1
|
Lou C, Lan T, Xu S, Hu X, Li J, Xiang Z, Lin S, Fan X, Chen J, Xu X. Heterogeneity and plasticity of cholangiocytes in liver injury: a journey from pathophysiology to therapeutic utility. Gut 2025:gutjnl-2025-334763. [PMID: 40490318 DOI: 10.1136/gutjnl-2025-334763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/12/2025] [Indexed: 06/11/2025]
Abstract
Cholangiocytes are highly specialised cells participating in the pathobiology of various liver diseases and recognised to play a crucial role in response to liver injury. Cholangiocytes exhibit dramatic heterogeneity and plasticity, with distinct subtypes performing disparate functions during liver injury and regeneration. Acting as the liver progenitor cells, cholangiocytes can also convert to hepatocytes in the context of impaired hepatocyte proliferation. Harnessing the intrinsic regenerative ability of cholangiocytes is of great importance to alleviate liver injury and promote cholangiocyte-driven liver regeneration. Clinically, cholangiocytes and cholangiocyte organoids are expected to serve as favourable sources for cell therapy in cholangiopathies, which are known as a group of complex diseases involving the biliary system while lacking effective therapeutic options. A comprehensive understanding of the biological characteristics of cholangiocytes provides insights into developing cholangiocyte cell therapy for cholangiopathies. In this review, we discuss the critical role of cholangiocytes in liver injury and regeneration, reveal the underlying mechanism of cholangiocyte plasticity, and explore the prospects and challenges of using cholangiocytes as a source for cell therapy.
Collapse
Affiliation(s)
- Chengtao Lou
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tianchen Lan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shengjun Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xinhao Hu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shengda Lin
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Hammond NL, Murtuza Baker S, Georgaka S, Al-Anbaki A, Jokl E, Simpson K, Sanchez-Alvarez R, Athwal VS, Purssell H, Siriwardena AK, Spiers HVM, Dixon MJ, Bere LD, Jones AP, Haley MJ, Couper KN, Bobola N, Sharrocks AD, Hanley NA, Rattray M, Piper Hanley K. Spatial gene regulatory networks driving cell state transitions during human liver disease. EMBO Mol Med 2025:10.1038/s44321-025-00230-6. [PMID: 40281306 DOI: 10.1038/s44321-025-00230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Liver fibrosis is a major cause of death worldwide. As a progressive step in chronic liver disease, fibrosis is almost always diagnosed too late with limited treatment options. Here, we uncover the spatial transcriptional landscape driving human liver fibrosis using single nuclei RNA and Assay for Transposase-Accessible Chromatin (ATAC) sequencing to deconvolute multi-cell spatial transcriptomic profiling in human liver cirrhosis. Through multi-modal data integration, we define molecular signatures driving cell state transitions in liver disease and define an impaired cellular response and directional trajectory between hepatocytes and cholangiocytes associated with disease remodelling. We identify pro-fibrogenic signatures in non-parenchymal cell subpopulations co-localised within the fibrotic niche and localise transitional cell states at the scar interface. This combined approach provides a spatial atlas of gene regulation and defines molecular signatures associated with liver disease for targeted therapeutics or as early diagnostic markers of progressive liver disease.
Collapse
Affiliation(s)
- Nigel L Hammond
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Syed Murtuza Baker
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Sokratia Georgaka
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Ali Al-Anbaki
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Elliot Jokl
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Kara Simpson
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Rosa Sanchez-Alvarez
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Varinder S Athwal
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Huw Purssell
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Ajith K Siriwardena
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | | | - Mike J Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Leoma D Bere
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Adam P Jones
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Michael J Haley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Kevin N Couper
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Nicoletta Bobola
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Neil A Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Karen Piper Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
3
|
Du W, Chen C, Liu Y, Quan H, Xu M, Liu J, Song P, Fang Z, Yue Z, Xu H, Ling Y, Duan J, He F, Wang L. A combined "eat me/don't eat me" strategy based on exosome for acute liver injury treatment. Cell Rep Med 2025; 6:102033. [PMID: 40120577 PMCID: PMC12047510 DOI: 10.1016/j.xcrm.2025.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/09/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
Drug-induced liver injury (DILI) involves multifaceted pathogenesis, necessitating effective therapeutic strategies. Wnt2, secreted by liver sinusoidal endothelial cell (LSEC), activates the Wnt/β-catenin signaling pathway to promote hepatocyte proliferation after injury. To address the dual challenges of targeted delivery and phagocytosis evasion, we develop a combined "eat me/don't eat me" strategy. RLTRKRGLK (RLTR) peptide-functionalized exosomes are engineered by inserting DMPE-PEG2000-CRLTRKRGLK into the lipid membrane of exosome derived from bEnd.3 cell. Surface-displayed RLTR mediates exosomal enrichment in LSEC, while CD47 engineering reduces macrophage clearance via "don't eat me" signaling. Then, lentiviral transfection enables stable encapsulation of functional Wnt2 mRNA into ExoCD47 (designated Wnt2@ExoCD47). In both acetaminophen (APAP) and dimethylnitrosamine (DMN)-induced murine liver injury models, RLTR-Wnt2@ExoCD47 demonstrates LSEC-specific targeting and significant hepatoprotection. This engineered exosome platform provides a therapeutic strategy for DILI.
Collapse
Affiliation(s)
- Wei Du
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chen Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - YingYing Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ming Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - JingJing Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - ZhiQiang Fang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - ZhenSheng Yue
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - YuWei Ling
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - JuanLi Duan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Fei He
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Sorrentino G. Microenvironmental control of the ductular reaction: balancing repair and disease progression. Cell Death Dis 2025; 16:246. [PMID: 40180915 PMCID: PMC11968979 DOI: 10.1038/s41419-025-07590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
The ductular reaction (DR) is a dynamic adaptive cellular response within the liver, triggered by various hepatic insults and characterized by an expansion of dysmorphic biliary epithelial cells and liver progenitors. This complex response presents a dual role, playing a pivotal function in liver regeneration but, paradoxically, contributing to the progression of liver diseases, depending upon specific contextual factors and signaling pathways involved. This comprehensive review aims to offer a holistic perspective on the DR, focusing into its intricate cellular and molecular mechanisms, highlighting its pathological significance, and exploring its potential therapeutic implications. An up-to-date understanding of the DR in the context of different liver injuries is provided, analyzing its contributions to liver regeneration, inflammation, fibrosis, and ultimately carcinogenesis. Moreover, the review highlights the role of multiple microenvironmental factors, including the influence of extracellular matrix, tissue mechanics and the interplay with the intricate hepatic cell ecosystem in shaping the DR's regulation. Finally, in vitro and in vivo experimental models of the DR will be discussed, providing insights into how researchers can study and manipulate this critical cellular response. By comprehensively addressing the multifaceted nature of the DR, this review contributes to a more profound understanding of its pathophysiological role in liver diseases, thus offering potential therapeutic avenues for hepatic disorders and improving patient outcomes.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
5
|
Gupta V, Sehrawat TS, Pinzani M, Strazzabosco M. Portal Fibrosis and the Ductular Reaction: Pathophysiological Role in the Progression of Liver Disease and Translational Opportunities. Gastroenterology 2025; 168:675-690. [PMID: 39251168 PMCID: PMC11885590 DOI: 10.1053/j.gastro.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called "ductular reaction." This is a histologic abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathologic repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as "liver cirrhosis." The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons for this is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research, including innovative translational opportunities.
Collapse
Affiliation(s)
- Vikas Gupta
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Tejasav S Sehrawat
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Massimo Pinzani
- UCL Institute for Liver & Digestive Health, Royal Free Hospital, London, United Kingdom; University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies, Palermo, Italy
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
6
|
Zhou J, Tang C, Song X, Wang Y, Lin B, Lin M, Xu Z, Lin S, Xu C, Yu C. Tetrahedral framework nucleic acids ameliorate cholestatic liver disease by activating Wnt/β-catenin signaling and promoting ERK1/2 phosphorylation. Regen Biomater 2025; 12:rbaf017. [PMID: 40385130 PMCID: PMC12083862 DOI: 10.1093/rb/rbaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/16/2025] [Accepted: 03/08/2025] [Indexed: 05/27/2025] Open
Abstract
Cholestatic liver disease (CLD) is characterized by disruptions in bile formation, secretion and excretion, leading to progressive liver injury, inflammation and fibrosis. Effective treatments to halt or reverse the progression of CLD remain limited. The Wnt/β-catenin signaling pathway has been implicated in the regulation of bile acid homeostasis and liver regeneration, playing a complex role in CLD pathophysiology. Tetrahedral framework nucleic acids (TFNAs), a class of anti-inflammatory and antioxidant DNA nanomaterials, have shown potential in promoting mammalian cell proliferation through activation of cell cycle and proliferation-related signaling pathways. However, their therapeutic potential in CLD has not been fully explored. In this study, we investigated the effects of TFNAs in an α-naphthyl isothiocyanate (ANIT)-induced mouse model of CLD. TFNAs demonstrated the ability to enter hepatocytes, where they activated the Wnt/β-catenin signaling pathway and enhanced ERK1/2 phosphorylation. These molecular changes resulted in significant improvements in liver injury markers, bile acid metabolism and liver regeneration. Complementary in vitro experiments revealed that TFNAs reduced hepatocyte apoptosis and oxidative stress, while promoting cell viability and proliferation. Histological analysis confirmed that TFNAs treatment mitigated liver necrosis, reduced ductular reactions and decreased neutrophil infiltration, highlighting their anti-inflammatory and tissue-protective effects. These findings provide compelling evidence that TFNAs can ameliorate CLD by modulating key signaling pathways involved in hepatocyte survival, regeneration and bile acid homeostasis. Collectively, our findings highlight the therapeutic potential of TFNAs as a novel treatment for CLD and paves the way for further exploration of nanomaterials in liver disease therapy.
