1
|
Chen D, Zhao Z, Hong R, Yang D, Gong Y, Wu Q, Wang Y, Cao Y, Chen J, Tai Y, Liu H, Li J, Fan J, Zhang W, Song Y, Zhan Q. Harnessing the FGFR2/NF2/YAP signaling-dependent necroptosis to develop an FGFR2/IL-8 dual blockade therapeutic strategy. Nat Commun 2025; 16:4128. [PMID: 40319089 PMCID: PMC12049493 DOI: 10.1038/s41467-025-59318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
The multifaceted roles and mechanisms of necroptosis in cancer cells remain incompletely understood. Here, we demonstrate that FGFR2 inhibition potently inhibits esophageal squamous cell carcinoma (ESCC) by inducing necroptosis in a RIP1/MLKL-dependent manner and show RIP3 is dispensable in this pathway. Notably, MST1 is identified as a necroptotic pathway component that interacts with RIP1 and MLKL to promote necroptosis by phosphorylating MLKL at Thr216. Additionally, FGFR2 inhibition induces Ser518 phosphorylation and triggers ubiquitin-mediated degradation of NF2, culminating in Hippo pathway suppression. Subsequently, YAP activation promotes RIP1 and MLKL transcriptional upregulation, further amplifying necroptosis. Intriguingly, IL-8 derived from necrotic cells stimulates peripheral surviving tumor cells to increase PD-L1 expression. Dual blockade of FGFR2/PD-L1 or FGFR2/IL-8-CXCR1/2 robustly impedes tumor growth in humanized mouse xenografts. Collectively, our findings delineate an alternative FGFR2-NF2-YAP signaling-dependent necroptotic pathway and shed light on the immunoregulatory role of FGFR2, offering promising avenues for combinatorial therapeutic strategies in clinical cancer management.
Collapse
Affiliation(s)
- Dongshao Chen
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoxi Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Di Yang
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Gong
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingnan Wu
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiren Cao
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Chen
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yidi Tai
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Haoyu Liu
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinting Li
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiawen Fan
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Weimin Zhang
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.
- International Cancer Institute, Peking University Health Science Center, Beijing, China.
- Soochow University Cancer institute, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Sanchez-Guerrero G, Umbaugh DS, Smith SH, Akakpo JY, Jaeschke H, Ramachandran A. Mixed lineage kinase domain-like protein deficiency exacerbates early injury in a mouse model of acetaminophen hepatotoxicity. Toxicol Sci 2025; 205:220-232. [PMID: 39985503 PMCID: PMC12038254 DOI: 10.1093/toxsci/kfaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
An overdose of acetaminophen (APAP) is the leading cause of drug-induced hepatotoxicity and acute liver failure in the United States. It is established that the predominant mode of hepatocyte cell death after an APAP overdose is through necrosis, and it is now recognized that this occurs through regulated pathways involving RIP kinases. These kinases, along with the pseudo-kinase MLKL, are central players in classical necroptotic cell death. Despite the skepticism regarding the role of necroptosis in APAP-induced liver injury, recent research demonstrating necroptosis-independent roles for MLKL led us to re-examine the role of this pseudo-kinase in APAP pathophysiology. Treatment of Mlkl-/- mice with a moderate (300 mg/kg) overdose of APAP resulted in an exacerbation of liver injury at 6- and 12-h post-APAP as evidenced by elevated plasma alanine aminotransferase activities, and extensive necrosis accompanied by diminished glutathione levels. Interestingly, these differences between Mlkl-/- and wild-type mice were negated at the 24-h mark, previously scrutinized by others. At 6 and 12 h post-APAP, Mlkl-/- mice exhibited augmented translocation of AIF and Endonuclease G without affecting JNK activation, suggesting enhanced mitochondrial permeability transition in the absence of MLKL. Lack of MLKL also impacted autophagy, the unfolded protein response and endoplasmic reticulum stress, with decreased levels of p62 and LC3B and increased expression of CHOP and GRP78 at 6 h post-APAP. In essence, our findings illuminate a noncanonical role for MLKL in the early phases of APAP-induced liver injury, warranting further exploration of its influence on APAP pathophysiology.
Collapse
Affiliation(s)
- Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Sawyer H Smith
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
3
|
Cao P, Jaeschke H, Ni HM, Ding WX. The Ways to Die: Cell Death in Liver Pathophysiology. Semin Liver Dis 2025. [PMID: 40199509 DOI: 10.1055/a-2576-4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Liver diseases are closely associated with various cell death mechanisms, including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis. Each process contributes uniquely to the pathophysiology of liver injury and repair. Importantly, these mechanisms are not limited to hepatocytes; they also significantly involve nonparenchymal cells. This review examines the molecular pathways and regulatory mechanisms underlying these forms of cell death in hepatocytes, emphasizing their roles in several liver diseases, such as ischemia-reperfusion injury, metabolic dysfunction-associated steatotic liver disease, drug-induced liver injury, and alcohol-associated liver disease. Recent insights into ferroptosis and pyroptosis may reveal novel therapeutic targets for managing liver diseases. This review aims to provide a comprehensive overview of these cell death mechanisms in the context of liver diseases, detailing their molecular signaling pathways and implications for potential treatment strategies.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
- Division of Gastroenterology, Hepatology and Mobility, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
4
|
Jaeschke H, Ramachandran A. The multiple mechanisms and modes of cell death after acetaminophen overdose. EXPLORATION OF DIGESTIVE DISEASES 2025; 4:100569. [PMID: 40364831 PMCID: PMC12074662 DOI: 10.37349/edd.2025.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 05/15/2025]
Abstract
Acetaminophen (APAP)-induced liver injury and acute liver failure is a significant clinical problem worldwide; in addition, APAP overdoses in animals or in cell culture are used as popular models to study drug-induced liver injury mechanisms and test therapeutic interventions. Early assumptions that APAP toxicity is caused by a single mechanism resulting in a defined mode of cell death in hepatocytes had to be questioned when over the years many different mechanisms and modes of cell death were reported. Although many of the contradictory results and conclusions reported over the years can be attributed to lack of understanding of established mechanisms, methodological problems, and misinterpretation of data, it is increasingly recognized that some of the reported differences in signaling mechanisms and even a switch in the mode of cell death can be caused by variations in the experimental conditions. In this review, examples will be discussed how experimental conditions (dose, solvent, etc.), the experimental system (species, strain, and substrain in vivo, cell type, and in vitro conditions), and also adaptive responses and off-target effects of genetic manipulations and chemical interventions, can impact the mechanisms of cell death. Given that the conditions will determine the results, it is therefore of critical importance to keep in mind the translational aspect of the experiments, i.e., the conditions relevant to the human pathophysiology. Only the full appreciation of these issues will lead to reproducible and clinically relevant results that advance our understanding of all facets of the human pathophysiology and identify clinically relevant therapeutic targets.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
He Y, Zhu W, Qiu Y, Zhou K. Loss of RIP3 alleviates insulin resistance and inflammation in gestational diabetes mellitus mice via TLR4/MyD88/NF-κB signaling pathway. BMC Pregnancy Childbirth 2025; 25:163. [PMID: 39953423 PMCID: PMC11829474 DOI: 10.1186/s12884-025-07217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is diabetes with reduced glucose tolerance that is found or diagnosed during pregnancy, which seriously affects the health of mothers and infants, and its incidence is increasing year by year. The necroptotic apoptosis regulator RIP3 has been proposed to be active in managing pancreatic islet cell survival and inflammatory response. Still, its role and mechanism in GDM have not yet been clarified. METHOD The effect of high glucose induction and RIP3 on the viability of Pancreatic β-cells and insulin secretion was observed in vitro experiments. C57BL/6J mice were used to establish the GDM model. Weight, serum glucose levels, and insulin levels were measured to evaluate the improvement of diabetes symptoms in GDM mice by sh-RIP3. The levels of IL-1β, IL-6, and TNF-α were determined by ELISA and qRT-PCR assays. Hematoxylin and Eosin (HE) staining assay was applied to detect islet cell morphology and inflammatory damage in pancreatic tissue. Progeny weight and litter size were also recorded to evaluate reproductive function in GDM mice. Western blot was performed to express TLR4/MyD88/NF-κB signal-related proteins. RESULTS Knockdown of RIP3 ameliorated GDM symptoms, improved glucose tolerance and insulin sensitivity, suppressed inflammation, and enhanced fetal outcomes, possibly by TLR4/MyD88/NF-κB signaling pathway activation in GDM mice. CONCLUSION The present study provided evidence that the downregulation of RIP3 alleviates insulin resistance and inflammation in GDM mice by mediating the TLR4/MyD88/NF-κB signaling pathway, which made RIP3 a new potential therapeutic target for GDM treatment in the future.
Collapse
Affiliation(s)
- Yingying He
- Department of Pathology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou City, Zhejiang Province, 324000, China
| | - Weiwei Zhu
- Department of Obstetrics, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou City, Zhejiang Province, 324000, China
| | - Yuebo Qiu
- Department of Clinical Laboratory, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou City, Zhejiang Province, 324000, China
| | - Kening Zhou
- Department of Gynaecology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No. 100, Minjiang Avenue, Kecheng District, Quzhou City, Zhejiang Province, 324000, China.
| |
Collapse
|
6
|
Yao K, Shi Z, Zhao F, Tan C, Zhang Y, Fan H, Wang Y, Li X, Kong J, Wang Q, Li D. RIPK1 in necroptosis and recent progress in related pharmaceutics. Front Immunol 2025; 16:1480027. [PMID: 40007541 PMCID: PMC11850271 DOI: 10.3389/fimmu.2025.1480027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Necroptosis is a programmed form of cell death. Receptor-interacting serine/threonine protein kinase l (RIPK1) is a crucial protein kinase that regulates the necroptosis pathway. Increased expression of death receptor family ligands such as tumor necrosis factor (TNF) increases the susceptibility of cells to apoptosis and necroptosis. RIPK1, RIPK3, and mixed-lineage kinase-like domain (MLKL) proteins mediate necrosis. RIPK1-mediated necroptosis further promotes cell death and inflammation in the pathogenesis of liver injury, skin diseases, and neurodegenerative diseases. The N-terminal kinase domain of RIPK1 is significant in the induction of cell death and can be used as a vital drug target for inhibitors. In this paper, we outline the pathways of necroptosis and the role RIPK1 plays in them and suggest that targeting RIPK1 in therapy may help to inhibit multiple cell death pathways.
Collapse
Affiliation(s)
- Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhihao Shi
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Fengya Zhao
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Cong Tan
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Yixin Zhang
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Hao Fan
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Yingzhe Wang
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Xingwang Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jun Kong
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Qun Wang
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Dingxi Li
- Department of Gynaecology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Lambrecht R, Jansen J, Rudolf F, El-Mesery M, Caporali S, Amelio I, Stengel F, Brunner T. Drug-induced oxidative stress actively prevents caspase activation and hepatocyte apoptosis. Cell Death Dis 2024; 15:659. [PMID: 39245717 PMCID: PMC11381522 DOI: 10.1038/s41419-024-06998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Cell death is a fundamental process in health and disease. Emerging research shows the existence of numerous distinct cell death modalities with similar and intertwined signaling pathways, but resulting in different cellular outcomes, raising the need to understand the decision-making steps during cell death signaling. Paracetamol (Acetaminophen, APAP)-induced hepatocyte death includes several apoptotic processes but eventually is executed by oncotic necrosis without any caspase activation. Here, we studied this paradoxical form of cell death and revealed that APAP not only fails to activate caspases but also strongly impedes their activation upon classical apoptosis induction, thereby shifting apoptosis to necrosis. While APAP intoxication results in massive drop in mitochondrial respiration, low cellular ATP levels could be excluded as an underlying cause of missing apoptosome formation and caspase activation. In contrast, we identified oxidative stress as a key factor in APAP-induced caspase inhibition. Importantly, caspase inhibition and the associated switch from apoptotic to necrotic cell death was reversible through the administration of antioxidants. Thus, exemplified by APAP-induced cell death, our study stresses that cellular redox status is a critical component in the decision-making between apoptotic and necrotic cell death, as it directly affects caspase activity.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jasmin Jansen
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Franziska Rudolf
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
| | - Mohamed El-Mesery
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sabrina Caporali
- Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivano Amelio
- Collaborative Research Center TRR 353, Konstanz, Germany
- Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Collaborative Research Center TRR 353, Konstanz, Germany.
