1
|
Ai R, Tian M, Sun J, He S, Cui Z, Yang Y, Hou X, Zhao Y, Dou T, Chen X, Wang J. Mogroside V prevents ethanol-induced hangover and liver damage by reducing oxidative stress, steatosis and inflammation. Biochem Biophys Res Commun 2025; 766:151912. [PMID: 40306161 DOI: 10.1016/j.bbrc.2025.151912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/04/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Excessive alcohol consumption is a leading cause of alcohol-associated liver disease (ALD). Previous studies presented Mogroside V (MV) have protective effects on against nonalcoholic fatty liver disease. however, the effects of MV on ethanol-induced hangover and liver damage remains to be elucidated. Herein, we investigated the potential effects of MV in relieving hangover and mitigating liver injury induced by ethanol. MV significantly reduced blood ethanol, liver histological alterations and serum ALT, AST、TG levels in ethanol-treated mice. Moreover, MV accelerates alcohol metabolism by inhibiting the upregulation of CYP2E1 induced by ethanol, while enhancing the activity of ADH and ALDH, as well as upregulating the expression of ADH1 and ALDH2. MV mitigates oxidative stress by decreased hepatic malondialdehyde (MDA) levels, restored glutathione (GSH)、superoxide dismutase (SOD) and catalase (CAT) content in ethanol-induced mice. Mechanistically, MV activated the p-AMPK/SREBP-1/FASN pathway to decreased hepatic lipid accumulation and alleviated steatosis. Additionally, MV promoted nuclear translocation of Nrf-2 to attenuates oxidative stress and suppressed TLR4/MyD88/NF-κB signaling pathway to reduce Inflammatory responses triggered by ethanol in mice. In summary, this study highlights mogroside V's hangover relieving effect and its protective effects against ethanol-related liver damage through its lipid metabolism regulation, antioxidative action and anti-inflammatory properties. These results suggest that mogroside V could be developed as a potential therapeutic agent against ethanol-induced liver damage.
Collapse
Affiliation(s)
- Rui Ai
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China; School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China
| | - Muzhao Tian
- Faculty of Basic Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China
| | - Jiawang Sun
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China; School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China
| | - Shuying He
- Faculty of Clinical Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China
| | - Zhi Cui
- Faculty of Basic Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China
| | - Yizhuang Yang
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China
| | - Xinyue Hou
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China
| | - Yue Zhao
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China
| | - Tong Dou
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Macau, Taipa, 999078, China
| | - Xu Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China; School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China.
| | - Juan Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China; School of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541001, China.
| |
Collapse
|
2
|
Ye RQ, Chen YF, Ma C, Cheng X, Guo W, Li S. Advances in identifying risk factors of metabolic dysfunction-associated alcohol-related liver disease. Biomed Pharmacother 2025; 188:118191. [PMID: 40408808 DOI: 10.1016/j.biopha.2025.118191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/13/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025] Open
Abstract
Metabolic dysfunction-associated alcohol-related liver disease (MetALD) is an emerging clinical entity that reflects the coexistence of metabolic dysfunction and alcohol-related liver injury. Unlike classical alcoholic liver disease (ALD), MetALD patients often present with lower to moderate alcohol consumption alongside metabolic risk factors such as obesity, insulin resistance, and dyslipidemia. These factors can synergistically worsen liver injury even at lower alcohol intake levels. Alcohol abuse remains a major global health concern, with the liver being the primary target of alcohol's toxic effects. Long-term alcohol exposure, especially when compounded by metabolic dysfunction, can accelerate the progression from steatosis to inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Besides alcohol itself, various factors, including genetic predispositions, gender, type of alcoholic beverage, drinking patterns, and co-morbidities such as viral infections (HBV, HCV) modulate disease susceptibility and severity. This review summarizes current knowledge of risk factors contributing to MetALD, highlights the synergistic interactions between metabolic dysfunction and alcohol consumption, and discusses potential strategies for disease prevention and management.