Collapse
Affiliation(s)
- Jiaming Zhou
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenxi Tang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Song
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yating Wang
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bingru Lin
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mengchi Lin
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zixin Xu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shihua Lin
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, Zhejiang Provincial Clinical Research Center for Digestive Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
7
|
Benard EL, Hammerschmidt M. The fundamentals of WNT10A. Differentiation 2025; 142:100838. [PMID: 39904689 PMCID: PMC11968203 DOI: 10.1016/j.diff.2025.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Human wingless-type MMTV integration site family member 10A (WNT10A) is a secreted glycoprotein that is involved in signaling pathways essential to ectodermal organogenesis and tissue regeneration. WNT10A was first linked to human disorders in 2006, demonstrating a WNT10a variant to be associated with cleft lip with/without cleft palate. Numerous publications have since then identified the importance of WNT10A in the development of ectodermal appendages and beyond. In this review, we provide information on the structure of the WNT10A gene and protein, summarize its expression patterns in different animal models and in human, and describe the identified roles in tissue and organ development and repair in the different animal model organisms. We then correlate such identified functions and working mechanisms to the pathophysiology of a spectrum of human diseases and disorders that result from germline loss-of-function mutations in WNT10A, including ectodermal dysplasia (ED) syndromes Odonto-oncho-dermal dysplasia (OODD), Schöpf-Schulz-Passarge syndrome (SSPS), and selective tooth agenesis, as well as pathological conditions like fibrosis and carcinogenesis that can be correlated with increased WNT10A activity (Section 5).
Collapse
Affiliation(s)
- Erica L Benard
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Wei H, Zhang Y, Gao M, Yang J, Wang S, Zhou X, Wei H, Xiao F. Loss of FAM172A gene prompts cell proliferation in liver regeneration. Mol Cell Biochem 2025; 480:1183-1195. [PMID: 38896202 DOI: 10.1007/s11010-024-05044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The present study was designed to explore the function of FAM172A in liver regeneration and HCC. Mice were sacrificed after 70% partial hepatectomy (PH). RNA sequencing was performed on primary hepatocytes of WT and FAM172A-/- mice. We used HepG2 cells to construct cell lines with stably knockdown and overexpression of FAM172A. The expression of FAM172A in liver tissues was investigated by immunohistochemical staining, and we also used public database to perform survival analysis and prognostic model in HCC. Compared with WT mice after PH, normalized liver weight/body weight (LW/BW) ratio and the proliferating cell nuclear antigen (PCNA) protein level of FAM172A-/- mice elevated. The DEGs were mainly enriched in inflammatory response, tumor necrosis factor production, and wound healing. FAM172A knockdown enhanced the NFκB-TNFα and pERK-YAP1-Cyclin D1 axis. FAM172A peptide inhibited proliferation of primary hepatocytes. Moreover, the low expression of FAM172A in human HCC tissues implies a lower likelihood of survival and a valid diagnostic marker for HCC. Loss of FAM172A gene promotes cell proliferation by pERK-YAP1-Cyclin D1 and pNFκB-TNFα pathways during liver regeneration after PH. FAM172A may be a favorable diagnosis marker of HCC.
Collapse
Affiliation(s)
- Herui Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yifan Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, 100044, China
| | - Meixin Gao
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, China
| | - Junru Yang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Shiwei Wang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, 100044, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Fan Xiao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Beijing Institute of Infectious Diseases, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
9
|
Haaker MW, Chang JC, Chung BK, Pieper TS, Noé F, Wang T, Geijsen N, Houweling M, Wolfrum C, Vaandrager AB, Melum E, Spee B, Helms JB. Cellular Crosstalk Promotes Hepatic Progenitor Cell Proliferation and Stellate Cell Activation in 3D Co-culture. Cell Mol Gastroenterol Hepatol 2025; 19:101472. [PMID: 39892785 PMCID: PMC11968293 DOI: 10.1016/j.jcmgh.2025.101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND & AIMS Following liver damage, ductular reaction often coincides with liver fibrosis. Proliferation of hepatic progenitor cells is observed in ductular reaction, whereas activated hepatic stellate cells (HSCs) are the main drivers of liver fibrosis. These observations may suggest a functional interaction between these 2 cell types. Here, we report on an in vitro co-culture system to examine these interactions and validate their co-expression in human liver explants. METHODS In a 3D organoid co-culture system, we combined freshly isolated quiescent mouse HSCs and fluorescently labeled progenitor cells (undifferentiated intrahepatic cholangiocyte organoids), permitting real-time observation of cell morphology and behavior. After 7 days, cells were sorted based on the fluorescent label and analyzed for changes in gene expression. RESULTS In the 3D co-culture system, the proliferation of progenitor cells is enhanced, and HSCs are activated, recapitulating the cellular events observed in the patient liver. Both effects in 3D co-culture require close contact between the 2 different cell types. HSC activation during 3D co-culture differs from quiescent (3D mono-cultured) HSCs and activated HSCs on plastic (2D mono-culture). Upregulation of a cluster of genes containing Aldh1a2, Cthrc1, and several genes related to frizzled binding/Wnt signaling were exclusively observed in 3D co-cultured HSCs. The localized co-expression of specific genes was confirmed by spatial transcriptomics in human liver explants. CONCLUSION An in vitro 3D co-culture system provides evidence for direct interactions between HSCs and progenitor cells, which are sufficient to drive responses that are similar to those seen during ductular reaction and fibrosis. This model paves the way for further research into the cellular basis of liver pathology.
Collapse
Affiliation(s)
- Maya W Haaker
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Jung-Chin Chang
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Brian K Chung
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, eDivision of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tobias S Pieper
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Tongtong Wang
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Niels Geijsen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Houweling
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Arie B Vaandrager
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, eDivision of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery and Specialized Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| |
Collapse
|
10
|
Zhao X, Wang S, Liu Q, Wei W, Sun X, Song H, Xu J, Zhang S, Wang H, Fu J. Single-cell landscape of the intrahepatic ecosystem in alcohol-related liver disease. Clin Transl Med 2025; 15:e70198. [PMID: 39834100 PMCID: PMC11746962 DOI: 10.1002/ctm2.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Alcohol-related liver disease (ALD) is a common chronic liver disease caused by long-term excessive alcohol consumption and responsible for more than half of all liver-related deaths worldwide. The molecular mechanisms associated with ALD were not fully understood. In this study, we performed single-cell RNA sequencing on liver tissues obtained from ALD patients and healthy liver donors. We identified an ALB+KRT7+ epithelial population that expressed both hepatocyte and biliary markers significantly expanded in ALD livers. The ALB+KRT7+ epithelial cells were demonstrated to have stem cell properties and malignant transformation potentials. Moreover, ALB+KRT7+ epithelium-derived ALD organoids promote the tumour growth by activating Wnt/β-catenin signalling of liver cancer cells. Most importantly, blocking the Wnt protein secretion or knockdown the Wnt receptor suppressed the tumour promoting effect of ALD organoids. Our study provides important insights that Wnt signalling can be targeted in patients with advanced alcohol-related cirrhosis to prevent malignant transformation. In addition, our results also uncovered the important alterations of nonparenchymal cells, especially macrophages and T/NK populations that responsible for active inflammation responses in alcohol-related hepatitis and immunosuppressive microenvironment in advanced cirrhosis livers, which likely facilitated the malignant progression of ALD. KEY POINTS: This study provides single-cell landscape of human liver samples across different ALD stages. The ALB+ KRT7+ epithelium were enriched in ALD patients, and the function of this epithelial population varied significantly across ALD stages. ALB+KRT7+ epithelium from advanced alcohol-related cirrhosis had malignant transformation potential and tumour promotion activity. The comprehensive changes of parenchymal and nonparenchymal cells in the ALD livers lay a hidden danger for the further malignant progression.
Collapse
Affiliation(s)
- Xiaofang Zhao
- Translational Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepatobiliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Senyan Wang
- Translational Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Qi Liu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Wenjuan Wei
- Translational Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaoyan Sun
- Translational Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hao Song
- Translational Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jing Xu
- Translational Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepatobiliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepatobiliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| |
Collapse
|
11
|
Tang S, Wu S, Zhang W, Ma L, Zuo L, Wang H. Immunology and treatments of fatty liver disease. Arch Toxicol 2025; 99:127-152. [PMID: 39692857 DOI: 10.1007/s00204-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
Collapse
Affiliation(s)
- Sainan Tang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shanshan Wu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lili Ma
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China.
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
12
|
Carson MD, Nejak-Bowen K. Wnt/β-Catenin Signaling in Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2025; 20:59-86. [PMID: 39260380 DOI: 10.1146/annurev-pathmechdis-111523-023535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The liver has a critical role in regulating host metabolism, immunity, detoxification, and homeostasis. Proper liver function is essential for host health, and dysregulation of hepatic signaling pathways can lead to the onset of disease. The Wnt/β-catenin signaling pathway is an important regulator of liver homeostasis and function. Throughout life, hepatic Wnt/β-catenin signaling contributes to liver development and growth, metabolic zonation, and regeneration. Extensive research has demonstrated that aberrant Wnt/β-catenin signaling drives liver pathologies, including cancers, steatohepatitis, and cholestasis. In this review, we discuss the Wnt/β-catenin pathway as it pertains to liver function and how disruptions in this pathway contribute to the onset and progression of liver diseases. Further, we discuss ongoing research that targets the Wnt/β-catenin pathway for the treatment of liver pathologies.