| |
Collapse
|
8
|
McGill MR. The Role of Mechanistic Biomarkers in Understanding Acetaminophen Hepatotoxicity in Humans. Drug Metab Dispos 2024; 52:729-739. [PMID: 37918967 PMCID: PMC11257692 DOI: 10.1124/dmd.123.001281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
Our understanding of the fundamental molecular mechanisms of acetaminophen (APAP) hepatotoxicity began in 1973 to 1974, when investigators at the US National Institutes of Health published seminal studies demonstrating conversion of APAP to a reactive metabolite that depletes glutathione and binds to proteins in the liver in mice after overdose. Since then, additional groundbreaking experiments have demonstrated critical roles for mitochondrial damage, oxidative stress, nuclear DNA fragmentation, and necrotic cell death as well. Over the years, some investigators have also attempted to translate these mechanisms to humans using human specimens from APAP overdose patients. This review presents those studies and summarizes what we have learned about APAP hepatotoxicity in humans so far. Overall, the mechanisms of APAP hepatotoxicity in humans strongly resemble those discovered in experimental mouse and cultured hepatocyte models, and emerging biomarkers also suggest similarities in liver repair. The data not only validate the first mechanistic studies of APAP-induced liver injury performed 50 years ago but also demonstrate the human relevance of numerous studies conducted since then. SIGNIFICANCE STATEMENT: Human studies using novel translational, mechanistic biomarkers have confirmed that the fundamental mechanisms of acetaminophen (APAP) hepatotoxicity discovered in rodent models since 1973 are the same in humans. Importantly, these findings have guided the development and understanding of treatments such as N-acetyl-l-cysteine and 4-methylpyrazole over the years. Additional research may improve not only our understanding of APAP overdose pathophysiology in humans but also our ability to predict and treat serious liver injury in patients.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health; Department of Pharmacology and Toxicology, College of Medicine; and Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
9
|
Kong R, Wang N, Zhou C, Zhou Y, Guo X, Wang D, Shi Y, Wan R, Zheng Y, Lu J. Sanguinarine Induces Necroptosis of HCC by Targeting PKM2 Mediated Energy Metabolism. Cancers (Basel) 2024; 16:2533. [PMID: 39061173 PMCID: PMC11274805 DOI: 10.3390/cancers16142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUNDS Abnormal metabolism is the hallmark of hepatocellular carcinoma. Targeting energy metabolism has become the major focus of cancer therapy. The natural product, sanguinarine, displays remarkable anti-tumor properties by disturbing energy homeostasis; however, the underlying mechanism has not yet been elucidated. METHODS The anticancer activity of sanguinarine was determined using CCK-8 and colony formation assay. Morphological changes of induced cell death were observed under electron microscopy. Necroptosis and apoptosis related markers were detected using western blotting. PKM2 was identified as the target by transcriptome sequencing. Molecular docking assay was used to evaluate the binding affinity of sanguinarine to the PKM2 molecule. Furthermore, Alb-CreERT2; PKM2loxp/loxp; Rosa26RFP mice was used to construct the model of HCC-through the intervention of sanguinarine in vitro and in vivo-to accurately explore the regulation effect of sanguinarine on cancer energy metabolism. RESULTS Sanguinarine inhibited tumor proliferation, metastasis and induced two modes of cell death. Molecular docking of sanguinarine with PKM2 showed appreciable binding affinity. PKM2 kinase activity and aerobic glycolysis rate declined, and mitochondrial oxidative phosphorylation was inhibited by sanguinarine application; these changes result in energy deficits and lead to necroptosis. Additionally, sanguinarine treatment prevents the translocation of PKM2 into the nucleus and suppresses the interaction of PKM2 with β-catenin; the transcriptional activity of PKM2/β-catenin signaling and its downstream genes were decreased. CONCLUSIONS Sanguinarine showed remarkable anti-HCC activity via regulating energy metabolism by PKM2/β-catenin signaling. On the basis of these investigations, we propose that sanguinarine might be considered as a promising compound for discovery of anti-HCC drugs.
Collapse
Affiliation(s)
- Rui Kong
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Nan Wang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200072, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Yuqing Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xiaoyan Guo
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Dongyan Wang
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Yihai Shi
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| |
Collapse
|
10
|
Ouyang S, Zhu J, Cao Q, Liu J, Zhang Z, Zhang Y, Wu J, Sun S, Fu J, Chen Y, Tong J, Liu Y, Zhang J, Shen F, Li D, Wang P. Gasdermin-E-Dependent Non-Canonical Pyroptosis Promotes Drug-Induced Liver Failure by Promoting CPS1 deISGylation and Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305715. [PMID: 38417117 PMCID: PMC11040357 DOI: 10.1002/advs.202305715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/22/2023] [Indexed: 03/01/2024]
Abstract
Drug-induced liver injury (DILI) is a significant global health issue that poses high mortality and morbidity risks. One commonly observed cause of DILI is acetaminophen (APAP) overdose. GSDME is an effector protein that induces non-canonical pyroptosis. In this study, the activation of GSDME, but not GSDMD, in the liver tissue of mice and patients with APAP-DILI is reported. Knockout of GSDME, rather than GSDMD, in mice protected them from APAP-DILI. Mice with hepatocyte-specific rescue of GSDME reproduced APAP-induced liver injury. Furthermore, alterations in the immune cell pools observed in APAP-induced DILI, such as the replacement of TIM4+ resident Kupffer cells (KCs) by monocyte-derived KCs, Ly6C+ monocyte infiltration, MerTk+ macrophages depletion, and neutrophil increase, reappeared in mice with hepatocyte-specific rescue of GSDME. Mechanistically, APAP exposure led to a substantial loss of interferon-stimulated gene 15 (ISG15), resulting in deISGylation of carbamoyl phosphate synthetase-1 (CPS1), promoted its degradation via K48-linked ubiquitination, causing ammonia clearance dysfunction. GSDME deletion prevented these effects. Delayed administration of dimethyl-fumarate inhibited GSDME cleavage and alleviated ammonia accumulation, mitigating liver injury. This findings demonstrated a previously uncharacterized role of GSDME in APAP-DILI by promoting pyroptosis and CPS1 deISGylation, suggesting that inhibiting GSDME can be a promising therapeutic option for APAP-DILI.
Collapse
Affiliation(s)
- Shen‐Xi Ouyang
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jia‐Hui Zhu
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Qi Cao
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Jian Liu
- Department of Hepatic SurgeryThe Eastern Hepatobiliary Surgery HospitalNaval Medical University/Second Military Medical UniversityShanghai200438China
| | - Zhen Zhang
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Yan Zhang
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jing‐Wen Wu
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Si‐Jia Sun
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jiang‐Tao Fu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Yi‐Ting Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Jie Tong
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Yi Liu
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Jia‐Bao Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| | - Fu‐Ming Shen
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Dong‐Jie Li
- Department of PharmacyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Department of PharmacologySchool of PharmacyNaval Medical University/Second Military Medical UniversityShanghai200433China
- Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchNaval Medical University/Second Military Medical UniversityShanghai200433China
- National Demonstration Center for Experimental Pharmaceutical EducationNaval Medical University/Second Military Medical UniversityShanghai200433China
| |
Collapse
|
11
|
Stoess C, Choi YK, Onyuru J, Friess H, Hoffman HM, Hartmann D, Feldstein AE. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024; 12:559. [PMID: 38540172 PMCID: PMC10968531 DOI: 10.3390/biomedicines12030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Yeon-Kyung Choi
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Janset Onyuru
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hal M. Hoffman
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Novo Nordisk, Global Drug Discovery, Ørestads Boulevard 108, 2300 Copenhagen, Denmark
| |
Collapse
|
12
|
Tak J, Joo MS, Kim YS, Park HW, Lee CH, Park GC, Hwang S, Kim SG. Dual regulation of NEMO by Nrf2 and miR-125a inhibits ferroptosis and protects liver from endoplasmic reticulum stress-induced injury. Theranostics 2024; 14:1841-1859. [PMID: 38505605 PMCID: PMC10945339 DOI: 10.7150/thno.89703] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: The surge of severe liver damage underscores the necessity for identifying new targets and therapeutic agents. Endoplasmic reticulum (ER) stress induces ferroptosis with Gα12 overexpression. NF-κB essential modulator (NEMO) is a regulator of inflammation and necroptosis. Nonetheless, the regulatory basis of NEMO de novo synthesis and its impact on hepatocyte ferroptosis need to be established. This study investigated whether Nrf2 transcriptionally induces IKBKG (the NEMO gene) for ferroptosis inhibition and, if so, how NEMO induction protects hepatocytes against ER stress-induced ferroptosis. Methods: Experiments were conducted using human liver tissues, hepatocytes, and injury models, incorporating NEMO overexpression and Gα12 gene modulations. RNA sequencing, immunoblotting, immunohistochemistry, reporter assays, and mutation analyses were done. Results: NEMO downregulation connects closely to ER and oxidative stress, worsening liver damage via hepatocyte ferroptosis. NEMO overexpression protects hepatocytes from ferroptosis by promoting glutathione peroxidase 4 (GPX4) expression. This protective role extends to oxidative and ER stress. Similar shifts occur in nuclear factor erythroid-2-related factor-2 (Nrf2) expression alongside NEMO changes. Nrf2 is newly identified as an IKBKG (NEMO gene) transactivator. Gα12 changes, apart from Nrf2, impact NEMO expression, pointing to post-transcriptional control. Gα12 reduction lowers miR-125a, an inhibitor of NEMO, while overexpression has the opposite effect. NEMO also counters ER stress, which triggers Gα12 overexpression. Gα12's significance in NEMO-dependent hepatocyte survival is confirmed via ROCK1 inhibition, a Gα12 downstream kinase, and miR-125a. The verified alterations or associations within the targeted entities are validated in human liver specimens and datasets originating from livers subjected to exposure to other injurious agents. Conclusions: Hepatic injury prompted by ER stress leads to the suppression of NEMO, thereby facilitating ferroptosis through the inhibition of GPX4. IKBKG is transactivated by Nrf2 against Gα12 overexpression responsible for the increase of miR-125a, an unprecedented NEMO inhibitor, resulting in GPX4 induction. Accordingly, the induction of NEMO mitigates ferroptotic liver injury.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326, Republic of Korea
| | - Min Sung Joo
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Woo Park
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326, Republic of Korea
| | - Gil-Chun Park
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shin Hwang
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326, Republic of Korea
| |
Collapse
|
13
|
Shojaie L, Bogdanov JM, Alavifard H, Mohamed MG, Baktash A, Ali M, Mahov S, Murray S, Kanel GC, Liu ZX, Ito F, In GK, Merchant A, Stohl W, Dara L. Innate and adaptive immune cell interaction drives inflammasome activation and hepatocyte apoptosis in murine liver injury from immune checkpoint inhibitors. Cell Death Dis 2024; 15:140. [PMID: 38355725 PMCID: PMC10866933 DOI: 10.1038/s41419-024-06535-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Immune checkpoints (CTLA4 & PD-1) are inhibitory pathways that block aberrant immune activity and maintain self-tolerance. Tumors co-opt these checkpoints to avoid immune destruction. Immune checkpoint inhibitors (ICIs) activate immune cells and restore their tumoricidal potential, making them highly efficacious cancer therapies. However, immunotolerant organs such as the liver depend on these tolerogenic mechanisms, and their disruption with ICI use can trigger the unintended side effect of hepatotoxicity termed immune-mediated liver injury from ICIs (ILICI). Learning how to uncouple ILICI from ICI anti-tumor activity is of paramount clinical importance. We developed a murine model to recapitulate human ILICI using CTLA4+/- mice treated with either combined anti-CTLA4 + anti-PDL1 or IgG1 + IgG2. We tested two forms of antisense oligonucleotides to knockdown caspase-3 in a total liver (parenchymal and non-parenchymal cells) or in a hepatocyte-specific manner. We also employed imaging mass cytometry (IMC), a powerful multiplex modality for immunophenotyping and cell interaction analysis in our model. ICI-treated mice had significant evidence of liver injury. We detected cleaved caspase-3 (cC3), indicating apoptosis was occurring, as well as Nod-like receptor protein 3 (NLRP3) inflammasome activation, but no necroptosis. Total liver knockdown of caspase-3 worsened liver injury, and induced further inflammasome activation, and Gasdermin-D-mediated pyroptosis. Hepatocyte-specific knockdown of caspase-3 reduced liver injury and NLRP3 inflammasome activation. IMC-generated single-cell data for 77,692 cells was used to identify 22 unique phenotypic clusters. Spatial analysis revealed that cC3+ hepatocytes had significantly closer interactions with macrophages, Kupffer cells, and NLRP3hi myeloid cells than other cell types. We also observed zones of three-way interaction between cC3+ hepatocytes, CD8 + T-cells, and macrophages. Our work is the first to identify hepatocyte apoptosis and NLRP3 inflammasome activation as drivers of ILICI. Furthermore, we report that the interplay between adaptive and innate immune cells is critical to hepatocyte apoptosis and ILICI.