Collapse
Affiliation(s)
- Rui-Qi Ye
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China; Xinhua Clinical Medical College, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Yi-Fan Chen
- College of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chang Ma
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xi Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China.
| | - Sha Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Shen H, Liangpunsakul S, Iwakiri Y, Szabo G, Wang H. Immunological mechanisms and emerging therapeutic targets in alcohol-associated liver disease. Cell Mol Immunol 2025:10.1038/s41423-025-01291-w. [PMID: 40399593 DOI: 10.1038/s41423-025-01291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/19/2025] [Indexed: 05/23/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a major global health challenge, with inflammation playing a central role in its progression. As inflammation emerges as a critical therapeutic target, ongoing research aims to unravel its underlying mechanisms. This review explores the immunological pathways of ALD, highlighting the roles of immune cells and their inflammatory mediators in disease onset and progression. We also examine the complex interactions between inflammatory cells and non-parenchymal liver cells, as well as their crosstalk with extra-hepatic organs, including the gut, adipose tissue, and nervous system. Furthermore, we summarize current clinical research on anti-inflammatory therapies and discuss promising therapeutic targets. Given the heterogeneity of ALD-associated inflammation, we emphasize the need for precision medicine to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Kang J, Park SH, Khanam M, Park SB, Shin S, Seo W. Impact of binge drinking on alcoholic liver disease. Arch Pharm Res 2025; 48:212-223. [PMID: 40035998 DOI: 10.1007/s12272-025-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025]
Abstract
Numerous studies have examined the pathophysiological changes induced by chronic alcohol (ethanol) consumption and the underlying mechanisms, while much less attention has been devoted to understanding the health impacts of binge drinking. Binge drinking is defined as the excessive consumption of alcohol within a single drinking episode, and is the typical consumption pattern among young people in Western countries. While most young binge drinkers are not clinically alcohol dependent, binge drinking has emerged as a significant social and public health concern. The circulating alcohol consumed during binge episodes permeates cellular membranes throughout the body, exerting profound effects on multiple organs, and signaling pathways. Regular binge drinking eventually induces hepatic steatosis (fatty liver), initiates acute inflammation, and accelerates neutrophil infiltration, de novo lipogenesis, adipocyte death/lipolysis, and the production of nonoxidative alcohol metabolites, processes that synergize to damage liver tissue and impair liver function. Metabolic abnormalities such as diabetes and obesity can also exacerbate the progression of alcohol-related liver disease among binge drinkers. Several animal models have been developed to evaluate the pathophysiological changes resulting from binge drinking; however, the pathogenesis of binge drinking is not fully understood due to differences in alcohol metabolism between animal models and humans. Thus, given the high prevalence and severe health implications of binge drinking, there is an urgent need for comprehensive experimental and clinical investigations to unravel the associated pathophysiological changes. This review summarizes recent research findings on the impact of binge drinking, specifically focusing on its contributions to alcoholic liver injury.
Collapse
Affiliation(s)
- Jisoo Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seol Hee Park
- Department of Companion Animal Health, Hanyang Women's University, Seoul, 04763, Republic of Korea
| | - Mushira Khanam
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Bhin Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sumin Shin
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Wonhyo Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
5
|
Brigagão Pacheco da Silva C, Nascimento-Silva EA, Zaramela LS, da Costa BRB, Rodrigues VF, De Martinis BS, Carlos D, Tostes RC. Drinking pattern and sex modulate the impact of ethanol consumption on the mouse gut microbiome. Physiol Genomics 2025; 57:179-194. [PMID: 39918827 DOI: 10.1152/physiolgenomics.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
Gut microbiota impacts host homeostasis and diseases. Chronic plus binge ethanol consumption has been linked to increased injuries than chronic or binge ethanol intake alone. We hypothesized that distinct shapes in gut microbiota composition are induced by chronic, binge, and the association of these treatments, thereby affecting host functions and contributing to sex-based differences in alcohol use disorders. Male and female C57BL/6J mice were submitted to chronic, binge, or chronic plus binge ethanol feeding. DNA was extracted from fecal microbiota, followed by analysis of the V3-V4 region of the 16S rRNA gene and sequencing on an Illumina platform. Gut microbiome analysis was performed using QIIME v2022.2.0. Functional profiling of the gut microbiome was performed using PICRUSt2. Ethanol differentially affected the gut microbiota of female and male mice. Decreased α diversity was observed in male and female mice from the chronic plus binge and chronic groups, respectively. The genera Faecalibaculum, Lachnospiraceae, and Alistipes were identified as major potential biomarkers for gut dysbiosis induced by ethanol consumption. In addition, ethanol-induced gut dysbiosis altered several metabolic pathways. Ethanol consumption modifies the mouse gut microbiome in a drinking pattern- and sex-dependent manner, potentially leading to different susceptibility to ethanol-related diseases. Chronic plus binge ethanol intake induces a more pronounced gut dysbiosis in male mice. Conversely, chronic ethanol is linked to a greater degree of gut dysbiosis in female mice. The changed gut microbiome may be potentially targeted to prevent, mitigate, or treat alcohol use disorders.NEW & NOTEWORTHY Ethanol alters the mouse gut microbiome in a drinking pattern- and sex-dependent manner. Chronic plus binge ethanol intake induces a more severe gut dysbiosis in male mice, whereas chronic ethanol consumption appears to be a more potent inductor of gut dysbiosis in female mice. Ethanol-induced gut dysbiosis alters several pathways linked to metabolism, genetic and environmental information processing, cellular processes, organism systems, and neurological human diseases.