Collapse
Affiliation(s)
- Matthew D Carson
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| | - Kari Nejak-Bowen
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
13
|
Calder AN, Peter MQ, Tobias JW, Zaki NHM, Keeley TM, Frankel TL, Samuelson LC, Razumilava N. WNT signaling contributes to the extrahepatic bile duct proliferative response to obstruction in mice. JCI Insight 2024; 10:e181857. [PMID: 39636699 PMCID: PMC11790017 DOI: 10.1172/jci.insight.181857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Biliary obstruction and cholangiocyte hyperproliferation are important features of cholangiopathies affecting the large extrahepatic bile duct (EHBD). The mechanisms underlying obstruction-induced cholangiocyte proliferation in the EHBD remain poorly understood. Developmental pathways, including WNT signaling, are implicated in regulating injury responses in many tissues, including the liver. To investigate the contribution of WNT signaling to obstruction-induced cholangiocyte proliferation in the EHBD, we used complementary in vivo and in vitro models with pharmacologic interventions and transcriptomic analyses. To model obstruction, we used bile duct ligation (BDL) in mice. Human and mouse biliary organoids and mouse biliary explants were used to investigate the effects of WNT activation and inhibition in vitro. We observed an upregulation of WNT ligand expression associated with increased biliary proliferation following obstruction. Cholangiocytes were identified as both WNT ligand-expressing and WNT-responsive cells. Inhibition of WNT signaling decreased cholangiocyte proliferation in vivo and in vitro, while activation increased proliferation. WNT effects on cholangiocyte proliferation were β-catenin dependent, and we showed a direct effect of WNT7B on cholangiocyte growth. Our studies suggested that cholangiocyte-derived WNT ligands can activate WNT signaling to induce proliferation after obstructive injury. These findings implicate the WNT pathway in injury-induced cholangiocyte proliferation within the EHBD.
Collapse
Affiliation(s)
- Ashley N. Calder
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mirabelle Q. Peter
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Timothy L. Frankel
- Department of Surgery, and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Linda C. Samuelson
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology
| | - Nataliya Razumilava
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Van Campenhout R, Vinken M. Hepatic cell junctions: Pulling a double-duty. Liver Int 2024; 44:2873-2889. [PMID: 39115254 DOI: 10.1111/liv.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in the structural and functional organization of multicellular tissues, including in liver. Specifically, hepatic cell junctions mediate intercellular adhesion and communication between liver cells. The establishment of the hepatic cell junction network is a prerequisite for normal liver functioning. Hepatic cell junctions indeed support liver-specific features and control essential aspects of the hepatic life cycle. This review paper summarizes the role of cell junctions and their components in relation to liver physiology, thereby also discussing their involvement in hepatic dysfunctionality, including liver disease and toxicity.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
15
|
Chen Y, Yan Y, Li Y, Zhang L, Luo T, Zhu X, Qin D, Chen N, Huang W, Chen X, Wang L, Zhu X, Zhang L. Deletion of Tgm2 suppresses BMP-mediated hepatocyte-to-cholangiocyte metaplasia in ductular reaction. Cell Prolif 2024; 57:e13646. [PMID: 38623945 PMCID: PMC11471396 DOI: 10.1111/cpr.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.
Collapse
Affiliation(s)
- Yaqing Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yi Yan
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yujing Li
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Liang Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Tingting Luo
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Xinlong Zhu
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Dan Qin
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Ning Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Wendong Huang
- Department of Diabetes Complications and MetabolismDiabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Liqiang Wang
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Xianmin Zhu
- Department of Hepatobiliary and Pancreatic SurgeryCancer Hospital of Wuhan University (Hubei Cancer Hospital)WuhanChina
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
16
|
Jalan-Sakrikar N, Guicciardi ME, O’Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 PMCID: PMC11890218 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Adiba Azad
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Enos MD, Gavagan M, Jameson N, Zalatan JG, Weis WI. Structural and functional effects of phosphopriming and scaffolding in the kinase GSK-3β. Sci Signal 2024; 17:eado0881. [PMID: 39226374 PMCID: PMC11461088 DOI: 10.1126/scisignal.ado0881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Glycogen synthase kinase 3β (GSK-3β) targets specific signaling pathways in response to distinct upstream signals. We used structural and functional studies to dissect how an upstream phosphorylation step primes the Wnt signaling component β-catenin for phosphorylation by GSK-3β and how scaffolding interactions contribute to this reaction. Our crystal structure of GSK-3β bound to a phosphoprimed β-catenin peptide confirmed the expected binding mode of the phosphoprimed residue adjacent to the catalytic site. An aspartate phosphomimic in the priming site of β-catenin adopted an indistinguishable structure but reacted approximately 1000-fold slower than the native phosphoprimed substrate. This result suggests that substrate positioning alone is not sufficient for catalysis and that native phosphopriming interactions are necessary. We also obtained a structure of GSK-3β with an extended peptide from the scaffold protein Axin that bound with greater affinity than that of previously crystallized Axin fragments. This structure neither revealed additional contacts that produce the higher affinity nor explained how substrate interactions in the GSK-3β active site are modulated by remote Axin binding. Together, our findings suggest that phosphopriming and scaffolding produce small conformational changes or allosteric effects, not captured in the crystal structures, that activate GSK-3β and facilitate β-catenin phosphorylation. These results highlight limitations in our ability to predict catalytic activity from structure and have potential implications for the role of natural phosphomimic mutations in kinase regulation and phosphosite evolution.
Collapse
Affiliation(s)
- Michael D. Enos
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Department Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Maire Gavagan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Noel Jameson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jesse G. Zalatan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - William I. Weis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Department Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| |
Collapse
|
18
|
Abdulaal WH, Omar UM, Zeyadi M, El-Agamy DS, Alhakamy NA, Ibrahim SRM, Almalki NAR, Asfour HZ, Al-Rabia MW, Mohamed GA, Elshal M. Pirfenidone ameliorates ANIT-induced cholestatic liver injury via modulation of FXR, NF-кB/TNF-α, and Wnt/GSK-3β/β-catenin signaling pathways. Toxicol Appl Pharmacol 2024; 490:117038. [PMID: 39019095 DOI: 10.1016/j.taap.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3β/β-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ulfat M Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mustafa Zeyadi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Nabil A Alhakamy
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed W Al-Rabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
19
|
Budi NYP, Lai WY, Huang YH, Ho HN. 3D organoid cultivation improves the maturation and functional differentiation of cholangiocytes from human pluripotent stem cells. Front Cell Dev Biol 2024; 12:1361084. [PMID: 39040044 PMCID: PMC11260683 DOI: 10.3389/fcell.2024.1361084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
Idiopathic cholangiopathies are diseases that affect cholangiocytes, and they have unknown etiologies. Currently, orthotopic liver transplantation is the only treatment available for end-stage liver disease. Limited access to the bile duct makes it difficult to model cholangiocyte diseases. In this study, by mimicking the embryonic development of cholangiocytes and using a robust, feeder- and serum-free protocol, we first demonstrate the generation of unique functional 3D organoids consisting of small and large cholangiocytes derived from human pluripotent stem cells (PSCs), as opposed to traditional 2D culture systems. At day 28 of differentiation, the human PSC-derived cholangiocytes expressed markers of mature cholangiocytes, such as CK7, CK19, and cystic fibrosis transmembrane conductance regulator (CFTR). Compared with the 2D culture system-generated cholangiocytes, the 3D cholangiocyte organoids (COs) showed higher expression of the region-specific markers of intrahepatic cholangiocytes YAP1 and JAG1 and extrahepatic cholangiocytes AQP1 and MUC1. Furthermore, the COs had small-large tube-like structures and functional assays revealed that they exhibited characteristics of mature cholangiocytes, such as multidrug resistance protein 1 transporter function and CFTR channel activity. In addition to the extracellular matrix supports, the epidermal growth factor receptor (EGFR)-mediated signaling regulation might be involved in this cholangiocyte maturation and differentiation. These results indicated the successful generation of intrahepatic and extrahepatic cholangiocytes by using our 3D organoid protocol. The results highlight the advantages of our 3D culture system over the 2D culture system in promoting the functional differentiation and maturation of cholangiocytes. In summary, in advance of the previous works, our study provides a possible concept of small-large cholangiocyte transdifferentiation of human PSCs under cost-effective 3D culture conditions. The study findings have implications for the development of effective cell-based therapy using COs for patients with cholangiopathies.
Collapse
Affiliation(s)
- Nova Yuli Prasetyo Budi
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Wei-Yu Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Nerng Ho
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Alexander WB, Wang W, Hill MA, O'Dell MR, Ruffolo LI, Guo B, Jackson KM, Ullman N, Friedland SC, McCall MN, Patel A, Figueroa-Guilliani N, Georger M, Belt BA, Whitney-Miller CL, Linehan DC, Murphy PJ, Hezel AF. Smad4 restricts injury-provoked biliary proliferation and carcinogenesis. Dis Model Mech 2024; 17:dmm050358. [PMID: 38415925 PMCID: PMC10924230 DOI: 10.1242/dmm.050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 02/29/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly and heterogeneous type of cancer characterized by a spectrum of epidemiologic associations as well as genetic and epigenetic alterations. We seek to understand how these features inter-relate in the earliest phase of cancer development and through the course of disease progression. For this, we studied murine models of liver injury integrating the most commonly occurring gene mutations of CCA - including Kras, Tp53, Arid1a and Smad4 - as well as murine hepatobiliary cancer models and derived primary cell lines based on these mutations. Among commonly mutated genes in CCA, we found that Smad4 functions uniquely to restrict reactive cholangiocyte expansion to liver injury through restraint of the proliferative response. Inactivation of Smad4 accelerates carcinogenesis, provoking pre-neoplastic biliary lesions and CCA development in an injury setting. Expression analyses of Smad4-perturbed reactive cholangiocytes and CCA lines demonstrated shared enriched pathways, including cell-cycle regulation, MYC signaling and oxidative phosphorylation, suggesting that Smad4 may act via these mechanisms to regulate cholangiocyte proliferation and progression to CCA. Overall, we showed that TGFβ/SMAD4 signaling serves as a critical barrier restraining cholangiocyte expansion and malignant transformation in states of biliary injury.