Collapse
Affiliation(s)
- Layla Shojaie
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Jacob M Bogdanov
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Helia Alavifard
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
- Research Center for Liver Disease, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Mahmoud G Mohamed
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
- Research Center for Liver Disease, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Aria Baktash
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
- Research Center for Liver Disease, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Myra Ali
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
| | - Simeon Mahov
- Division of Hematology and Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard Pavilion A8700, Los Angeles, CA, 90048, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Inc, 2855 Gazelle Ct, Carlsbad, CA, 92010, USA
| | - Gary C Kanel
- Research Center for Liver Disease, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 211, Los Angeles, CA, 90033, USA
| | - Zhang-Xu Liu
- Translational Research Laboratory (TRLab), Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences of the University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Fumito Ito
- Department of Surgery, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Gino K In
- Division of Oncology, Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Akil Merchant
- Division of Hematology and Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard Pavilion A8700, Los Angeles, CA, 90048, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 711, Los Angeles, CA, 90033, USA
| | - Lily Dara
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA.
- Research Center for Liver Disease, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue HMR 101, Los Angeles, CA, 90033, USA.
| |
Collapse
|
14
|
Wu X, Nagy LE, Gautheron J. Mediators of necroptosis: from cell death to metabolic regulation. EMBO Mol Med 2024; 16:219-237. [PMID: 38195700 PMCID: PMC10897313 DOI: 10.1038/s44321-023-00011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Necroptosis, a programmed cell death mechanism distinct from apoptosis, has garnered attention for its role in various pathological conditions. While initially recognized for its involvement in cell death, recent research has revealed that key necroptotic mediators, including receptor-interacting protein kinases (RIPKs) and mixed lineage kinase domain-like protein (MLKL), possess additional functions that go beyond inducing cell demise. These functions encompass influencing critical aspects of metabolic regulation, such as energy metabolism, glucose homeostasis, and lipid metabolism. Dysregulated necroptosis has been implicated in metabolic diseases, including obesity, diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease (ALD), contributing to chronic inflammation and tissue damage. This review provides insight into the multifaceted role of necroptosis, encompassing both cell death and these extra-necroptotic functions, in the context of metabolic diseases. Understanding this intricate interplay is crucial for developing targeted therapeutic strategies in diseases that currently lack effective treatments.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jérémie Gautheron
- Sorbonne Université, Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France.
| |
Collapse
|
15
|
Zhang L, Liu M, Sun Q, Cheng S, Chi Y, Zhang J, Wang B, Zhou L, Zhao J. Engineering M2 type macrophage-derived exosomes for autoimmune hepatitis immunotherapy via loading siRIPK3. Biomed Pharmacother 2024; 171:116161. [PMID: 38244330 DOI: 10.1016/j.biopha.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive liver disease mediated by the immune system that involves an imbalance in pro-inflammatory and regulatory mechanisms including regulatory T cells (Tregs), T helper 17 (Th17) cells, Th1, macrophages, and many other immune cells. Current steroid therapy for AIH has significant systemic side effects and is poorly tolerated by some individuals. Therefore, there is an urgent need for alternative treatments. Maintaining homeostasis in macrophage differentiation and activation is crucial for regulating immune responses in hepatitis. In this study, we loaded small interfering RNA (siRNA) targeting receptor-interacting protein kinase 3 (RIPK3) into M2-type macrophage-derived exosomes (M2 Exos) to create functionalized exosomes called M2 Exos/siRIPK3. These exosomes demonstrated a natural ability to target the liver in mice, as they were efficiently taken up by hepatic macrophages and showed significant and stable accumulation. M2 Exos/siRIPK3 effectively mitigated immune-mediated hepatitis by suppressing the expression of RIPK3, resulting in a reduced release of pro-inflammatory cytokines and chemokines in both liver tissues and serum. Additionally, M2 Exos/siRIPK3 exhibited immunomodulatory effects, as its administration resulted in a decreased proportion of hepatic and splenic Th17 cells, along with an increased ratio of Tregs. Overall, this study suggests that loading small molecule drugs onto M2 Exos could be a promising approach for developing immunomodulators that specifically target liver macrophages to treat AIH. This strategy has the potential to provide a safer and more effective alternative to current therapy for AIH patients.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Qiu Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Shuqin Cheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Yirong Chi
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China.
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China.
| |
Collapse
|
16
|
Jaeschke H, Ramachandran A. Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury. ANNUAL REVIEW OF PATHOLOGY 2024; 19:453-478. [PMID: 38265880 PMCID: PMC11131139 DOI: 10.1146/annurev-pathmechdis-051122-094016] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of N-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| |
Collapse
|
17
|
Jiao H, Fan Y, Gong A, Li T, Fu X, Yan Z. Xiaoyaosan ameliorates CUMS-induced depressive-like and anorexia behaviors in mice via necroptosis related cellular senescence in hypothalamus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116938. [PMID: 37495029 DOI: 10.1016/j.jep.2023.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression and anorexia often co-occur and share symptoms such as low mood, lack of energy, and weight loss. Xiaoyaosan is a classic formula comprising of a combination of eight herbs, possessing definitive therapeutic effects, minimal side effects, and economical benefits. It has been extensively employed in clinical treatment of ailments and symptoms such as depression, anxiety, and appetite problems. Nonetheless, its exact pharmacological mechanism with necroptosis remains incompletely explicit. AIM OF THE STUDY The aim of this study is to explore the potential mechanisms of anti-depressive and appetite-regulating effects of the active ingredients in Xiaoyaosan, and to investigate whether there is a correlation with necroptosis. MATERIALS AND METHODS The network pharmacology method was conducted to identify active ingredients, which were used to predict the possible targets of Xiaoyaosan and explore the potential targets in treating depression and anorexia by overlapping with differentially expressed genes (DEGs) screened from GEO datasets (GSE125441, GSE198597, and GSE69151). Afterwards, the protein-protein interaction (PPI) network, enrichment analyses, hub gene identification, co-expression study and molecular docking were used to study the potential mechanism of Xiaoyaosan. Then, a mice model of depression was established by chronic unpredictable mild stress (CUMS) and the incidence of necroptosis in the hypothalamus of CUMS mice was investigated, while verifying the key therapeutic target of Xiaoyaosan. RESULTS Through network pharmacology research, it had been discovered that the 145 active ingredients of the 8 herbs in the Xiaoyaosan could regulate 198 disease targets. Through PPI network analysis and functional enrichment analysis, it had been found that the pharmacological mechanism of Xiaoyaosan mainly involved biological processes such as oxidative stress, kinase activity, and DNA metabolism. It is related to various pathways such as cellular senescence, immune inflammation, and the cell cycle, and 9 hub targets had been identified. Further analysis of the 9 hub targets and the key PPI network clusters clarified the key mechanisms by which Xiaoyaosan exerts anti-depressant and appetite regulating effects, possibly related to necroptosis-mediated cellular senescence. Molecular docking of the key indicators of cellular senescence screened by bioinformatics, SIRT1, ABL1, and MYC, revealed that the key component regulating SIRT1 is 2-[3,4-dihydroxyphenyl]-5,7-dihydroxy-6-[3-methylbut-2-enyl]chromone in licorice root, Glabridin in licorice root regulates ABL1, and β-sitosterol found in Chinese angelica, debark peony root, and fresh ginger regulates MYC. Finally, through in vivo experiments, the expression of necroptosis in the hypothalamus of CUMS mice was verified. The regulatory effects of Xiaoyaosan on key substances RIPK1, RIPK3, MLKL, and p-MLKL were determined, while regulating effects on SIRT1, ABL1, and MYC were also observed. CONCLUSION The present study have revealed the common mechanism of Xiaoyaosan in treating depression and anorexia, indicating that the active ingredients of Xiaoyaosan may alleviate the symptoms of depression and anorexia by intervening in the pathways related to necroptosis and cellular senescence. The hub genes and common pathways identified by the study also provide new insights into the therapeutic targets of depression and anorexia, as well as the exploration of pharmacological mechanism of Xiaoyaosan.
Collapse
Affiliation(s)
- Haiyan Jiao
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yingli Fan
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Tian Li
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Xing Fu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China; Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
18
|
Singh D, Khan MA, Siddique HR. Unveiling the therapeutic promise of natural products in alleviating drug-induced liver injury: Present advancements and future prospects. Phytother Res 2024; 38:22-41. [PMID: 37775996 DOI: 10.1002/ptr.8022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Drug-induced liver injury (DILI) refers to adverse reactions to small chemical compounds, biological agents, and medical products. These reactions can manifest as acute or chronic damage to the liver. From 1997 to 2016, eight drugs, including troglitazone, nefazodone, and lumiracoxib, were removed from the market due to their liver-damaging effects, which can cause diseases. We aimed to review the recent research on natural products and their bioactive components as hepatoprotective agents in mitigating DILI. Recent articles were fetched via searching the PubMed, PMC, Google Scholar, and Web of Science electronic databases from 2010 to January 2023 using relevant keywords such as "natural products," "acetaminophen," "antibiotics," "paracetamol," "DILI," "hepatoprotective," "drug-induced liver injury," "liver failure," and "mitigation." The studies reveal that the antituberculosis drug (acetaminophen) is the most frequent cause of DILI, and natural products have been largely explored in alleviating acetaminophen-induced liver injury. They exert significant hepatoprotective effects by preventing mitochondrial dysfunction and inflammation, inhibiting oxidative/nitrative stress, and macromolecular damage. Due to the bioavailability and dietary nature, using natural products alone or as an adjuvant with existing drugs is promising. To advance DILI management, it is crucial to conduct well-designed randomized clinical trials to evaluate natural products' efficacy and develop new molecules clinically. However, natural products are a promising solution for remedying drug-induced hepatotoxicity and lowering the risk of DILI.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
19
|
Wu X, Arya RK, Huang E, McMullen MR, Nagy LE. Receptor-interacting protein 1 and 3 kinase activity are required for high-fat diet induced liver injury in mice. Front Endocrinol (Lausanne) 2023; 14:1267996. [PMID: 38161978 PMCID: PMC10757356 DOI: 10.3389/fendo.2023.1267996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Background The RIP1-RIP3-MLKL-mediated cell death pathway is associated with progression of non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Previous work identified a critical role for MLKL, the key effector regulating necroptosis, but not RIP3, in mediating high fat diet-induced liver injury in mice. RIP1 and RIP3 have active N-terminus kinase domains essential for activation of MLKL and subsequent necroptosis. However, little is known regarding domain-specific roles of RIP1/RIP3 kinase in liver diseases. Here, we hypothesized that RIP1/RIP3 kinase activity are required for the development of high fat diet-induced liver injury. Methods Rip1K45A/K45A and Rip3K51A/K51A kinase-dead mice on a C57BL/6J background and their littermate controls (WT) were allowed free access to a diet high in fat, fructose and cholesterol (FFC diet) or chow diet. Results Both Rip1K45A/K45A and Rip3K51A/K51A mice were protected against FFC diet-induced steatosis, hepatocyte injury and expression of hepatic inflammatory cytokines and chemokines. FFC diet increased phosphorylation and oligomerization of MLKL and hepatocyte death in livers of WT, but not in Rip3K51A/K51A, mice. Consistent with in vivo data, RIP3 kinase deficiency in primary hepatocytes prevented palmitic acid-induced translocation of MLKL to the cell surface and cytotoxicity. Additionally, loss of Rip1 or Rip3 kinase suppressed FFC diet-mediated formation of crown-like structures (indicators of dead adipocytes) and expression of mRNA for inflammatory response genes in epididymal adipose tissue. Moreover, FFC diet increased expression of multiple adipokines, including leptin and plasminogen activator inhibitor 1, in WT mice, which was abrogated by Rip3 kinase deficiency. Discussion The current data indicate that both RIP1 and RIP3 kinase activity contribute to FFC diet-induced liver injury. This effect of RIP1 and RIP3 kinase deficiency on injury is consistent with the protection of Mlkl-/- mice from high fat diet-induced liver injury, but not the reported lack of protection in Rip3-/- mice. Taken together with previous reports, our data suggest that other domains of RIP3 likely counteract the effect of RIP3 kinase in response to high fat diets.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Rakesh K. Arya
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Emily Huang
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Megan R. McMullen
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Laura E. Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
20
|
Xu Y, Xu H, Ling T, Cui Y, Zhang J, Mu X, Zhou D, Zhao T, Li Y, Su Z, You Q. Inhibitor of nuclear factor kappa B kinase subunit epsilon regulates murine acetaminophen toxicity via RIPK1/JNK. Cell Biol Toxicol 2023; 39:2709-2724. [PMID: 36757501 DOI: 10.1007/s10565-023-09796-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Drug-induced liver injury (DILI) still poses a major clinical challenge and is a leading cause of acute liver failure. Inhibitor of nuclear factor kappa B kinase subunit epsilon (IKBKE) is essential for inflammation and metabolic disorders. However, it is unclear how IKBKE regulates cellular damage in acetaminophen (APAP)-induced acute liver injury. Here, we found that the deficiency of IKBKE markedly aggravated APAP-induced acute liver injury by targeting RIPK1. We showed that APAP-treated IKBKE-deficient mice exhibited severer liver injury, worse mitochondrial integrity, and enhanced glutathione depletion than wild-type mice. IKBKE deficiency may directly upregulate the expression of total RIPK1 and the cleaved RIPK1, resulting in sustained JNK activation and increased translocation of RIPK1/JNK to mitochondria. Moreover, deficiency of IKBKE enhanced the expression of pro-inflammatory factors and inflammatory cell infiltration in the liver, especially neutrophils and monocytes. Inhibition of RIPK1 activity by necrostatin-1 significantly reduced APAP-induced liver damage. Thus, we have revealed a negative regulatory function of IKBKE, which acts as an RIPK1/JNK regulator to mediate APAP-induced hepatotoxicity. Targeting IKBKE/RIPK1 may serve as a potential therapeutic strategy for acute or chronic liver injury.
