver receptor homolog-1 (LRH-1)) was unique to CAFs. Of the NRs co-expressed, four were significantly down-regulated in CAFs compared with NAFs (RAR-related orphan receptor-α (ROR-α); Thyroid hormone receptor-β (TR-β); vitamin D receptor (VDR); and peroxisome proliferator-activated receptor-γ (PPAR-γ)). Quantitative immunohistochemistry for LRH-1, TR-β, and PPAR-γ proteins in stromal fibroblasts from an independent panel of breast cancers (ER-positive (n = 15), ER-negative (n = 15), normal (n = 14)) positively correlated with mRNA expression profiles. The differentially expressed NRs identified in tumor stroma are key mediators in aromatase regulation and subsequent estrogen production. Our findings reveal a distinct pattern of NR expression that therefore fits with a sustained and increased local estrogen microenvironment in ER-positive tumors. NRs in CAFs may provide a new avenue for the development of intratumoral-targeted therapies in breast cancer.
Collapse
|