Collapse
Affiliation(s)
- William B. Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wenjia Wang
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Margaret A. Hill
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael R. O'Dell
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Luis I. Ruffolo
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Bing Guo
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine M. Jackson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nicholas Ullman
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Scott C. Friedland
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew N. McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ankit Patel
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Mary Georger
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brian A. Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christa L. Whitney-Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Patrick J. Murphy
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aram F. Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
21
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
22
|
Xiang X, He Y, Zhang Z, Yang X. Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance. Nat Commun 2024; 15:2164. [PMID: 38461306 PMCID: PMC10925056 DOI: 10.1038/s41467-024-46480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.
Collapse
Affiliation(s)
- Xianke Xiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Yao He
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Cancer Research Institute, Shenzhen Bay Lab, Shenzhen, 518132, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Singh S, Budiman T, Redmond D, Gupta V. Modulation of canonical Wnt signaling regulates peribiliary mesenchymal identity during homeostasis and injury. Hepatol Commun 2024; 8:e0368. [PMID: 38251878 PMCID: PMC10805418 DOI: 10.1097/hc9.0000000000000368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The matrix and associated mesenchyme of the extrahepatic bile ducts are distinct, which could drive diseases with a predilection for these ducts, such as primary sclerosing cholangitis. We aimed to understand the molecular drivers of peribiliary mesenchymal cell (PMC) identity in the extrahepatic bile ducts and dissect how this changed in the context of injury using an entirely in vivo approach with transcriptomic analysis. METHODS AND RESULTS Single-cell sequencing with a receptor-ligand analysis showed that PMCs had the most interactions with surrounding cells. Wnt4, Wnt5a, and Wnt7b were identified as the major ligands secreted from PMCs and cholangiocytes that interacted in both paracrine and autocrine fashion. Bile duct ligation caused an increase in all 3 Wingless/Integrated ligands and Axin2 with an associated increase in the transcription factors T-box transcription factor (Tbx)2 and Tbx3. Conversely, Indian hedgehog secretion decreased without an associated decrease in hedgehog signaling effectors. Loss of smoothened within PMCs did not impact hedgehog signaling effectors or cellular identity, whereas smoothened gain of function led to myofibroblast transdifferentiation with upregulation of Tbx2 and Tbx3 without injury. Loss of β-catenin caused a decrease in expression of all 3 Gli transcription factors and associated mesenchymal gene expression, which was phenocopied with compound Gli2 and Gli3 loss in uninjured PMCs. With injury, loss of β-catenin resulted in decreased myofibroblast transdifferentiation with reduced Tbx2 and Tbx3 expression. CONCLUSIONS Our results show how modulation of canonical Wingless/Integrated signaling in PMCs is important for regulating basal mesenchymal gene expression and initiating a myogenic gene transcriptional program during injury. They also highlight reciprocating interactions between the hedgehog and Wingless/Integrated signaling pathways within PMCs.
Collapse
Affiliation(s)
- Serrena Singh
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tifanny Budiman
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David Redmond
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, USA
| | - Vikas Gupta
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Zhang C, Sun C, Zhao Y, Ye B, Yu G. Signaling pathways of liver regeneration: Biological mechanisms and implications. iScience 2024; 27:108683. [PMID: 38155779 PMCID: PMC10753089 DOI: 10.1016/j.isci.2023.108683] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
The liver possesses a unique regenerative ability to restore its original mass, in this regard, partial hepatectomy (PHx) and partial liver transplantation (PLTx) can be executed smoothly and safely, which has important implications for the treatment of liver disease. Liver regeneration (LR) can be the very complicated procedure that involves multiple cytokines and transcription factors that interact with each other to activate different signaling pathways. Activation of these pathways can drive the LR process, which can be divided into three stages, namely, the initiation, progression, and termination stages. Therefore, it is important to investigate the pathways involved in LR to elucidate the mechanism of LR. This study reviews the latest research on the key signaling pathways in the different stages of LR.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Caifang Sun
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - GuoYing Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
25
|
Li D, Ye C, Liu P, Sun T, Qin Y, Wan X. PGC1α deficiency reverses cholestasis-induced liver injury via attenuating hepatic inflammation and promoting bile duct remodeling. Acta Histochem 2023; 125:152097. [PMID: 37813066 DOI: 10.1016/j.acthis.2023.152097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVES Cholestatic liver diseases are characterized by hepatocellular damage, cholangiocyte proliferation, and progressive fibrosis. Bile duct ligation (BDL) is widely used to resemble liver injuries induced by cholestasis. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) was reported to play a critical role in multiple biological responses. Nevertheless, whether PGC1α is involved in bile acid metabolism and biliary disorders remains unclear. This study aimed to investigate the effect of PGC1α on hepatic responses after cholestatic injury. MATERIALS AND METHODS Wild-type mice were subjected to BDL or sham surgery for 14 days and human liver specimens from patients with primary biliary cholangitis (PBC) were collected to detect the expression of PGC1α. Hepatic-specific PGC1α knockout mice (HKO) were constructed and subjected to BDL, in which the effects of PGC1α on cholestatic liver injury were demonstrated by biochemical and histopathological assessments, immunoblotting, and metabolomics. RESULTS The expression of PGC1α was upregulated in the liver of PBC patients and murine models. Both in vivo and in vitro experiments supported the protective effects of PGC1α on cholestasis-induced hepatocyte injury. Infiltrated inflammatory cells after BDL were decreased in HKO mice. Inhibited Wnt/β-Catenin pathway and enhanced Notch signaling promoted transdifferentiation of hepatic progenitor cells (HPC)/ hepatocytes into cholangiocytes, leading to the greater ductular reaction observed in the HKO mice. But bile acids metabolism and mitochondrial function were not affected due to hepatic PGC1α deficiency in cholestasis. CONCLUSIONS Hepatic-specific deletion of PGC1α regulated liver regeneration by promoting ductular reactions, thereby exerting protective effects against BDL-induced liver injury, which could be a new potential therapeutic target.
Collapse
Affiliation(s)
- Dingwu Li
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chenhui Ye
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Peihao Liu
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ting Sun
- Department of Pathology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yunsheng Qin
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
26
|
Nejak-Bowen K, Monga SP. Wnt-β-catenin in hepatobiliary homeostasis, injury, and repair. Hepatology 2023; 78:1907-1921. [PMID: 37246413 PMCID: PMC10687322 DOI: 10.1097/hep.0000000000000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Wnt-β-catenin signaling has emerged as an important regulatory pathway in the liver, playing key roles in zonation and mediating contextual hepatobiliary repair after injuries. In this review, we will address the major advances in understanding the role of Wnt signaling in hepatic zonation, regeneration, and cholestasis-induced injury. We will also touch on some important unanswered questions and discuss the relevance of modulating the pathway to provide therapies for complex liver pathologies that remain a continued unmet clinical need.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
27
|
Sun Z, Yuan X, Wu J, Wang C, Zhang K, Zhang L, Hui L. Hepatocyte transplantation: The progress and the challenges. Hepatol Commun 2023; 7:e0266. [PMID: 37695736 PMCID: PMC10497249 DOI: 10.1097/hc9.0000000000000266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/26/2023] [Indexed: 09/13/2023] Open
Abstract
Numerous studies have shown that hepatocyte transplantation is a promising approach for liver diseases, such as liver-based metabolic diseases and acute liver failure. However, it lacks strong evidence to support the long-term therapeutic effects of hepatocyte transplantation in clinical practice. Currently, major hurdles include availability of quality-assured hepatocytes, efficient engraftment and repopulation, and effective immunosuppressive regimens. Notably, cell sources have been advanced recently by expanding primary human hepatocytes by means of dedifferentiation in vitro. Moreover, the transplantation efficiency was remarkably improved by the established preparative hepatic irradiation in combination with hepatic mitogenic stimuli regimens. Finally, immunosuppression drugs, including glucocorticoid and inhibitors for co-stimulating signals of T cell activation, were proposed to prevent innate and adaptive immune rejection of allografted hepatocytes. Despite remarkable progress, further studies are required to improve in vitro cell expansion technology, develop clinically feasible preconditioning regimens, and further optimize immunosuppression regimens or establish ex vivo gene correction-based autologous hepatocyte transplantation.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingqi Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kun Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
28
|
Song Y, Lu Z, Shu W, Xiang Z, Wang Z, Wei X, Xu X. Arouse potential stemness: Intrinsic and acquired stem cell therapeutic strategies for advanced liver diseases. CELL INSIGHT 2023; 2:100115. [PMID: 37719773 PMCID: PMC10502372 DOI: 10.1016/j.cellin.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Liver diseases are a major health issue, and prolonged liver injury always progresses. Advanced liver disorders impair liver regeneration. Millions of patients die yearly worldwide, even with the available treatments of liver transplantation and artificial liver support system. With its abundant cell resources and significant differentiative potential, stem cell therapy is a viable treatment for various disorders and offers hope to patients waiting for orthotopic liver transplantation. Considering such plight, stem cell therapeutic strategies deliver hope to the patients. Moreover, we conclude intrinsic and acquired perspectives based on stem cell sources. The properties and therapeutic uses of these stem cells' specific types or sources were then reviewed. Owing to the recent investigations of the above cells, a safe and effective therapy will emerge for advanced liver diseases soon.