Collapse
Affiliation(s)
- Yujie Xu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Haozhe Xu
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Ling
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yachao Cui
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Junwei Zhang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Xianmin Mu
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Desheng Zhou
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Ting Zhao
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Yingchang Li
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China
| | - Zhongping Su
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China.
| | - Qiang You
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, China.
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Oh JH, Saeed WK, Kim HY, Lee SM, Lee AH, Park GR, Yoon EL, Jun DW. Hepatic stellate cells activate and avoid death under necroptosis stimuli: Hepatic fibrosis during necroptosis. J Gastroenterol Hepatol 2023; 38:2206-2214. [PMID: 37811601 DOI: 10.1111/jgh.16368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND AND AIM Necroptosis is an emerging cell death pathway that allows cells to undergo "cellular suicide" in a caspase-independent manner. We investigated the fate of hepatic stellate cells (HSCs) under necroptotic stimuli. METHODS AND RESULTS The RNA level of mixed lineage kinase domain-like protein (MLKL) is higher in patients with non-alcoholic fatty liver disease than in healthy controls. Hepatic fibrosis was significantly lower in MLKL-KO bile duct ligation (KO-BDL) mice than in wild-type-BDL mice. Necroptotic stimuli caused the death of HT-29 and U937 cells. However, necroptotic stimuli activate HSCs instead of inducing cell death. MLKL inhibitors attenuated fibrogenic changes in HSCs during necroptosis. Unlike HT-29 and U937 cells, MLKL phosphorylation and oligomerization were not observed during necroptosis in HSCs. RNA sequencing showed that NF-κB signaling-related genes were upregulated in HSCs following necroptotic stimulation. Necroptotic stimuli in HSCs increased the nuclear expression of NF-κB, which decreased after MLKL inhibitor treatment. Induction of necroptosis in HSCs led to autophagosome activation and formation, which were attenuated by MLKL inhibitor treatment. CONCLUSION HSCs avoid necroptosis due to the absence of MLKL phosphorylation and oligomerization and are activated through autophagosome and NF-κB pathways.
Collapse
Affiliation(s)
- Ju Hee Oh
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Waqar Khalid Saeed
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Hye Young Kim
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Seung Min Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - A Hyeon Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Gye Ryeol Park
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Eileen L Yoon
- Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, South Korea
| | - Dae Won Jun
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
22
|
Hao M, Han X, Yao Z, Zhang H, Zhao M, Peng M, Wang K, Shan Q, Sang X, Wu X, Wang L, Lv Q, Yang Q, Bao Y, Kuang H, Zhang H, Cao G. The pathogenesis of organ fibrosis: Focus on necroptosis. Br J Pharmacol 2023; 180:2862-2879. [PMID: 36111431 DOI: 10.1111/bph.15952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a common process of tissue repair response to multiple injuries in all chronic progressive diseases, which features with excessive deposition of extracellular matrix. Fibrosis can occur in all organs and tends to be nonreversible with the progress of the disease. Different cells types in different organs are involved in the occurrence and development of fibrosis, that is, hepatic stellate cells, pancreatic stellate cells, fibroblasts and myofibroblasts. Various types of programmed cell death, including apoptosis, autophagy, ferroptosis and necroptosis, are closely related to organ fibrosis. Among these programmed cell death types, necroptosis, an emerging regulated cell death type, is regarded as a huge potential target to ameliorate organ fibrosis. In this review, we summarize the role of necroptosis signalling in organ fibrosis and collate the small molecule compounds targeting necroptosis. In addition, we discuss the potential challenges, opportunities and open questions in using necroptosis signalling as a potential target for antifibrotic therapies. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouhui Yao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Han Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengting Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Stravitz RT, Fontana RJ, Karvellas C, Durkalski V, McGuire B, Rule JA, Tujios S, Lee WM. Future directions in acute liver failure. Hepatology 2023; 78:1266-1289. [PMID: 37183883 PMCID: PMC10521792 DOI: 10.1097/hep.0000000000000458] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Acute liver failure (ALF) describes a clinical syndrome of rapid hepatocyte injury leading to liver failure manifested by coagulopathy and encephalopathy in the absence of pre-existing cirrhosis. The hallmark diagnostic features are a prolonged prothrombin time (ie, an international normalized ratio of prothrombin time of ≥1.5) and any degree of mental status alteration (HE). As a rare, orphan disease, it seemed an obvious target for a multicenter network. The Acute Liver Failure Study Group (ALFSG) began in 1997 to more thoroughly study and understand the causes, natural history, and management of ALF. Over the course of 22 years, 3364 adult patients were enrolled in the study registry (2614 ALF and 857 acute liver injury-international normalized ratio 2.0 but no encephalopathy-ALI) and >150,000 biosamples collected, including serum, plasma, urine, DNA, and liver tissue. Within the Registry study sites, 4 prospective substudies were conducted and published, 2 interventional ( N -acetylcysteine and ornithine phenylacetate), 1 prognostic [ 13 C-methacetin breath test (MBT)], and 1 mechanistic (rotational thromboelastometry). To review ALFSG's accomplishments and consider next steps, a 2-day in-person conference was held at UT Southwestern Medical Center, Dallas, TX, entitled "Acute Liver Failure: Science and Practice," in May 2022. To summarize the important findings in the field, this review highlights the current state of understanding of ALF and, more importantly, asks what further studies are needed to improve our understanding of the pathogenesis, natural history, and management of this unique and dramatic condition.
Collapse
Affiliation(s)
| | | | | | - Valerie Durkalski
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Jody A. Rule
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Shannan Tujios
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - William M. Lee
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
24
|
Lee J, Ha J, Kim JH, Seo D, Kim M, Lee Y, Park SS, Choi D, Park JS, Lee YJ, Yang S, Yang KM, Jung SM, Hong S, Koo SH, Bae YS, Kim SJ, Park SH. Peli3 ablation ameliorates acetaminophen-induced liver injury through inhibition of GSK3β phosphorylation and mitochondrial translocation. Exp Mol Med 2023; 55:1218-1231. [PMID: 37258579 PMCID: PMC10318043 DOI: 10.1038/s12276-023-01009-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/07/2023] [Accepted: 03/15/2023] [Indexed: 06/02/2023] Open
Abstract
The signaling pathways governing acetaminophen (APAP)-induced liver injury have been extensively studied. However, little is known about the ubiquitin-modifying enzymes needed for the regulation of APAP-induced liver injury. Here, we examined whether the Pellino3 protein, which has E3 ligase activity, is needed for APAP-induced liver injury and subsequently explored its molecular mechanism. Whole-body Peli3-/- knockout (KO) and adenovirus-mediated Peli3 knockdown (KD) mice showed reduced levels of centrilobular cell death, infiltration of immune cells, and biomarkers of liver injury, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), upon APAP treatment compared to wild-type (WT) mice. Peli3 deficiency in primary hepatocytes decreased mitochondrial and lysosomal damage and reduced the mitochondrial reactive oxygen species (ROS) levels. In addition, the levels of phosphorylation at serine 9 in the cytoplasm and mitochondrial translocation of GSK3β were decreased in primary hepatocytes obtained from Peli3-/- KO mice, and these reductions were accompanied by decreases in JNK phosphorylation and mitochondrial translocation. Pellino3 bound more strongly to GSK3β compared with JNK1 and JNK2 and induced the lysine 63 (K63)-mediated polyubiquitination of GSK3β. In rescue experiments, the ectopic expression of wild-type Pellino3 in Peli3-/- KO hepatocytes restored the mitochondrial translocation of GSK3β, but this restoration was not obtained with expression of a catalytically inactive mutant of Pellino3. These findings are the first to suggest a mechanistic link between Pellino3 and APAP-induced liver injury through the modulation of GSK3β polyubiquitination.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihoon Ha
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jun-Hyeong Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- KoBio Labs, Seongnam, 13488, Republic of Korea
| | - Dongyeob Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Minbeom Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yerin Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seong Shil Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dahee Choi
- Department of Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Seok Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young Jae Lee
- Department of Biochemistry, Gachon University School of Medicine, Incheon, 21999, Republic of Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
- SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suntaek Hong
- Department of Biochemistry, Gachon University School of Medicine, Incheon, 21999, Republic of Korea
| | - Seung-Hoi Koo
- Department of Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seong-Jin Kim
- Medpacto Inc., Seoul, 06668, Republic of Korea.
- GILO Institute, GILO Foundation, Seoul, 06668, Republic of Korea.
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
25
|
Zhang T, Zhang N, Xing J, Zhang S, Chen Y, Xu D, Gu J. UDP-glucuronate metabolism controls RIPK1-driven liver damage in nonalcoholic steatohepatitis. Nat Commun 2023; 14:2715. [PMID: 37169760 PMCID: PMC10175487 DOI: 10.1038/s41467-023-38371-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
Hepatocyte apoptosis plays an essential role in the progression of nonalcoholic steatohepatitis (NASH). However, the molecular mechanisms underlying hepatocyte apoptosis remain unclear. Here, we identify UDP-glucose 6-dehydrogenase (UGDH) as a suppressor of NASH-associated liver damage by inhibiting RIPK1 kinase-dependent hepatocyte apoptosis. UGDH is progressively reduced in proportion to NASH severity. UGDH absence from hepatocytes hastens the development of liver damage in male mice with NASH, which is suppressed by RIPK1 kinase-dead knockin mutation. Mechanistically, UGDH suppresses RIPK1 by converting UDP-glucose to UDP-glucuronate, the latter directly binds to the kinase domain of RIPK1 and inhibits its activation. Recovering UDP-glucuronate levels, even after the onset of NASH, improved liver damage. Our findings reveal a role for UGDH and UDP-glucuronate in NASH pathogenesis and uncover a mechanism by which UDP-glucuronate controls hepatocyte apoptosis by targeting RIPK1 kinase, and suggest UDP-glucuronate metabolism as a feasible target for more specific treatment of NASH-associated liver damage.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430022, China
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jing Xing
- Lingang Laboratory, Shanghai, 200031, China
| | - Shuhua Zhang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430022, China
| | - Yulu Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, 2012010, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jinyang Gu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430022, China.
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
26
|
Hoff J, Xiong L, Kammann T, Neugebauer S, Micheel JM, Gaßler N, Bauer M, Press AT. RIPK3 promoter hypermethylation in hepatocytes protects from bile acid-induced inflammation and necroptosis. Cell Death Dis 2023; 14:275. [PMID: 37072399 PMCID: PMC10113265 DOI: 10.1038/s41419-023-05794-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Necroptosis facilitates cell death in a controlled manner and is employed by many cell types following injury. It plays a significant role in various liver diseases, albeit the cell-type-specific regulation of necroptosis in the liver and especially hepatocytes, has not yet been conceptualized. We demonstrate that DNA methylation suppresses RIPK3 expression in human hepatocytes and HepG2 cells. In diseases leading to cholestasis, the RIPK3 expression is induced in mice and humans in a cell-type-specific manner. Overexpression of RIPK3 in HepG2 cells leads to RIPK3 activation by phosphorylation and cell death, further modulated by different bile acids. Additionally, bile acids and RIPK3 activation further facilitate JNK phosphorylation, IL-8 expression, and its release. This suggests that hepatocytes suppress RIPK3 expression to protect themselves from necroptosis and cytokine release induced by bile acid and RIPK3. In chronic liver diseases associated with cholestasis, induction of RIPK3 expression may be an early event signaling danger and repair through releasing IL-8.