Collapse
Affiliation(s)
- Yisu Song
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Wenzhi Shu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University Shanghai, 200040, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
29
|
Ayers M, Kosar K, Xue Y, Goel C, Carson M, Lee E, Liu S, Brooks E, Cornuet P, Oertel M, Bhushan B, Nejak-Bowen K. Inhibiting Wnt Signaling Reduces Cholestatic Injury by Disrupting the Inflammatory Axis. Cell Mol Gastroenterol Hepatol 2023; 16:895-921. [PMID: 37579970 PMCID: PMC10616556 DOI: 10.1016/j.jcmgh.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND & AIMS β-Catenin, the effector molecule of the Wnt signaling pathway, has been shown to play a crucial role in bile acid homeostasis through direct inhibition of farnesoid X receptor (FXR), which has pleiotropic effects on bile acid homeostasis. We hypothesize that simultaneous suppression of β-catenin signaling and activation of FXR in a mouse model of cholestasis will reduce injury and biliary fibrosis through inhibition of bile acid synthesis. METHODS To induce cholestasis, we performed bile duct ligation (BDL) on wild-type male mice. Eight hours after surgery, mice received FXR agonists obeticholic acid, tropifexor, or GW-4064 or Wnt inhibitor Wnt-C59. Severity of cholestatic liver disease and expression of target genes were evaluated after either 5 days or 12 days of treatment. RESULTS We found that although the FXR agonists worsened BDL-induced injury and necrosis after 5 days, Wnt-C59 did not. After 12 days of BDL, Wnt-C59 treatment, but not GW-4064 treatment, reduced both the number of infarcts and the number of inflammatory cells in liver. RNA sequencing analysis of whole livers revealed a notable suppression of nuclear factor kappa B signaling when Wnt signaling is inhibited. We then analyzed transcriptomic data to identify a cholangiocyte-specific signature in our model and demonstrated that Wnt-C59-treated livers were enriched for genes expressed in quiescent cholangiocytes, whereas genes expressed in activated cholangiocytes were enriched in BDL alone. A similar decrease in biliary injury and inflammation occurred in Mdr2 KO mice treated with Wnt-C59. CONCLUSIONS Inhibiting Wnt signaling suppresses cholangiocyte activation and disrupts the nuclear factor kappa B-dependent inflammatory axis, reducing cholestatic-induced injury.
Collapse
Affiliation(s)
- Mary Ayers
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karis Kosar
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuhua Xue
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chhavi Goel
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew Carson
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth Lee
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Brooks
- Duquesne University, Pittsburgh, Pennsylvania
| | - Pamela Cornuet
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kari Nejak-Bowen
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
30
|
Chen F, Schönberger K, Tchorz JS. Distinct hepatocyte identities in liver homeostasis and regeneration. JHEP Rep 2023; 5:100779. [PMID: 37456678 PMCID: PMC10339260 DOI: 10.1016/j.jhepr.2023.100779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023] Open
Abstract
The process of metabolic liver zonation is spontaneously established by assigning distributed tasks to hepatocytes along the porto-central blood flow. Hepatocytes fulfil critical metabolic functions, while also maintaining hepatocyte mass by replication when needed. Recent technological advances have enabled us to fine-tune our understanding of hepatocyte identity during homeostasis and regeneration. Subsets of hepatocytes have been identified to be more regenerative and some have even been proposed to function like stem cells, challenging the long-standing view that all hepatocytes are similarly capable of regeneration. The latest data show that hepatocyte renewal during homeostasis and regeneration after liver injury is not limited to rare hepatocytes; however, hepatocytes are not exactly the same. Herein, we review the known differences that give individual hepatocytes distinct identities, recent findings demonstrating how these distinct identities correspond to differences in hepatocyte regenerative capacity, and how the plasticity of hepatocyte identity allows for division of labour among hepatocytes. We further discuss how these distinct hepatocyte identities may play a role during liver disease.
Collapse
Affiliation(s)
- Feng Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | | | - Jan S. Tchorz
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
31
|
Lan T, Tai Y, Zhao C, Xiao Y, Yang Z, Zhang L, Gan C, Dai W, Tong H, Tang C, Huang Z, Gao J. Atypical cholangiocytes derived from hepatocyte-cholangiocyte transdifferentiation mediated by COX-2: a kind of misguided liver regeneration. Inflamm Regen 2023; 43:37. [PMID: 37452426 PMCID: PMC10347763 DOI: 10.1186/s41232-023-00284-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hepatocyte-cholangiocyte transdifferentiation (HCT) is a potential origin of proliferating cholangiocytes in liver regeneration after chronic injury. This study aimed to determine HCT after chronic liver injury, verify the impacts of HCT on liver repair, and avoid harmful regeneration by understanding the mechanism. METHODS A thioacetamide (TAA)-induced liver injury model was established in wild-type (WT-TAA group) and COX-2 panknockout (KO-TAA group) mice. HCT was identified by costaining of hepatocyte and cholangiocyte markers in vivo and in isolated mouse hepatocytes in vitro. The biliary tract was injected with ink and visualized by whole liver optical clearing. Serum and liver bile acid (BA) concentrations were measured. Either a COX-2 selective inhibitor or a β-catenin pathway inhibitor was administered in vitro. RESULTS Intrahepatic ductular reaction was associated with COX-2 upregulation in chronic liver injury. Immunofluorescence and RNA sequencing indicated that atypical cholangiocytes were characterized by an intermediate genetic phenotype between hepatocytes and cholangiocytes and might be derived from hepatocytes. The structure of the biliary system was impaired, and BA metabolism was dysregulated by HCT, which was mediated by the TGF-β/β-catenin signaling pathway. Genetic deletion or pharmaceutical inhibition of COX-2 significantly reduced HCT in vivo. The COX-2 selective inhibitor etoricoxib suppressed HCT through the TGF-β-TGFBR1-β-catenin pathway in vitro. CONCLUSIONS Atypical cholangiocytes can be derived from HCT, which forms a secondary strike by maldevelopment of the bile drainage system and BA homeostasis disequilibrium during chronic liver injury. Inhibition of COX-2 could ameliorate HCT through the COX-2-TGF-β-TGFBR1-β-catenin pathway and improve liver function.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Tai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Zhao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Xiao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Yang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linhao Zhang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Can Gan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenting Dai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huan Tong
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyin Huang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
32
|
Gayden J, Hu S, Joseph PN, Delgado E, Liu S, Bell A, Puig S, Monga SP, Freyberg Z. A Spatial Atlas of Wnt Receptors in Adult Mouse Liver. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:558-566. [PMID: 36773785 PMCID: PMC10155265 DOI: 10.1016/j.ajpath.2023.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Hepatic zonation is critical for most metabolic functions in liver. Wnt signaling plays an important role in establishing and maintaining liver zonation. Yet, the anatomic expression of Wnt signaling components, especially all 10 Frizzled (Fzd) receptors, has not been characterized in adult liver. To address this, the spatial expression of Fzd receptors was quantitatively mapped in adult mouse liver via multiplex fluorescent in situ hybridization. Although all 10 Fzd receptors were expressed within a metabolic unit, Fzd receptors 1, 4, and 6 were the highest expressed. Although most Wnt signaling occurs in zone 3, expression of most Fzd receptors was not zonated. In contrast, Fzd receptor 6 was preferentially expressed in zone 1. Wnt2 and Wnt9b expression was highly zonated and primarily found in zone 3. Therefore, the current results suggest that zonated Wnt/β-catenin signaling at baseline occurs primarily due to Wnt2 and Wnt9b rather than zonation of Fzd mRNA expression. Finally, the study showed that Fzd receptors and Wnts are not uniformly expressed by all hepatic cell types. Instead, there is broad distribution among both hepatocytes and nonparenchymal cells, including endothelial cells. Overall, this establishment of a definitive mRNA expression atlas, especially of Fzd receptors, opens the door to future functional characterization in healthy and diseased liver states.
Collapse
Affiliation(s)
- Jenesis Gayden
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shikai Hu
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul N Joseph
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Evan Delgado
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aaron Bell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
33
|
Lee SH, So J, Shin D. Hepatocyte-to-cholangiocyte conversion occurs through transdifferentiation independently of proliferation in zebrafish. Hepatology 2023; 77:1198-1210. [PMID: 36626626 PMCID: PMC10023500 DOI: 10.1097/hep.0000000000000016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Injury to biliary epithelial cells (BECs) lining the hepatic bile ducts leads to cholestatic liver diseases. Upon severe biliary damage, hepatocytes can convert to BECs, thereby contributing to liver recovery. Given a potential of augmenting this hepatocyte-to-BEC conversion as a therapeutic option for cholestatic liver diseases, it will be important to thoroughly understand the cellular and molecular mechanisms of the conversion process. APPROACH AND RESULTS Towards this aim, we have established a zebrafish model for hepatocyte-to-BEC conversion by employing Tg(fabp10a:CFP-NTR) zebrafish with a temporal inhibition of Notch signaling during regeneration. Cre/loxP-mediated permanent and H2B-mCherry-mediated short-term lineage tracing revealed that in the model, all BECs originate from hepatocytes. During the conversion, BEC markers are sequentially induced in the order of Sox9b, Yap/Taz, Notch activity/ epcam , and Alcama/ krt18 ; the expression of the hepatocyte marker Bhmt disappears between the Sox9b and Yap/Taz induction. Importantly, live time-lapse imaging unambiguously revealed transdifferentiation of hepatocytes into BECs: hepatocytes convert to BECs without transitioning through a proliferative intermediate state. In addition, using compounds and transgenic and mutant lines that modulate Notch and Yap signaling, we found that both Notch and Yap signaling are required for the conversion even in Notch- and Yap-overactivating settings. CONCLUSIONS Hepatocyte-to-BEC conversion occurs through transdifferentiation independently of proliferation, and Notch and Yap signaling control the process in parallel with a mutually positive interaction. The new zebrafish model will further contribute to a thorough understanding of the mechanisms of the conversion process.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
34
|
Pu W, Zhu H, Zhang M, Pikiolek M, Ercan C, Li J, Huang X, Han X, Zhang Z, Lv Z, Li Y, Liu K, He L, Liu X, Heim MH, Terracciano LM, Tchorz JS, Zhou B. Bipotent transitional liver progenitor cells contribute to liver regeneration. Nat Genet 2023; 55:651-664. [PMID: 36914834 PMCID: PMC10101857 DOI: 10.1038/s41588-023-01335-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023]
Abstract
Following severe liver injury, when hepatocyte-mediated regeneration is impaired, biliary epithelial cells (BECs) can transdifferentiate into functional hepatocytes. However, the subset of BECs with such facultative tissue stem cell potential, as well as the mechanisms enabling transdifferentiation, remains elusive. Here we identify a transitional liver progenitor cell (TLPC), which originates from BECs and differentiates into hepatocytes during regeneration from severe liver injury. By applying a dual genetic lineage tracing approach, we specifically labeled TLPCs and found that they are bipotent, as they either differentiate into hepatocytes or re-adopt BEC fate. Mechanistically, Notch and Wnt/β-catenin signaling orchestrate BEC-to-TLPC and TLPC-to-hepatocyte conversions, respectively. Together, our study provides functional and mechanistic insights into transdifferentiation-assisted liver regeneration.
Collapse
Affiliation(s)
- Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mingjun Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Monika Pikiolek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Jie Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuzhen Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ximeng Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zan Lv
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kuo Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiuxiu Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Markus H Heim
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Luigi M Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,New Cornerstone Science Laboratory, Shenzhen, China.
| |
Collapse
|
35
|
Jalan-Sakrikar N, Brevini T, Huebert RC, Sampaziotis F. Organoids and regenerative hepatology. Hepatology 2023; 77:305-322. [PMID: 35596930 PMCID: PMC9676408 DOI: 10.1002/hep.32583] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/03/2023]
Abstract
The burden of liver diseases is increasing worldwide, with liver transplantation remaining the only treatment option for end-stage liver disease. Regenerative medicine holds great potential as a therapeutic alternative, aiming to repair or replace damaged liver tissue with healthy functional cells. The properties of the cells used are critical for the efficacy of this approach. The advent of liver organoids has not only offered new insights into human physiology and pathophysiology, but also provided an optimal source of cells for regenerative medicine and translational applications. Here, we discuss various historical aspects of 3D organoid culture, how it has been applied to the hepatobiliary system, and how organoid technology intersects with the emerging global field of liver regenerative medicine. We outline the hepatocyte, cholangiocyte, and nonparenchymal organoids systems available and discuss their advantages and limitations for regenerative medicine as well as future directions.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Teresa Brevini
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
36
|
Shearn CT, Anderson AL, Devereux MW, Orlicky DJ, Michel C, Petersen DR, Miller CG, Harpavat S, Schmidt EE, Sokol RJ. The autophagic protein p62 is a target of reactive aldehydes in human and murine cholestatic liver disease. PLoS One 2022; 17:e0276879. [PMID: 36378690 PMCID: PMC9665405 DOI: 10.1371/journal.pone.0276879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory cholestatic liver diseases, including Primary Sclerosing Cholangitis (PSC), are characterized by periportal inflammation with progression to cirrhosis. The objective of this study was to examine interactions between oxidative stress and autophagy in cholestasis. Using hepatic tissue from male acute cholestatic (bile duct ligated) as well as chronic cholestatic (Mdr2KO) mice, localization of oxidative stress, the antioxidant response and induction of autophagy were analyzed and compared to human PSC liver. Concurrently, the ability of reactive aldehydes to post-translationally modify the autophagosome marker p62 was assessed in PSC liver tissue and in cell culture. Expression of autophagy markers was upregulated in human and mouse cholestatic liver. Whereas mRNA expression of Atg12, Lamp1, Sqstm1 and Map1lc3 was increased in acute cholestasis in mice, it was either suppressed or not significantly changed in chronic cholestasis. In human and murine cholestasis, periportal hepatocytes showed increased IHC staining of ubiquitin, 4-HNE, p62, and selected antioxidant proteins. Increased p62 staining colocalized with accumulation of 4-HNE-modified proteins in periportal parenchymal cells as well as with periportal macrophages in both human and mouse liver. Mechanistically, p62 was identified as a direct target of lipid aldehyde adduction in PSC hepatic tissue and in vitro cell culture. In vitro LS-MS/MS analysis of 4-HNE treated recombinant p62 identified carbonylation of His123, Cys128, His174, His181, Lys238, Cys290, His340, Lys341 and His385. These data indicate that dysregulation of autophagy and oxidative stress/protein damage are present in the same periportal hepatocyte compartment of both human and murine cholestasis. Thus, our results suggest that both increased expression as well as ineffective autophagic degradation of oxidatively-modified proteins contributes to injury in periportal parenchymal cells and that direct modification of p62 by reactive aldehydes may contribute to autophagic dysfunction.
Collapse
Affiliation(s)
- Colin T. Shearn
- Department of Pediatrics, Pediatric Liver Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, and Children’s Hospital Colorado, Aurora, CO, United States of America
| | - Aimee L. Anderson
- Department of Pediatrics, Pediatric Liver Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, and Children’s Hospital Colorado, Aurora, CO, United States of America
| | - Michael W. Devereux
- Department of Pediatrics, Pediatric Liver Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, and Children’s Hospital Colorado, Aurora, CO, United States of America
| | - David J. Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Cole Michel
- Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Dennis R. Petersen
- Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Colin G. Miller
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Sanjiv Harpavat
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States of America
| | - Edward E. Schmidt
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, United States of America
- Laboratory of Redox Biology, Departments of Pharmacology and Physiology, Hungarian Veterinary Medical University, Budapest, Hungary
| | - Ronald J. Sokol
- Department of Pediatrics, Pediatric Liver Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, and Children’s Hospital Colorado, Aurora, CO, United States of America
| |
Collapse
|
37
|
Hu S, Liu S, Bian Y, Poddar M, Singh S, Cao C, McGaughey J, Bell A, Blazer LL, Adams JJ, Sidhu SS, Angers S, Monga SP. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep Med 2022; 3:100754. [PMID: 36220068 PMCID: PMC9588996 DOI: 10.1016/j.xcrm.2022.100754] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
The conclusive identity of Wnts regulating liver zonation (LZ) and regeneration (LR) remains unclear despite an undisputed role of β-catenin. Using single-cell analysis, we identified a conserved Wnt2 and Wnt9b expression in endothelial cells (ECs) in zone 3. EC-elimination of Wnt2 and Wnt9b led to both loss of β-catenin targets in zone 3, and re-appearance of zone 1 genes in zone 3, unraveling dynamicity in the LZ process. Impaired LR observed in the knockouts phenocopied models of defective hepatic Wnt signaling. Administration of a tetravalent antibody to activate Wnt signaling rescued LZ and LR in the knockouts and induced zone 3 gene expression and LR in controls. Administration of the agonist also promoted LR in acetaminophen overdose acute liver failure (ALF) fulfilling an unmet clinical need. Overall, we report an unequivocal role of EC-Wnt2 and Wnt9b in LZ and LR and show the role of Wnt activators as regenerative therapy for ALF.
Collapse
Affiliation(s)
- Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China; Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yu Bian
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine Cao
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jackson McGaughey
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Levi L Blazer
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jarret J Adams
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Stephane Angers
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Annunziato S, Sun T, Tchorz JS. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease. Hepatology 2022; 76:888-899. [PMID: 35006616 DOI: 10.1002/hep.32328] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling plays pivotal roles during liver development, homeostasis, and regeneration. Likewise, its deregulation disturbs metabolic liver zonation and is responsible for the development of a large number of hepatic tumors. Liver fibrosis, which has become a major health burden for society and a hallmark of NASH, can also be promoted by WNT/β-catenin signaling. Upstream regulatory mechanisms controlling hepatic WNT/β-catenin activity may constitute targets for the development of novel therapies addressing these life-threatening conditions. The R-spondin (RSPO)-leucine-rich repeat-containing G protein-coupled receptor (LGR) 4/5-zinc and ring finger (ZNRF) 3/ring finger 43 (RNF43) module is fine-tuning WNT/β-catenin signaling in several tissues and is essential for hepatic WNT/β-catenin activity. In this review article, we recapitulate the role of the RSPO-LGR4/5-ZNRF3/RNF43 module during liver development, homeostasis, metabolic zonation, regeneration, and disease. We further discuss the controversy around LGR5 as a liver stem cell marker.
Collapse
Affiliation(s)
- Stefano Annunziato
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tianliang Sun
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
39
|
Wang W, Chen D, Wang J, Wen L. Cellular Homeostasis and Repair in the Biliary Tree. Semin Liver Dis 2022; 42:271-282. [PMID: 35672015 DOI: 10.1055/a-1869-7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During biliary tree homeostasis, BECs are largely in a quiescent state and their turnover is slow for maintaining normal tissue homeostasis. BTSCs continually replenish new BECs in the luminal surface of EHBDs. In response to various types of biliary injuries, distinct cellular sources, including HPCs, BTSCs, hepatocytes, and BECs, repair or regenerate the injured bile duct. BEC, biliary epithelial cell; BTSC, biliary tree stem/progenitor cell; EHBD, extrahepatic bile ducts; HPC, hepatic progenitor cell.The biliary tree comprises intrahepatic bile ducts and extrahepatic bile ducts lined with epithelial cells known as biliary epithelial cells (BECs). BECs are a common target of various cholangiopathies for which there is an unmet therapeutic need in clinical hepatology. The repair and regeneration of biliary tissue may potentially restore the normal architecture and function of the biliary tree. Hence, the repair and regeneration process in detail, including the replication of existing BECs, expansion and differentiation of the hepatic progenitor cells and biliary tree stem/progenitor cells, and transdifferentiation of the hepatocytes, should be understood. In this paper, we review biliary tree homeostasis, repair, and regeneration and discuss the feasibility of regenerative therapy strategies for cholangiopathy treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangzhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
40
|
Huang R, Zhang X, Gracia-Sancho J, Xie WF. Liver regeneration: Cellular origin and molecular mechanisms. Liver Int 2022; 42:1486-1495. [PMID: 35107210 DOI: 10.1111/liv.15174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023]
Abstract
The liver is known as an organ with high proliferation potential. Clarifying the cellular origin and deepening the understanding of liver regeneration mechanisms will help provide new directions for the treatment of liver disease. With the development and application of lineage tracing technology, the specific distribution and dynamic changes of hepatocyte subpopulations in homeostasis and liver injury have been illustrated. Self-replication of hepatocytes is responsible for the maintenance of liver function and mass under homeostasis. The compensatory proliferation of remaining hepatocytes is the main mechanism of liver regeneration following acute and chronic liver injury. Transdifferentiation between hepatocytes and cholangiocytes has been recognized upon severe chronic liver injury. Wnt/β-catenin, Hippo/YAP and Notch signalling play essential roles in the maintenance of homeostatic liver and hepatocyte-to-cholangiocyte conversion under liver injury. In this review, we summarized the recent studies on cell origin of newly generated hepatocytes and the underlying mechanisms of liver regeneration in homeostasis and liver injury.