Collapse
Affiliation(s)
- Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Ling Xiong
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Tobias Kammann
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Sophie Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, 07747, Germany
| | - Julia M Micheel
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | | | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany.
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, 07747, Germany.
| |
Collapse
|
27
|
Zhao W, Lei M, Li J, Zhang H, Zhang H, Han Y, Ba Z, Zhang M, Li D, Liu C. Yes-associated protein inhibition ameliorates liver fibrosis and acute and chronic liver failure by decreasing ferroptosis and necroptosis. Heliyon 2023; 9:e15075. [PMID: 37151632 PMCID: PMC10161368 DOI: 10.1016/j.heliyon.2023.e15075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Background/aims This study aims to determine which cell death modes contribute most in the progression of cirrhosis and acute-on-chronic liver failure (ACLF), and to investigate whether Yes associated protein (YAP) affects the disease process by regulating cell death. Materials and methods 30C57BL/6 male mice were divided into five groups: control, carbon tetrachloride (CCl4)-induced liver fibrosis model, CCl4+verteporfin, CCl4+lipopolysaccharides (LPS) combined with the D-(+)-Galactosamine (LPS/D-GalN)-induced ACLF model, and ACLF + verteporfin. Patients with chronic hepatitis B (CHB), hepatitis B virus (HBV) related liver cirrhosis or ACLF were enrolled. Histology, immunohistochemistry, transmission electron microscopy, Western blot and ELISA were conducted to assess the roles of YAP and cell death in liver cirrhosis and ACLF, and to explore the effect of YAP inhibition on cell deaths. Results YAP was markedly increased in mice with liver fibrosis and ACLF, along with ferroptosis and necroptosis. Furthermore, YAP inhibition significantly suppressed fibrosis in CCl4-mediated liver fibrosis and ACLF-associated liver injury. Notably, CCl4 induced up-regulation of ACSL4 and RIPK3 and down-regulation of SLC7A11, key factors in ferroptosis and necroptosis. This was significantly abrogated by verteporfin treatment. Similar changes in ferroptosis and necroptosis were found in ACLF and ACLF + verteporfin groups. Consistent with the above findings in mice, we found that plasma YAP levels were gradually increased with the development of HBV-related liver fibrosis and ACLF. Conclusion Ferroptosis and necroptosis are involved in the development of liver cirrhosis and ACLF. Inhibition of YAP improved liver fibrosis and liver damage in ACLF through a reduction in ferroptosis and necroptosis. Our findings may help better understanding the role of YAP in liver fibrosis and ACLF.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Core Cooperative Unit of National Clinical Research Center for Infectious Diseases, China
- Key Laboratory of Infection and Immunity of Anhui Province, China
| | - Miao Lei
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Core Cooperative Unit of National Clinical Research Center for Infectious Diseases, China
- Key Laboratory of Infection and Immunity of Anhui Province, China
| | - Jinfeng Li
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Core Cooperative Unit of National Clinical Research Center for Infectious Diseases, China
- Key Laboratory of Infection and Immunity of Anhui Province, China
| | - Hailin Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Core Cooperative Unit of National Clinical Research Center for Infectious Diseases, China
- Key Laboratory of Infection and Immunity of Anhui Province, China
| | - Hongkun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Core Cooperative Unit of National Clinical Research Center for Infectious Diseases, China
- Key Laboratory of Infection and Immunity of Anhui Province, China
| | - Yuxin Han
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Core Cooperative Unit of National Clinical Research Center for Infectious Diseases, China
- Key Laboratory of Infection and Immunity of Anhui Province, China
| | - Zhiwei Ba
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Core Cooperative Unit of National Clinical Research Center for Infectious Diseases, China
- Key Laboratory of Infection and Immunity of Anhui Province, China
| | - Manli Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Core Cooperative Unit of National Clinical Research Center for Infectious Diseases, China
- Key Laboratory of Infection and Immunity of Anhui Province, China
| | - Dongdong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Core Cooperative Unit of National Clinical Research Center for Infectious Diseases, China
- Key Laboratory of Infection and Immunity of Anhui Province, China
| | - Chuanmiao Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Core Cooperative Unit of National Clinical Research Center for Infectious Diseases, China
- Key Laboratory of Infection and Immunity of Anhui Province, China
| |
Collapse
|
28
|
Wu X, Fan X, McMullen MR, Miyata T, Kim A, Pathak V, Wu J, Day LZ, Hardesty JE, Welch N, Dasarathy J, Allende DS, McCullough AJ, Jacobs JM, Rotroff DM, Dasarathy S, Nagy LE. Macrophage-derived MLKL in alcohol-associated liver disease: Regulation of phagocytosis. Hepatology 2023; 77:902-919. [PMID: 35689613 PMCID: PMC9741663 DOI: 10.1002/hep.32612] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Mixed lineage kinase domain-like pseudokinase (MLKL), a key terminal effector of necroptosis, also plays a role in intracellular vesicle trafficking that is critical for regulating liver inflammation and injury in alcohol-associated liver disease (ALD). Although receptor interacting protein kinase 3 (Rip3)-/- mice are completely protected from ethanol-induced liver injury, Mlkl-/- mice are only partially protected. Therefore, we hypothesized that cell-specific functions of MLKL may contribute to ethanol-induced injury. APPROACH AND RESULTS Bone marrow transplants between Mlkl-/- mice and littermates were conducted to distinguish the role of myeloid versus nonmyeloid Mlkl in the Gao-binge model of ALD. Ethanol-induced hepatic injury, steatosis, and inflammation were exacerbated in Mlkl-/- →wild-type (WT) mice, whereas Mlkl deficiency in nonmyeloid cells (WT→ Mlkl-/- ) had no effect on Gao-binge ethanol-induced injury. Importantly, Mlkl deficiency in myeloid cells exacerbated ethanol-mediated bacterial burden and accumulation of immune cells in livers. Mechanistically, challenging macrophages with lipopolysaccharide (LPS) induced signal transducer and activator of transcription 1-mediated expression and phosphorylation of MLKL, as well as translocation and oligomerization of MLKL to intracellular compartments, including phagosomes and lysosomes but not plasma membrane. Importantly, pharmacological or genetic inhibition of MLKL suppressed the phagocytic capability of primary mouse Kupffer cells (KCs) at baseline and in response to LPS with/without ethanol as well as peripheral monocytes isolated from both healthy controls and patients with alcohol-associated hepatitis. Further, in vivo studies revealed that KCs of Mlkl-/- mice phagocytosed fewer bioparticles than KCs of WT mice. CONCLUSION Together, these data indicate that myeloid MLKL restricts ethanol-induced liver inflammation and injury by regulating hepatic immune cell homeostasis and macrophage phagocytosis.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiude Fan
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Megan R. McMullen
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tatsunori Miyata
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Kim
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vai Pathak
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jianguo Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Le Z. Day
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Josiah E. Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Nicole Welch
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jaividhya Dasarathy
- Department of Family Medicine, Metro Health Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Arthur J. McCullough
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jon M. Jacobs
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Srinivasan Dasarathy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Laura E. Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Kim HY, Yoon HS, Heo AJ, Jung EJ, Ji CH, Mun SR, Lee MJ, Kwon YT, Park JW. Mitophagy and endoplasmic reticulum-phagy accelerated by a p62 ZZ ligand alleviates paracetamol-induced hepatotoxicity. Br J Pharmacol 2022; 180:1247-1266. [PMID: 36479690 DOI: 10.1111/bph.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Paracetamol (acetaminophen)-induced hepatotoxicity is the leading cause of drug-induced liver injury worldwide. Autophagy is a degradative process by which various cargoes are collected by the autophagic receptors such as p62/SQSTM1/Sequestosome-1 for lysosomal degradation. Here, we investigated the protective role of p62-dependent autophagy in paracetamol-induced liver injury. EXPERIMENTAL APPROACH Paracetamol-induced hepatotoxicity was induced by a single i.p. injection of paracetamol (500 mg·kg-1 ) in C57/BL6 male mice. YTK-2205 (20 mg·kg-1 ), a p62 agonist targeting ZZ domain, was co- or post-administered with paracetamol. Western blotting and immunocytochemistry were performed to explore the mechanism. KEY RESULTS N-terminal arginylation of the molecular chaperone calreticulin retro-translocated from the endoplasmic reticulum (ER) was induced in the livers undergoing paracetamol-induced hepatotoxicity, and YTK-2205 exhibited notable therapeutic efficacy in acute hepatotoxicity as assessed by the levels of serum alanine aminotransferase and hepatic necrosis. This efficacy was significantly attributed to accelerated degradation of ubiquitin (Ub) conjugates as well as damaged mitochondria (mitophagy) and endoplasmic reticulum (ER-phagy). In primary murine hepatocytes treated with paracetamol, YTK-2205 induced the co-localization of p62+ LC3+ phagophores to the sites of mitophagy and ER-phagy. A similar activity of YTK-2205 was observed with N-acetyl-p-benzoquinone imine, a putative toxic metabolite of paracetamol in Hep3B cells. CONCLUSION AND IMPLICATIONS Our results elucidated that p62-dependent autophagy plays a key role in the removal of cytotoxic materials such as damaged mitochondria in paracetamol-induced hepatotoxicity. Small molecule ligands to p62 may be developed into drugs to treat this pathological condition.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hee-Soo Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eui Jung Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,AUTOTAC Bio Inc., 254, Changgyeonggung-ro, Jongno-gu, Seoul, Republic of Korea
| | - Su Ran Mun
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Ju Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,AUTOTAC Bio Inc., 254, Changgyeonggung-ro, Jongno-gu, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Preston SP, Stutz MD, Allison CC, Nachbur U, Gouil Q, Tran BM, Duvivier V, Arandjelovic P, Cooney JP, Mackiewicz L, Meng Y, Schaefer J, Bader SM, Peng H, Valaydon Z, Rajasekaran P, Jennison C, Lopaticki S, Farrell A, Ryan M, Howell J, Croagh C, Karunakaran D, Schuster-Klein C, Murphy JM, Fifis T, Christophi C, Vincan E, Blewitt ME, Thompson A, Boddey JA, Doerflinger M, Pellegrini M. Epigenetic Silencing of RIPK3 in Hepatocytes Prevents MLKL-mediated Necroptosis From Contributing to Liver Pathologies. Gastroenterology 2022; 163:1643-1657.e14. [PMID: 36037995 DOI: 10.1053/j.gastro.2022.08.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Necroptosis is a highly inflammatory mode of cell death that has been implicated in causing hepatic injury including steatohepatitis/ nonalcoholic steatohepatitis (NASH); however, the evidence supporting these claims has been controversial. A comprehensive, fundamental understanding of cell death pathways involved in liver disease critically underpins rational strategies for therapeutic intervention. We sought to define the role and relevance of necroptosis in liver pathology. METHODS Several animal models of human liver pathology, including diet-induced steatohepatitis in male mice and diverse infections in both male and female mice, were used to dissect the relevance of necroptosis in liver pathobiology. We applied necroptotic stimuli to primary mouse and human hepatocytes to measure their susceptibility to necroptosis. Paired liver biospecimens from patients with NASH, before and after intervention, were analyzed. DNA methylation sequencing was also performed to investigate the epigenetic regulation of RIPK3 expression in primary human and mouse hepatocytes. RESULTS Identical infection kinetics and pathologic outcomes were observed in mice deficient in an essential necroptotic effector protein, MLKL, compared with control animals. Mice lacking MLKL were indistinguishable from wild-type mice when fed a high-fat diet to induce NASH. Under all conditions tested, we were unable to induce necroptosis in hepatocytes. We confirmed that a critical activator of necroptosis, RIPK3, was epigenetically silenced in mouse and human primary hepatocytes and rendered them unable to undergo necroptosis. CONCLUSIONS We have provided compelling evidence that necroptosis is disabled in hepatocytes during homeostasis and in the pathologic conditions tested in this study.
Collapse
Affiliation(s)
- Simon P Preston
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael D Stutz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ueli Nachbur
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bang Manh Tran
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Valerie Duvivier
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, SERVIER Group, Suresnes, France
| | - Philip Arandjelovic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - James P Cooney
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jan Schaefer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stefanie M Bader
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Hongke Peng
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Zina Valaydon
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Pravin Rajasekaran
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Charlie Jennison
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sash Lopaticki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Ann Farrell
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marno Ryan
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jess Howell
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine Croagh
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Denuja Karunakaran
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia; Monash Biomedicine Discovery Institute and Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Carole Schuster-Klein
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, SERVIER Group, Suresnes, France
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Theodora Fifis
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Christophi
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Vincan
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Victorian Infectious Disease Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Marnie E Blewitt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Thompson
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justin A Boddey
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Abstract
Acetaminophen (APAP) is a widely used pain reliever that can cause liver injury or liver failure in response to an overdose. Understanding the mechanisms of APAP-induced cell death is critical for identifying new therapeutic targets. In this respect it was hypothesized that hepatocytes die by oncotic necrosis, apoptosis, necroptosis, ferroptosis and more recently pyroptosis. The latter cell death is characterized by caspase-dependent gasdermin cleavage into a C-terminal and an N-terminal fragment, which forms pores in the plasma membrane. The gasdermin pores can release potassium, interleukin-1β (IL-1β), IL-18, and other small molecules in a sublytic phase, which can be the main function of the pores in certain cell types such as inflammatory cells. Alternatively, the process can progress to full lysis of the cell (pyroptosis) with extensive cell contents release. This review discusses the experimental evidence for the involvement of pyroptosis in APAP hepatotoxicity as well as the arguments against pyroptosis as a relevant mechanism of APAP-induced cell death in hepatocytes. Based on the critical evaluation of the currently available literature and understanding of the pathophysiology, it can be concluded that pyroptotic cell death is unlikely to be a relevant contributor to APAP-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David S. Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
32
|
Dara L. No Necroptosis in Hepatocytes: The Final Nail in the Coffin? Gastroenterology 2022; 163:1492-1495. [PMID: 36155192 DOI: 10.1053/j.gastro.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Lily Dara
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, and, Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
33
|
Chaouhan HS, Vinod C, Mahapatra N, Yu SH, Wang IK, Chen KB, Yu TM, Li CY. Necroptosis: A Pathogenic Negotiator in Human Diseases. Int J Mol Sci 2022; 23:12714. [PMID: 36361505 PMCID: PMC9655262 DOI: 10.3390/ijms232112714] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Over the past few decades, mechanisms of programmed cell death have attracted the scientific community because they are involved in diverse human diseases. Initially, apoptosis was considered as a crucial mechanistic pathway for programmed cell death; recently, an alternative regulated mode of cell death was identified, mimicking the features of both apoptosis and necrosis. Several lines of evidence have revealed that dysregulation of necroptosis leads to pathological diseases such as cancer, cardiovascular, lung, renal, hepatic, neurodegenerative, and inflammatory diseases. Regulated forms of necrosis are executed by death receptor ligands through the activation of receptor-interacting protein kinase (RIPK)-1/3 and mixed-lineage kinase domain-like (MLKL), resulting in the formation of a necrosome complex. Many papers based on genetic and pharmacological studies have shown that RIPKs and MLKL are the key regulatory effectors during the progression of multiple pathological diseases. This review focused on illuminating the mechanisms underlying necroptosis, the functions of necroptosis-associated proteins, and their influences on disease progression. We also discuss numerous natural and chemical compounds and novel targeted therapies that elicit beneficial roles of necroptotic cell death in malignant cells to bypass apoptosis and drug resistance and to provide suggestions for further research in this field.
Collapse
Affiliation(s)
- Hitesh Singh Chaouhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ch Vinod
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Nikita Mahapatra
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Shao-Hua Yu
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Kuan Wang
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Tung-Min Yu
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40402, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
34
|
Liu ZF, Liu K, Liu ZQ, Cong L, Lei MY, Li J, Ma Z, Deng Y, Liu W, Xu B. Melatonin attenuates manganese-induced mitochondrial fragmentation by suppressing the Mst1/JNK signaling pathway in primary mouse neurons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157134. [PMID: 35792268 DOI: 10.1016/j.scitotenv.2022.157134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Manganese (Mn) toxicity is mainly caused by excessive Mn content in drinking water and occupational exposure. Moreover, overexposure to Mn can impair mental, cognitive, memory, and motor capacities. Although melatonin (Mel) can protect against Mn-induced neuronal damage and mitochondrial fragmentation, the underlying mechanism remains elusive. Here, we examined the related molecular mechanisms underlying Mel attenuating Mn-induced mitochondrial fragmentation through the mammalian sterile 20-like kinase-1 (Mst1)/JNK signaling path. To test the role of Mst1 in mitochondrial fragmentation, we treated mouse primary neurons overexpressing Mst1 with Mel and Mn stimulation. In normal neurons, 10 μM Mel reduced the effects of Mn (200 μM) on Mst1 expression at the mRNA and protein levels and on phosphorylation of JNK and Drp1, Drp1 mitochondrial translocation, and mitochondrial fragmentation. Conversely, overexpression of Mst1 hindered the protective effect of Mel (10 μM) against Mn-induced mitochondrial fragmentation. Anisomycin (ANI), an activator of JNK signaling, was similarly found to inhibit the protective effect of Mel on mitochondria, while Mst1 levels were not significantly changed. Thus, our results demonstrated that 10 μM Mel negatively regulated the Mst1-JNK pathway, thereby reducing excessive mitochondrial fission, maintaining the mitochondrial network, and alleviating Mn-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhuo-Fan Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Zhi-Qi Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Lin Cong
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Meng-Yu Lei
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Jing Li
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, China.
| |
Collapse
|
35
|
Bai L, Lu W, Tang S, Tang H, Xu M, Liang C, Zheng S, Liu S, Kong M, Duan Z, Chen Y. Galectin-3 critically mediates the hepatoprotection conferred by M2-like macrophages in ACLF by inhibiting pyroptosis but not necroptosis signalling. Cell Death Dis 2022; 13:775. [PMID: 36075893 PMCID: PMC9458748 DOI: 10.1038/s41419-022-05181-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
We previously documented that M2-like macrophages exert a hepatoprotective effect in acute-on-chronic liver failure (ACLF) by inhibiting necroptosis signalling. Nevertheless, the molecular mechanism behind this hepatoprotection still needs to be further dissected. Galectin-3 (GAL3) has been reported to be critically involved in the pathogenesis of multiple liver diseases, whereas the potential role of GAL3 in ACLF remains to be explored. Herein, we hypothesised that GAL3 plays a pivotal role in the hepatoprotection conferred by M2-like macrophages in ACLF by inhibiting necroptosis. To test this hypothesis, we first assessed the expression of GAL3 in control and fibrotic mice with or without acute insult. Second, loss- and gain-of-function experiments of GAL3 were performed. Third, the correlation between GAL3 and M2-like macrophage activation was analysed, and the potential role of GAL3 in M2-like macrophage-conferred hepatoprotection was confirmed. Finally, the molecular mechanism underlying GAL3-mediated hepatoprotection was dissected. GAL3 was found to be obviously upregulated in fibrotic mice with or without acute insult but not in acutely injured mice. Depletion of GAL3 aggravated hepatic damage in fibrotic mice upon insult. Conversely, adoptive transfer of GAL3 provided normal mice enhanced resistance against acute insult. The expression of GAL3 is closely correlated with M2-like macrophage activation. Through adoptive transfer and depletion experiments, M2-like macrophages were verified to act as a major source of GAL3. Importantly, GAL3 was confirmed to hold a pivotal place in the hepatoprotection conferred by M2-like macrophages through loss- and gain-of-function experiments. Unexpectedly, the depletion and adoptive transfer of GAL3 resulted in significant differences in the expression levels of pyroptosis but not necroptosis signalling molecules. Taken together, GAL3 plays a pivotal role in the hepatoprotection conferred by M2-like macrophages in ACLF by inhibiting pyroptosis but not necroptosis signalling. Our findings provide novel insights into the pathogenesis and therapy of ACLF.
Collapse
Affiliation(s)
- Li Bai
- The Fourth Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, 100069, Beijing, China
| | - Wang Lu
- The Fourth Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, 100069, Beijing, China
| | - Shan Tang
- The First Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
| | - Huixin Tang
- The Fourth Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, 100069, Beijing, China
| | - Manman Xu
- The Fourth Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, 100069, Beijing, China
| | - Chen Liang
- The First Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
| | - Sujun Zheng
- The First Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
| | - Shuang Liu
- The Fourth Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, 100069, Beijing, China
| | - Ming Kong
- The Fourth Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, 100069, Beijing, China
| | - Zhongping Duan
- The Fourth Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, 100069, Beijing, China
| | - Yu Chen
- The Fourth Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, 100069, Beijing, China.
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, 100069, Beijing, China.
| |
Collapse
|
36
|
Abstract
Necroptosis, or programmed necrosis, is an inflammatory form of cell death with important functions in host defense against pathogens and tissue homeostasis. The four cytosolic receptor-interacting protein kinase homotypic interaction motif (RHIM)-containing adaptor proteins RIPK1, RIPK3, TRIF (also known as TICAM1) and ZBP1 mediate necroptosis induction in response to infection and cytokine or innate immune receptor activation. Activation of the RHIM adaptors leads to phosphorylation, oligomerization and membrane targeting of the necroptosis effector protein mixed lineage kinase domain-like (MLKL). Active MLKL induces lesions on the plasma membrane, leading to the release of pro-inflammatory damage-associated molecular patterns (DAMPs). Thus, activities of the RHIM adaptors and MLKL are tightly regulated by posttranslational modifications to prevent inadvertent release of immunogenic contents. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the regulatory mechanisms of necroptosis and its biological functions in tissue homeostasis, pathogen infection and other inflammatory diseases.
Collapse
Affiliation(s)
- Kidong Kang
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| | - Christa Park
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, DUMC 3010, Durham, NC 27710, USA
| |
Collapse
|
37
|
Jaeschke H, Umbaugh DS. Protection against acetaminophen-induced liver injury with MG53: Muscle-liver axis and necroptosis. J Hepatol 2022; 77:560-562. [PMID: 35278532 DOI: 10.1016/j.jhep.2022.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, School of Medicine, Kansas City, USA.
| | - David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, School of Medicine, Kansas City, USA
| |
Collapse
|
38
|
Inhibition of TWEAK/Tnfrsf12a axis protects against acute liver failure by suppressing RIPK1-dependent apoptosis. Cell Death Discov 2022; 8:328. [PMID: 35853848 PMCID: PMC9296540 DOI: 10.1038/s41420-022-01123-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Acute liver failure (ALF) is a severe clinical syndrome characterized by massive death of hepatocytes in a short time, resulting in coagulopathy and hepatic encephalopathy, with a high mortality in patients without pre-existing liver disease. Effective treatment of ALF is currently limited to liver transplantation, highlighting the need for new target therapies. Here, we found that expression of hepatic tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor tumor necrosis factor receptor superfamily member 12A (Tnfrsf12a) were significantly increased during ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Inhibition of TWEAK/Tnfrsf12a axis markedly attenuated TAA or APAP-induced ALF. Moreover, our results demonstrated that TWEAK/Tnfrsf12a axis induced receptor-interacting protein kinase 1 (RIPK1)-dependent apoptosis of hepatocytes, instead of necroptosis or pyroptosis. Notably, hepatic TNFRSF12A and TWEAK levels were also significantly increased in liver biopsies from ALF patients. In summary, our results demonstrate that during ALF, TWEAK/Tnfrsf12a axis activates RIPK1 in hepatocytes, leading to RIPK1-dependent apoptosis and subsequent liver injury. Therefore, inhibition of either TWEAK/Tnfrsf12a axis or RIPK1-dependent apoptosis attenuates liver injury, providing a new potential therapeutic target for the treatment of ALF.
Collapse
|
39
|
Jin S, Zhang T, Fu X, Duan Z, Sun J, Wang Y. Aniline exposure activates receptor-interacting serine/threonineprotein kinase 1 and causes necroptosis of AML12 cells. Toxicol Ind Health 2022; 38:444-454. [PMID: 35658749 DOI: 10.1177/07482337221106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
With the increased use of aniline, potential impacts on human health cannot be ignored. The hepatotoxicity of aniline is largely unknown and the underlying mechanism remains unclear. Therefore, the aim of the present study was to investigate the hepatotoxicity of aniline and elucidate the underlying mechanism. AML12 cells were exposed to different concentrations of aniline (0, 5, 10, or 20 mM) to observe changes to reactive oxygen species (ROS) production and the expression patterns of necroptosis-related proteins (RIPK1, RIPK3, and MLKL). The potential mechanism underlying aniline-induced hepatotoxicity was explored by knockout of RIPK1. The results showed that aniline induced cytotoxicity in AML12 cells in a dose-dependent manner in addition to the production of ROS and subsequent necroptosis of AML12 cells. Silencing of RIPK1 reversed upregulation of necroptosis-related proteins in AML12 cells exposed to aniline, demonstrating that aniline-induced ROS production was related to necroptosis of AML12. Moreover, aniline promoted intracellular RIPK1 activation, suggesting that the RIPK1/ROS pathway plays an important role in aniline-induced hepatotoxicity. NAC could quench ROS and inhibit necroptosis. These results provide a scientific basis for future studies of aniline-induced hepatotoxicity for the prevention and treatment of aniline-induced cytotoxicity.