Collapse
Affiliation(s)
- Ru Huang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
41
|
Ouji Y, Misu M, Kitamura T, Okuzaki D, Yoshikawa M. Impaired differentiation potential of CD34-positive cells derived from mouse hair follicles after long-term culture. Sci Rep 2022; 12:11011. [PMID: 35773408 PMCID: PMC9247072 DOI: 10.1038/s41598-022-15354-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Hair follicle epithelial stem cells (HFSCs), which exist in the bulge region, have important functions for homeostasis of skin as well as hair follicle morphogenesis. Although several methods for isolation of HFSCs using a variety of stem cell markers have been reported, few investigations regarding culture methods or techniques to yield long-term maintenance of HFSCs in vitro have been conducted. In the present study, we screened different types of commercially available culture medium for culturing HFSCs. Among those tested, one type was shown capable of supporting the expression of stem cell markers in cultured HFSCs. However, both the differentiation potential and in vivo hair follicle-inducing ability of HFSCs serially passaged using that optimal medium were found to be impaired, probably because of altered responsiveness to Wnt signaling. The changes noted in HFSCs subjected to a long-term culture suggested that the Wnt signaling-related environment must be finely controlled for maintenance of the cells.
Collapse
Affiliation(s)
- Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Tomotaka Kitamura
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
42
|
Chen Y, Gao WK, Shu YY, Ye J. Mechanisms of ductular reaction in non-alcoholic steatohepatitis. World J Gastroenterol 2022; 28:2088-2099. [PMID: 35664038 PMCID: PMC9134136 DOI: 10.3748/wjg.v28.i19.2088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease spectrum caused in part by insulin resistance and genetic predisposition. This disease is primarily characterized by excessive lipid accumulation in hepatocytes in the absence of alcohol abuse and other causes of liver damage. Histologically, NAFLD is divided into several periods: simple steatosis, non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. With the increasing prevalence of obesity and hyperlipidemia, NAFLD has become the main cause of chronic liver disease worldwide. As a result, the pathogenesis of this disease is drawing increasing attention. Ductular reaction (DR) is a reactive bile duct hyperplasia caused by liver injury that involves hepatocytes, cholangiocytes, and hepatic progenitor cells. Recently, DR is shown to play a pivotal role in simple steatosis progression to NASH or liver fibrosis, providing new research and treatment options. This study reviews several DR signaling pathways, including Notch, Hippo/YAP-TAZ, Wnt/β-catenin, Hedgehog, HGF/c-Met, and TWEAK/Fn14, and their role in the occurrence and development of NASH.
Collapse
Affiliation(s)
- Yue Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wen-Kang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
43
|
Thompson MD, Hinrichs H, Faerber A, Tarr PI, Davidson NO. Maternal obesogenic diet enhances cholestatic liver disease in offspring. J Lipid Res 2022; 63:100205. [PMID: 35341737 PMCID: PMC9046959 DOI: 10.1016/j.jlr.2022.100205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 10/25/2022] Open
Abstract
Human and animal model data show that maternal obesity promotes nonalcoholic fatty liver disease in offspring and alters bile acid (BA) homeostasis. Here we investigated whether offspring exposed to maternal obesogenic diets exhibited greater cholestatic injury. We fed female C57Bl6 mice conventional chow (CON) or high fat/high sucrose (HF/HS) diet and then bred them with lean males. Offspring were fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 2 weeks to induce cholestasis, and a subgroup was then fed CON for an additional 10 days. Additionally, to evaluate the role of the gut microbiome, we fed antibiotic-treated mice cecal contents from CON or HF/HS offspring, followed by DDC for 2 weeks. We found that HF/HS offspring fed DDC exhibited increased fine branching of the bile duct (ductular reaction) and fibrosis but did not differ in BA pool size or intrahepatic BA profile compared to offspring of mice fed CON. We also found that after 10 days recovery, HF/HS offspring exhibited sustained ductular reaction and periportal fibrosis, while lesions in CON offspring were resolved. In addition, cecal microbiome transplant from HF/HS offspring donors worsened ductular reaction, inflammation, and fibrosis in mice fed DDC. Finally, transfer of the microbiome from HF/HS offspring replicated the cholestatic liver injury phenotype. Taken together, we conclude that maternal HF/HS diet predisposes offspring to increased cholestatic injury after DDC feeding and delays recovery after returning to CON diets. These findings highlight the impact of maternal obesogenic diet on hepatobiliary injury and repair pathways during experimental cholestasis.
Collapse
Affiliation(s)
- Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Holly Hinrichs
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Austin Faerber
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
44
|
Lan T, Qian S, Tang C, Gao J. Role of Immune Cells in Biliary Repair. Front Immunol 2022; 13:866040. [PMID: 35432349 PMCID: PMC9005827 DOI: 10.3389/fimmu.2022.866040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The biliary system is comprised of cholangiocytes and plays an important role in maintaining liver function. Under normal conditions, cholangiocytes remain in the stationary phase and maintain a very low turnover rate. However, the robust biliary repair is initiated in disease conditions, and different repair mechanisms can be activated depending on the pathological changes. During biliary disease, immune cells including monocytes, lymphocytes, neutrophils, and mast cells are recruited to the liver. The cellular interactions between cholangiocytes and these recruited immune cells as well as hepatic resident immune cells, including Kupffer cells, determine disease outcomes. However, the role of immune cells in the initiation, regulation, and suspension of biliary repair remains elusive. The cellular processes of cholangiocyte proliferation, progenitor cell differentiation, and hepatocyte-cholangiocyte transdifferentiation during biliary diseases are reviewed to manifest the underlying mechanism of biliary repair. Furthermore, the potential role of immune cells in crucial biliary repair mechanisms is highlighted. The mechanisms of biliary repair in immune-mediated cholangiopathies, inherited cholangiopathies, obstructive cholangiopathies, and cholangiocarcinoma are also summarized. Additionally, novel techniques that could clarify the underlying mechanisms of biliary repair are displayed. Collectively, this review aims to deepen the understanding of the mechanisms of biliary repair and contributes potential novel therapeutic methods for treating biliary diseases.
Collapse
Affiliation(s)
- Tian Lan
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaijie Qian
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Perkins EJ, Woolard EA, Garcia-Reyero N. Integration of Adverse Outcome Pathways, Causal Networks and ‘Omics to Support Chemical Hazard Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:786057. [PMID: 35399296 PMCID: PMC8987526 DOI: 10.3389/ftox.2022.786057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Several approaches have been used in an attempt to simplify and codify the events that lead to adverse effects of chemicals including systems biology, ‘omics, in vitro assays and frameworks such as the Adverse Outcome Pathway (AOP). However, these approaches are generally not integrated despite their complementary nature. Here we propose to integrate toxicogenomics data, systems biology information and AOPs using causal biological networks to define Key Events in AOPs. We demonstrate this by developing a causal subnetwork of 28 nodes that represents the Key Event of regenerative proliferation – a critical event in AOPs for liver cancer. We then assessed the effects of three chemicals known to cause liver injury and cell proliferation (carbon tetrachloride, aflatoxin B1, thioacetamide) and two with no known cell proliferation effects (diazepam, simvastatin) on the subnetwork using rat liver gene expression data from the toxicogenomic database Open TG-GATEs. Cyclin D1 (Ccnd1), a gene both causally linked to and sufficient to infer regenerative proliferation activity, was overexpressed after exposures to carbon tetrachloride, aflatoxin B1 and thioacetamide, but not in exposures to diazepam and simvastatin. These results were consistent with known effects on rat livers and liver pathology of exposed rats. Using these approaches, we demonstrate that transcriptomics, AOPs and systems biology can be applied to examine the presence and progression of AOPs in order to better understand the hazards of chemical exposure.
Collapse
Affiliation(s)
- Edward J. Perkins
- Environmental Laboratory, US Army Engineering Research and Development Center, Vicksburg, MS, United States
- *Correspondence: Edward J. Perkins,
| | - E. Alice Woolard
- UNC School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineering Research and Development Center, Vicksburg, MS, United States
| |
Collapse
|
46
|
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury. We will review how biliary repair can occur through the process of hepatocyte-to-BEC transdifferentiation and how YAP1 is pertinent to this process. We will also discuss the liver's capacity for metabolic reprogramming as an adaptive mechanism in extreme cholestasis, such as when intrahepatic bile ducts are absent due to YAP1 loss from hepatic progenitors. Finally, we will discuss the roles of YAP1 in the context of pediatric pathologies afflicting bile ducts, such as Alagille syndrome and biliary atresia. In conclusion, we will comprehensively discuss the spatiotemporal roles of YAP1 in biliary development and repair after biliary injury while describing key interactions with other well-known developmental pathways.