Collapse
Affiliation(s)
- Shuo Jin
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| | - Tong Zhang
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| | - Xinyu Fu
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| | - Zhongliang Duan
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| | - Jianwen Sun
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Occupational Health, School of Public Health, 34707Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Jeon KI, Kumar A, Wozniak KT, Nehrke K, Huxlin KR. Defining the Role of Mitochondrial Fission in Corneal Myofibroblast Differentiation. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 35377925 PMCID: PMC8994166 DOI: 10.1167/iovs.63.4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Fibrosis caused by corneal wounding can lead to scar formation, impairing vision. Although preventing fibroblast-to-myofibroblast differentiation has therapeutic potential, effective mechanisms for doing so remain elusive. Recent work shows that mitochondria contribute to differentiation in several tissues. Here, we tested the hypothesis that mitochondrial dynamics, and specifically fission, are key for transforming growth factor (TGF)-β1-induced corneal myofibroblast differentiation. Methods Mitochondrial fission was inhibited pharmacologically in cultured primary cat corneal fibroblasts. We measured its impact on molecular markers of myofibroblast differentiation and assessed changes in mitochondrial morphology through fluorescence imaging. The phosphorylation status of established regulatory proteins, both of myofibroblast differentiation and mitochondrial fission, was assessed by Western analysis. Results Pharmacological inhibition of mitochondrial fission suppressed TGF-β1-induced increases in alpha-smooth muscle actin, collagen 1, and fibronectin expression, and prevented phosphorylation of c-Jun N-terminal kinase (JNK), but not small mothers against decapentaplegic 3, p38 mitogen-activated protein kinase (p38), extracellular signal-regulated kinase 1 (ERK1), or protein kinase B (AKT). TGF-β1 increased phosphorylation of dynamin-related protein 1 (DRP1), a mitochondrial fission regulator, and caused fragmentation of the mitochondrial network. Although inhibition of JNK, ERK1, or AKT prevented phosphorylation of DRP1, none sufficed to independently suppress TGF-β1-induced fragmentation. Conclusions Mitochondrial dynamics play a key role in early corneal fibrogenesis, acting together with profibrotic signaling. This is consistent with mitochondria's role as signaling hubs that coordinate metabolic decision-making. This suggests a feed-forward cascade through which mitochondria, at least in part through fission, reinforce noncanonical TGF-β1 signaling to attain corneal myofibroblast differentiation.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Ankita Kumar
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
| | - Kaitlin T Wozniak
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Keith Nehrke
- Department of Medicine - Nephrology Division, University of Rochester, Rochester, New York, United States
| | - Krystel R Huxlin
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| |
Collapse
|
41
|
Özdemir BH. Tumor Microenvironment: Necroptosis Switches the Subtype of Liver Cancer While Necrosis Promotes Tumor Recurrence and Progression. EXP CLIN TRANSPLANT 2022; 21:291-298. [PMID: 35297332 DOI: 10.6002/ect.2021.0457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Liver cancer is a heterogeneous group of solid tumors that include mainly epithelial tumors. As with other solid carcinomas, tumor development results from an accumulation of genetic and epigenetic alterations. Hepatocellular carcinoma and intrahepatic cholangiocarcinoma, derived from malignant transformation of hepatocytes and cholangiocytes, respectively, are 2 primary types of liver cancers. However, it has been shown that the same kind of cell can give rise to different types of cancer, depending on manner of cell death in the tumor microenvironment. In a recent animal study, hepatocytes gave rise to both hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Oncogenically activated hepatocytes were shown to give rise to intrahepatic cholangiocarcinoma or hepatocellular carcinoma depending on cell death type of neighboring cells. Hepatocytes within the necroptotic microenvironment gave rise to intrahepatic cholangiocarcinoma; however, hepatocytes harboring the same oncogenic driver gave rise to hepatocellular carcinoma within the apoptotic microenvironment. The hepatic cytokine microenvironment structured by the necroptosis can also switch hepatocellular carcinoma to intrahepatic cholangiocarcinoma independently of the oncogenic drivers. Cell death by necrosis in damaged livers can also lead to development of carcinoma. Cancer cells are known to be resistant to apoptosis as a result of p53 mutation. Therefore, necrosis is the primary cell death pathway in cancer therapy. Necrosis is associated with high levels of angiogenesis, tumor-associated macrophages, and increased inflammation in the tumor microenvironment. Patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma characterized by necrosis and tumor-associated macrophages have reduced overall survival and recurrence-free survival. Cytotoxicity from anticancer therapy can also lead to accelerated necrosis. The content of cells undergoing necrosis triggers cytokine secretion, which designs cancer progression via inflammatory and noninflammatory pathways. Thus, the tumor microenvironment and manner of cell death (necrosis, apoptosis, or necroptosis) are crucial factors in the development of primary liver cancers and tumor progression.
Collapse
Affiliation(s)
- B Handan Özdemir
- From the Pathology Department, Baskent University, Ankara, Turkey
| |
Collapse
|
42
|
Han Y, Black S, Gong Z, Chen Z, Ko JK, Zhou Z, Xia T, Fang D, Yang D, Gu D, Zhang Z, Ren H, Duan X, Reader BF, Chen P, Li Y, Kim JL, Li Z, Xu X, Guo L, Zhou X, Haggard E, Zhu H, Tan T, Chen K, Ma J, Zeng C. Membrane-delimited signaling and cytosolic action of MG53 preserve hepatocyte integrity during drug-induced liver injury. J Hepatol 2022; 76:558-567. [PMID: 34736969 DOI: 10.1016/j.jhep.2021.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Drug-induced liver injury (DILI) remains challenging to treat and is still a leading cause of acute liver failure. MG53 is a muscle-derived tissue-repair protein that circulates in the bloodstream and whose physiological role in protection against DILI has not been examined. METHODS Recombinant MG53 protein (rhMG53) was administered exogenously, using mice with deletion of Mg53 or Ripk3. Live-cell imaging, histological, biochemical, and molecular studies were used to investigate the mechanisms that underlie the extracellular and intracellular action of rhMG53 in hepatoprotection. RESULTS Systemic administration of rhMG53 protein, in mice, can prophylactically and therapeutically treat DILI induced through exposure to acetaminophen, tetracycline, concanavalin A, carbon tetrachloride, or thioacetamide. Circulating MG53 protects hepatocytes from injury through direct interaction with MLKL at the plasma membrane. Extracellular MG53 can enter hepatocytes and act as an E3-ligase to mitigate RIPK3-mediated MLKL phosphorylation and membrane translocation. CONCLUSIONS Our data show that the membrane-delimited signaling and cytosolic dual action of MG53 effectively preserves hepatocyte integrity during DILI. rhMG53 may be a potential treatment option for patients with DILI. LAY SUMMARY Interventions to treat drug-induced liver injury and halt its progression into liver failure are of great value to society. The present study reveals that muscle-liver cross talk, with MG53 as a messenger, serves an important role in liver cell protection. Thus, MG53 is a potential treatment option for patients with drug-induced liver injury.
Collapse
Affiliation(s)
- Yu Han
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Sylvester Black
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhengfan Gong
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Zhi Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jae-Kyun Ko
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhongshu Zhou
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Dandong Fang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Donghai Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Daqian Gu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Xudong Duan
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Brenda F Reader
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yongsheng Li
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jung-Lye Kim
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhongguang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Laboratory of Cell Biology, Genetics and Developmental Biology, Shannxi Normal University College of Life Sciences, Xi'an, China
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shannxi Normal University College of Life Sciences, Xi'an, China
| | - Li Guo
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Erin Haggard
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
43
|
Shao S, Zhang Y, Li G, Yu Z, Cao Y, Zheng L, Zhang K, Han X, Shi Z, Cui H, Song X, Hong W, Han T. The dynamics of cell death patterns and regeneration during acute liver injury in mice. FEBS Open Bio 2022; 12:1061-1074. [PMID: 35184410 PMCID: PMC9063440 DOI: 10.1002/2211-5463.13383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 11/08/2022] Open
Abstract
Acute liver injury is a serious clinical syndrome with multiple causes and unclear pathological process. Here, CCl4‐ and D‐galactosamine/lipopolysaccharide (D‐gal/LPS)‐induced acute liver injury was established to explore the cell death patterns and determine whether or not liver regeneration occurred. In CCl4‐induced hepatic injury, three phases, including the early, progressive, and recovery phase, were considered based on alterations of serum transaminases and liver morphology. Moreover, in this model, cytokines exhibited double‐peak fluctuations; apoptosis and pyroptosis persisted throughout all phases; autophagy occurred in the early and the progressive phases; and sufficient and timely hepatocyte regeneration was observed only during the recovery phase. All of these phenomena contribute to mild liver injury and subsequent regeneration. Strikingly, only the early and progressive phases were observed in the D‐gal/LPS model. Slight pyroptosis occurred in the early phase but diminished in the progressive phase, while apoptosis, reduced autophagy, and slight but subsequently diminished regeneration occurred only during the progressive phase, accompanied by a strong cytokine storm, resulting in severe liver injury with high mortality. Taken together, our work reveals variable modes and dynamics of cell death and regeneration, which lead to different consequences for mild and severe acute liver injury, providing a helpful reference for clinical therapy and prognosis.
Collapse
Affiliation(s)
- Shuai Shao
- The School of Medicine NanKai University Tianjin China
| | - Yu Zhang
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Guantong Li
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Zhenjun Yu
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Yingying Cao
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Lina Zheng
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Kun Zhang
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Xiaohui Han
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Zhemin Shi
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Hongmei Cui
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Xiaomeng Song
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Wei Hong
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Tao Han
- The School of Medicine NanKai University Tianjin China
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
- Department of Hepatology and Gastroenterology Tianjin Union Medical Center Nankai University Tianjin China
- Department of Hepatology and Gastroenterology Tianjin Third Central Hospital affiliated to Nankai University Tianjin China
| |
Collapse
|
44
|
Pirfenidone attenuates acetaminophen-induced liver injury via suppressing c-Jun N-terminal kinase phosphorylation. Toxicol Appl Pharmacol 2022; 434:115817. [PMID: 34890640 DOI: 10.1016/j.taap.2021.115817] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in Western countries. Pirfenidone (PFD), an orally bioavailable pyridone derivative, is clinically used for idiopathic pulmonary fibrosis treatment and has antifibrotic, anti-inflammatory, and antioxidant effects. Here we examined the PFD effect on APAP-induced liver injury. In a murine model, APAP caused serum alanine aminotransferase elevation attenuated by PFD treatment. We performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and vital propidium iodide (PI) stainings simultaneously. APAP induced TUNEL-positive/PI-negative necrosis around the central vein and subsequent TUNEL-negative/PI-positive oncotic necrosis with hemorrhage and caused the upregulation of hypercoagulation- and hypoxia-associated gene expressions. PFD treatment suppressed these findings. Western blotting revealed PFD suppressed APAP-induced c-Jun N-terminal kinase (JNK) phosphorylation despite no effect on JNK phosphatase expressions. In conclusion, simultaneous TUNEL and vital PI staining is useful for discriminating APAP-induced necrosis from typical oncotic necrosis. Our results indicated that PFD attenuated APAP-induced liver injury by suppressing TUNEL-positive necrosis by directly blocking JNK phosphorylation. PFD is promising as a new option to prevent APAP-induced liver injury.
Collapse
|
45
|
Hameed H, Farooq M, Piquet-Pellorce C, Hamon A, Samson M, Le Seyec J. Questioning the RIPK1 kinase activity involvement in acetaminophen-induced hepatotoxicity in mouse. Free Radic Biol Med 2022; 178:243-245. [PMID: 34879229 DOI: 10.1016/j.freeradbiomed.2021.11.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Huma Hameed
- Univ Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S, 1085, Rennes, France
| | - Muhammad Farooq
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en santé, environnement et travail) - UMR_S, 1085, Rennes, France; Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Pakistan
| | - Claire Piquet-Pellorce
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en santé, environnement et travail) - UMR_S, 1085, Rennes, France
| | - Annaïg Hamon
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en santé, environnement et travail) - UMR_S, 1085, Rennes, France
| | - Michel Samson
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en santé, environnement et travail) - UMR_S, 1085, Rennes, France.
| | - Jacques Le Seyec
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en santé, environnement et travail) - UMR_S, 1085, Rennes, France
| |
Collapse
|
46
|
Kondo T, Macdonald S, Engelmann C, Habtesion A, Macnaughtan J, Mehta G, Mookerjee RP, Davies N, Pavesi M, Moreau R, Angeli P, Arroyo V, Andreola F, Jalan R. The role of RIPK1 mediated cell death in acute on chronic liver failure. Cell Death Dis 2021; 13:5. [PMID: 34921136 PMCID: PMC8683430 DOI: 10.1038/s41419-021-04442-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
Acute-on-chronic liver failure (ACLF) is characterized predominantly by non-apoptotic forms of hepatocyte cell death. Necroptosis is a form of programmed lytic cell death in which receptor interacting protein kinase (RIPK) 1, RIPK3 and phosphorylated mixed lineage kinase domain-like (pMLKL) are key components. This study was performed to determine the role of RIPK1 mediated cell death in ACLF. RIPK3 plasma levels and hepatic expression of RIPK1, RIPK3, and pMLKL were measured in healthy volunteers, stable patients with cirrhosis, and in hospitalized cirrhotic patients with acutely decompensated cirrhosis, with and without ACLF (AD). The role of necroptosis in ACLF was studied in two animal models of ACLF using inhibitors of RIPK1, necrostatin-1 (NEC-1) and SML2100 (RIPA56). Plasma RIPK3 levels predicted the risk of 28- and 90-day mortality (AUROC, 0.653 (95%CI 0.530–0.776), 0.696 (95%CI 0.593–0.799)] and also the progression of patients from no ACLF to ACLF [0.744 (95%CI 0.593–0.895)] and the results were validated in a 2nd patient cohort. This pattern was replicated in a rodent model of ACLF that was induced by administration of lipopolysaccharide (LPS) to bile-duct ligated rats and carbon tetrachloride-induced fibrosis mice administered galactosamine (CCL4/GalN). Suppression of caspase-8 activity in ACLF rodent model was observed suggesting a switch from caspase-dependent cell death to necroptosis. NEC-1 treatment prior to administration of LPS significantly reduced the severity of ACLF manifested by reduced liver, kidney, and brain injury mirrored by reduced hepatic and renal cell death. Similar hepato-protective effects were observed with RIPA56 in a murine model of ACLF induced by CCL4/GalN. These data demonstrate for the first time the importance of RIPK1 mediated cell death in human and rodent ACLF. Inhibition of RIPK1 is a potential novel therapeutic approach to prevent progression of susceptible patients from no ACLF to ACLF.
Collapse
Affiliation(s)
- Takayuki Kondo
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK.,Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Stewart Macdonald
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK.,Section Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany.,Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Jane Macnaughtan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Gautam Mehta
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Rajeshwar P Mookerjee
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Nathan Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Marco Pavesi
- European Foundation of the study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Richard Moreau
- European Foundation of the study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain.,Inserm, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy, Paris, France.,UMRS1149, Université de Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, Hôpital Beaujon, Clichy, France
| | - Paolo Angeli
- European Foundation of the study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain.,Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED University of Padova, Padova, Italy
| | - Vicente Arroyo
- European Foundation of the study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK.
| |
Collapse
|
47
|
Yan ZY, Jiao HY, Chen JB, Zhang KW, Wang XH, Jiang YM, Liu YY, Xue Z, Ma QY, Li XJ, Chen JX. Antidepressant Mechanism of Traditional Chinese Medicine Formula Xiaoyaosan in CUMS-Induced Depressed Mouse Model via RIPK1-RIPK3-MLKL Mediated Necroptosis Based on Network Pharmacology Analysis. Front Pharmacol 2021; 12:773562. [PMID: 34867405 PMCID: PMC8641697 DOI: 10.3389/fphar.2021.773562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Depression is a stress-related disorder that seriously threatens people's physical and mental health. Xiaoyaosan is a classical traditional Chinese medicine formula, which has been used to treat mental depression since ancient times. More and more notice has been given to the relationship between the occurrence of necroptosis and the pathogenesis of mental disorders. Objective: The purpose of present study is to explore the potential mechanism of Xiaoyaosan for the treatment of depression using network pharmacology and experimental research, and identify the potential targets of necroptosis underlying the antidepressant mechanism of Xiaoyaosan. Methods: The mice model of depression was induced by chronic unpredictable mild stress (CUMS) for 6 weeks. Adult C57BL/6 mice were randomly divided into five groups, including control group, chronic unpredictable mild stress group, Xiaoyaosan treatment group, necrostatin-1 (Nec-1) group and solvent group. Drug intervention performed from 4th to 6th week of modeling. The mice in Xiaoyaosan treatment group received Xiaoyaosan by intragastric administration (0.254 g/kg/d), and mice in CUMS group received 0.5 ml physiological saline. Meanwhile, the mice in Nec-1 group were injected intraperitoneally (i.p.) with Nec-1 (10 mg/kg/d), and the equivalent volume of DMSO/PBS (8.3%) was injected into solvent group mice. The behavior tests such as sucrose preference test, forced swimming test and novelty-suppressed feeding test were measured to evaluate depressive-like behaviors of model mice. Then, the active ingredients in Xiaoyaosan and the related targets of depression and necroptosis were compiled through appropriate databases, while the "botanical drugs-active ingredients-target genes" network was constructed by network pharmacology analysis. The expressions of RIPK1, RIPK3, MLKL, p-MLKL were detected as critical target genes of necroptosis and the potential therapeutic target compounds of Xiaoyaosan. Furthermore, the levels of neuroinflammation and microglial activation of hippocampus were measured by detecting the expressions of IL-1β, Lipocalin-2 and IBA1, and the hematoxylin and eosin (H&E) stained was used to observe the morphology in hippocampus sections. Results: After 6-weeks of modeling, the behavioral data showed that mice in CUMS group and solvent group had obvious depressive-like behaviors, and the medication of Xiaoyaosan or Nec-1 could improve these behavioral changes. A total of 96 active ingredients in Xiaoyaosan which could regulate the 23 key target genes were selected from databases. Xiaoyaosan could alleviate the core target genes in necroptosis and improve the hippocampal function and neuroinflammation in depressed mice. Conclusion: The activation of necroptosis existed in the hippocampus of CUMS-induced mice, which was closely related to the pathogenesis of depression. The antidepressant mechanism of Xiaoyaosan included the regulation of multiple targets in necroptosis. It also suggested that necroptosis could be a new potential target for the treatment of depression.
Collapse
Affiliation(s)
- Zhi-Yi Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Yan Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-Bei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kai-Wen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xi-Hong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - You-Ming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiao-Juan Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
48
|
Liu X, Xie X, Ren Y, Shao Z, Zhang N, Li L, Ding X, Zhang L. The role of necroptosis in disease and treatment. MedComm (Beijing) 2021; 2:730-755. [PMID: 34977874 PMCID: PMC8706757 DOI: 10.1002/mco2.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Necroptosis, a distinctive type of programmed cell death different from apoptosis or necrosis, triggered by a series of death receptors such as tumor necrosis factor receptor 1 (TNFR1), TNFR2, and Fas. In case that apoptosis process is blocked, necroptosis pathway is initiated with the activation of three key downstream mediators which are receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). The whole process eventually leads to destruction of the cell membrane integrity, swelling of organelles, and severe inflammation. Over the past decade, necroptosis has been found widely involved in life process of human beings and animals. In this review, we attempt to explore the therapeutic prospects of necroptosis regulators by describing its molecular mechanism and the role it played in pathological condition and tissue homeostasis, and to summarize the research and clinical applications of corresponding regulators including small molecule inhibitors, chemicals, Chinese herbal extracts, and biological agents in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Xie
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Yuanyuan Ren
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Zhiying Shao
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Cancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Nie Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Liantao Li
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Ding
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Longzhen Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| |
Collapse
|
49
|
Yu Y, Wu Y, Yan HZ, Xia ZR, Wen W, Liu DY, Wan LH. Rosmarinic acid ameliorates acetaminophen-induced acute liver injury in mice via RACK1/TNF-α mediated antioxidant effect. PHARMACEUTICAL BIOLOGY 2021; 59:1286-1293. [PMID: 34517734 PMCID: PMC8451635 DOI: 10.1080/13880209.2021.1974059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
CONTEXT Rosmarinic acid (RA) dose-dependently ameliorates acetaminophen (APAP) induced hepatotoxicity in rats. However, whether RA hepatoprotective effect is by regulating RACK1 and its downstream signals is still unclear. OBJECTIVE This study explores the RA protective effect on APAP-induced ALI and its mechanism. MATERIALS AND METHODS Sixty Kunming mice 6-8 weeks old were randomly separated into six groups (n = 10) and pre-treated with normal saline, ammonium glycyrrhetate (AG) or RA (10, 20 or 40 mg/kg i.p./day) for two consecutive weeks. Then, APAP (300 mg/kg, i.g.) was administrated to induce ALI, except for the control. Serum alanine/aspartate aminotransferases (ALT and AST), malondialdehyde (MDA), superoxide dismutase (SOD) and histopathology were used to authenticate RA effect. The liver RACK1 and TNF-α were measured by western blot. RESULTS Compared with the APAP group, different dosages RA significantly decreased ALT (52.09 ± 7.98, 55.13 ± 10.19, 65.08 ± 27.61 U/L, p < 0.05), AST (114.78 ± 19.87, 115.29 ± 31.91, 101.78 ± 21.85 U/L, p < 0.05), MDA (2.37 ± 0.87, 2.13 ± 0.87, 1.86 ± 0.39 nmol/mg, p < 0.01) and increased SOD (306.178 ± 90.80, 459.21 ± 58.54, 444.01 ± 78.09 U/mg, p < 0.05). With increasing doses of RA, RACK1 and TNF-α expression decreased. Moreover, the RACK1 and TNF-α levels were positively correlated with MDA (r = 0.8453 and r = 0.9391, p < 0.01). DISCUSSION AND CONCLUSIONS Our findings support RA as a hepatoprotective agent to improve APAP-induced ALI and the antioxidant effect mediated through RACK1/TNF-α pathway.
Collapse
Affiliation(s)
- Yang Yu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Yao Wu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, PR China
| | - Hao-zheng Yan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Zi-ru Xia
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Wen Wen
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Dan-yang Liu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, PR China
| | - Li-hong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, PR China
| |
Collapse
|
50
|
Zhang H, Zhou L, Zhou Y, Wang L, Jiang W, Liu L, Yue S, Zheng P, Liu H. Intermittent hypoxia aggravates non-alcoholic fatty liver disease via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway. Life Sci 2021; 285:119963. [PMID: 34536498 DOI: 10.1016/j.lfs.2021.119963] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023]
Abstract
AIMS Hepatocyte necroptosis is a critical event in the progression of non-alcoholic fatty liver disease (NAFLD). Obstructive sleep apnea hypopnea syndrome (OSAHS) and chronic intermittent hypoxia (CIH) may be linked with the pathogenesis and the severity of NAFLD. However, the potential role of necroptosis in OSAHS-associated NAFLD has not been evaluated. The present study investigated whether IH could affect NAFLD progression through promoting receptor-interacting protein kinase-3 (RIPK3)-dependent necroptosis, oxidative stress, and inflammatory response, and further elucidated the underlying molecular mechanisms. MAIN METHODS LO2 cells were treated with palmitic acid (PA) and subjected to IH, and necroptosis, oxidative stress, and inflammation were assessed. The high-fat choline-deficient (HFCD)-fed mouse model was also used to assess the effects of CIH in experimental NAFLD in vivo. KEY FINDINGS In this study, we found that RIPK3-mediated necroptosis was activated both in the PA plus IH-treated LO2 cells and liver of HFCD/CIH mice, and which could trigger oxidative stress and inflammatory response by decreasing Nrf2 and increasing p-P65. RIPK3 downregulation significantly reduced hepatocyte necroptosis, and ameliorated oxidative stress and inflammation through modulating Nrf2/NFκB pathway in vitro and vivo. Similarly, pretreatment with TBHQ, an activator of Nrf2, effectively blocked the generation of oxidative productions and inflammatory cytokines. In addition, RIPK3 inhibitor GSK-872 or TBHQ administration obviously alleviated hepatic injury, including histology, transaminase activities, and triglyceride contents in vivo. SIGNIFICANCE IH aggravates NAFLD via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway, and which should be considered as a potential therapeutic strategy for the treatment of NAFLD with OSASH.
Collapse
Affiliation(s)
- Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yuhao Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Weiling Jiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Shuang Yue
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China.
| |
Collapse
|