Collapse
Affiliation(s)
- Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine
| | - Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
47
|
Ayers M, Liu S, Singhi AD, Kosar K, Cornuet P, Nejak-Bowen K. Changes in beta-catenin expression and activation during progression of primary sclerosing cholangitis predict disease recurrence. Sci Rep 2022; 12:206. [PMID: 34997170 PMCID: PMC8741932 DOI: 10.1038/s41598-021-04358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/14/2021] [Indexed: 01/26/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, chronic, cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts. We have previously demonstrated the importance of Wnt/β-catenin signaling in mouse models of PSC. In this study, we wished to determine the clinical relevance of β-catenin localization in patient samples. In livers explanted from patients diagnosed with PSC, the majority (12/16; 75%) lacked β-catenin protein expression. Biopsies from patients post-transplant were classified as recurrent or non-recurrent based on pathology reports and then scored for β-catenin activation as a function of immunohistochemical localization. Despite lack of statistical significance, patients with recurrent primary disease (n = 11) had a greater percentage of samples with nuclear, transcriptionally active β-catenin (average 58.8%) than those with no recurrence (n = 10; 40.53%), while non-recurrence is correlated with β-catenin staining at the cell surface (average 52.63% for non-recurrent vs. 27.34% for recurrent), as determined by three different methods of analysis. β-catenin score and years-to-endpoint are both strongly associated with recurrence status (p = 0.017 and p = 0.00063, respectively). Finally, there was significant association between higher β-catenin score and increased alkaline phosphatase, a marker of biliary injury and disease progression. Thus, β-catenin expression and activation changes during the progression of PSC, and its localization may be a useful prognostic tool for predicting recurrence of this disease.
Collapse
Affiliation(s)
- Mary Ayers
- grid.239553.b0000 0000 9753 0008Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Silvia Liu
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Aatur D. Singhi
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Karis Kosar
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Pamela Cornuet
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Kari Nejak-Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA, 15261, USA. .,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Tian L, Wang Y, Jang YY. Wnt signaling in biliary development, proliferation, and fibrosis. Exp Biol Med (Maywood) 2021; 247:360-367. [PMID: 34861115 DOI: 10.1177/15353702211061376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biliary fibrosis is an important pathological indicator of hepatobiliary damage. Cholangiocyte is the key cell type involved in this process. To reveal the pathogenesis of biliary fibrosis, it is essential to understand the normal development as well as the aberrant generation and proliferation of cholangiocytes. Numerous reports suggest that the Wnt signaling pathway is implicated in the physiological and pathological processes of cholangiocyte development and ductular reaction. In this review, we summarize the effects of Wnt pathway in cholangiocyte development from embryonic stem cells, as well as the underlying mechanisms of cholangiocyte responses to adult ductal damage. Wnt signaling pathway is regulated in a step-wise manner during each of the liver differentiation stages from embryonic stem cells to functional mature cholangiocytes. With the modulation of Wnt pathway, cholangiocytes can also be generated from adult liver progenitor cells and mature hepatocytes to repair liver damage. Non-canonical Wnt signaling is triggered in the active ductal cells during biliary fibrosis. Targeted control of the Wnt signaling may hold the great potential to reduce and/or reverse the biliary fibrogenic process.
Collapse
Affiliation(s)
- Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yichen Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoon Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Kosar K, Cornuet P, Singh S, Lee E, Liu S, Gayden J, Sato T, Freyberg Z, Arteel G, Nejak‐Bowen K. WNT7B Regulates Cholangiocyte Proliferation and Function During Murine Cholestasis. Hepatol Commun 2021; 5:2019-2034. [PMID: 34558852 PMCID: PMC8631094 DOI: 10.1002/hep4.1784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
We previously identified an up-regulation of specific Wnt proteins in the cholangiocyte compartment during cholestatic liver injury and found that mice lacking Wnt secretion from hepatocytes and cholangiocytes showed fewer proliferating cholangiocytes and high mortality in response to a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet, a murine model of primary sclerosing cholangitis. In vitro studies demonstrated that Wnt7b, one of the Wnts up-regulated during cholestasis, induces proliferation of cholangiocytes in an autocrine manner and increases secretion of proinflammatory cytokines. We hypothesized that loss of Wnt7b may exacerbate some of the complications of cholangiopathies by decreasing the ability of bile ducts to induce repair. Wnt7b-flox mice were bred with Krt19-cre mice to deplete Wnt7b expression in only cholangiocytes (CC) or with albumin-Cre mice to delete Wnt7b expression in both hepatocytes and cholangiocytes (HC + CC). These mice were placed on a DDC diet for 1 month then killed for evaluation. Contrary to our expectations, we found that mice lacking Wnt7b from CC and HC + CC compartments had improved biliary injury, decreased cellular senescence, and lesser bile acid accumulation after DDC exposure compared to controls, along with decreased expression of inflammatory cytokines. Although Wnt7b knockout (KO) resulted in fewer proliferating cholangiocytes, CC and HC + CC KO mice on a DDC diet also had more hepatocytes expressing cholangiocyte markers compared to wild-type mice on a DDC diet, indicating that Wnt7b suppression promotes hepatocyte reprogramming. Conclusion: Wnt7b induces a proproliferative proinflammatory program in cholangiocytes, and its loss is compensated for by conversion of hepatocytes to a biliary phenotype during cholestatic injury.
Collapse
Affiliation(s)
- Karis Kosar
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Pamela Cornuet
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Sucha Singh
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Elizabeth Lee
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Silvia Liu
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
| | - Jenesis Gayden
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
| | - Toshifumi Sato
- Department of MedicineGastroenterology DivisionUniversity of PittsburghPittsburghPAUSA
| | - Zachary Freyberg
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPAUSA
| | - Gavin Arteel
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
- Department of MedicineGastroenterology DivisionUniversity of PittsburghPittsburghPAUSA
| | - Kari Nejak‐Bowen
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
50
|
Hu S, Russell JO, Liu S, Cao C, McGaughey J, Rai R, Kosar K, Tao J, Hurley E, Poddar M, Singh S, Bell A, Shin D, Raeman R, Singhi AD, Nejak-Bowen K, Ko S, Monga SP. β-Catenin-NF-κB-CFTR interactions in cholangiocytes regulate inflammation and fibrosis during ductular reaction. eLife 2021; 10:71310. [PMID: 34609282 PMCID: PMC8555990 DOI: 10.7554/elife.71310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Expansion of biliary epithelial cells (BECs) during ductular reaction (DR) is observed in liver diseases including cystic fibrosis (CF), and associated with inflammation and fibrosis, albeit without complete understanding of underlying mechanism. Using two different genetic mouse knockouts of β-catenin, one with β-catenin loss is hepatocytes and BECs (KO1), and another with loss in only hepatocytes (KO2), we demonstrate disparate long-term repair after an initial injury by 2-week choline-deficient ethionine-supplemented diet. KO2 show gradual liver repopulation with BEC-derived β-catenin-positive hepatocytes and resolution of injury. KO1 showed persistent loss of β-catenin, NF-κB activation in BECs, progressive DR and fibrosis, reminiscent of CF histology. We identify interactions of β-catenin, NFκB, and CF transmembranous conductance regulator (CFTR) in BECs. Loss of CFTR or β-catenin led to NF-κB activation, DR, and inflammation. Thus, we report a novel β-catenin-NFκB-CFTR interactome in BECs, and its disruption may contribute to hepatic pathology of CF. The liver has an incredible capacity to repair itself or ‘regenerate’ – that is, it has the ability to replace damaged tissue with new tissue. In order to do this, the organ relies on hepatocytes (the cells that form the liver) and bile duct cells (the cells that form the biliary ducts) dividing and transforming into each other to repair and replace damaged tissue, in case the insult is dire. During long-lasting or chronic liver injury, bile duct cells undergo a process called ‘ductular reaction’, which causes the cells to multiply and produce proteins that stimulate inflammation, and can lead to liver scarring (fibrosis). Ductular reaction is a hallmark of severe liver disease, and different diseases exhibit ductular reactions with distinct features. For example, in cystic fibrosis, a unique type of ductular reaction occurs at late stages, accompanied by both inflammation and fibrosis. Despite the role that ductular reaction plays in liver disease, it is not well understood how it works at the molecular level. Hu et al. set out to investigate how a protein called β-catenin – which can cause many types of cells to proliferate – is involved in ductular reaction. They used three types of mice for their experiments: wild-type mice, which were not genetically modified; and two strains of genetically modified mice. One of these mutant mice did not produce β-catenin in biliary duct cells, while the other lacked β-catenin both in biliary duct cells and in hepatocytes. After a short liver injury – which Hu et al. caused by feeding the mice a specific diet – the wild-type mice were able to regenerate and repair the liver without exhibiting any ductular reaction. The mutant mice that lacked β-catenin in hepatocytes showed a temporary ductular reaction, and ultimately repaired their livers by turning bile duct cells into hepatocytes. On the other hand, the mutant mice lacking β-catenin in both hepatocytes and bile duct cells displayed sustained ductular reactions, inflammation and fibrosis, which looked like that seen in patients with liver disease associated to cystic fibrosis. Further probing showed that β-catenin interacts with a protein called CTFR, which is involved in cystic fibrosis. When bile duct cells lack either of these proteins, another protein called NF-B gets activated, which causes the ductular reaction, leading to inflammation and fibrosis. The findings of Hu et al. shed light on the role of β-catenin in ductular reaction. Further, the results show a previously unknown interaction between β-catenin, CTFR and NF-B, which could lead to better treatments for cystic fibrosis in the future.
Collapse
Affiliation(s)
- Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China.,Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Jacquelyn O Russell
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Catherine Cao
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Jackson McGaughey
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Ravi Rai
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Karis Kosar
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Edward Hurley
- Department of Pediatrics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Aaron Bell
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Donghun Shin
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Department of Developmental Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| |
Collapse
|