Collapse
Affiliation(s)
| | | | - Lívia Soares Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Ruiz Brandão da Costa
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Fernandes Rodrigues
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Spinosa De Martinis
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Ritzenthaler JD, Ekuban A, Horsman B, Roman J, Watson WH. Alcohol-induced liver injury is mediated via α4-containing nicotinic acetylcholine receptors expressed in hepatocytes. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:515-525. [PMID: 39853711 PMCID: PMC11928250 DOI: 10.1111/acer.15533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Our previous study demonstrated that alcohol induced the expression of the α4 subunit of nicotinic acetylcholine receptors (nAChRs) in the livers of wild type mice (WT), and that whole-body α4 nAChR knockout mice (α4KO) showed protection against alcohol-induced steatosis, inflammation, and injury. Based on these findings, we hypothesized that hepatocyte-specific α4 nAChRs may directly contribute to the detrimental effects of alcohol on the liver. METHODS Hepatocyte-specific α4 knockout mice (α4HepKO) were generated, and the absence of α4 nAChR was confirmed through PCR of genomic DNA. Female WT and α4HepKO mice were exposed to alcohol in the NIAAA chronic + binge model. After 10 days on the Lieber-DeCarli liquid diet containing 5% (vol/vol) alcohol or isocaloric maltose-dextrin, the mice were gavaged with a single dose of alcohol or isocaloric maltose-dextrin. The mice were euthanized 9 h later and their organs harvested. Additionally, hepatocytes were isolated from WT, α4HepKO, α4floxed, and α4KO mice and exposed to 80 mM alcohol in vitro for 24 h. Steatosis, inflammation, and cell injury were assessed in both liver and isolated hepatocytes. RESULTS In WT mice, alcohol exposure resulted in hepatic steatosis, inflammation, and injury as evidenced by increased liver triglycerides, neutrophil infiltration, and serum concentrations of liver enzymes. All of these responses were markedly lower in α4HepKO mice. mRNA expression of genes involved in lipogenesis (Srebf1, Fasn, and Dgat2) and inflammation (TNFα, Cxcl5, Cxcl1, and Serpine1) were increased in the livers of WT mice exposed to alcohol in vivo and in WT hepatocytes exposed to alcohol in vitro. These changes were not observed in liver or hepatocytes from mice lacking α4 nAChRs. CONCLUSIONS α4 nAChRs expressed in hepatocytes mediate alcohol-associated hepatoxicity. Therefore, the development of therapeutic strategies targeting hepatocyte α4-containing nAChRs could help reduce the burden of ALD.
Collapse
Affiliation(s)
- Jeffrey D. Ritzenthaler
- Division of Pulmonary, Allergy and Critical Care Medicine and the Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA USA
| | - Abigail Ekuban
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Benjamin Horsman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Jesse Roman
- Division of Pulmonary, Allergy and Critical Care Medicine and the Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA USA
| | - Walter H. Watson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Sasaki K, Rooge S, Gunewardena S, Hintz JA, Ghosh P, Pulido Ruiz IA, Yuquimpo K, Schonfeld M, Mehta H, Stevenson HL, Saldarriaga OA, Arroyave E, Tikhanovich I, Wozniak AL, Weinman SA. Kupffer cell diversity maintains liver function in alcohol-associated liver disease. Hepatology 2025; 81:870-887. [PMID: 38687563 PMCID: PMC11616785 DOI: 10.1097/hep.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIMS Liver macrophages are heterogeneous and play an important role in alcohol-associated liver disease (ALD) but there is limited understanding of the functions of specific macrophage subsets in the disease. We used a Western diet alcohol (WDA) mouse model of ALD to examine the hepatic myeloid cell compartment by single cell RNAseq and targeted KC ablation to understand the diversity and function of liver macrophages in ALD. APPROACH AND RESULTS In the WDA liver, KCs and infiltrating monocytes/macrophages each represented about 50% of the myeloid pool. Five major KC clusters all expressed genes associated with receptor-mediated endocytosis and lipid metabolism, but most were predicted to be noninflammatory and antifibrotic with 1 minor KC cluster having a proinflammatory and extracellular matrix degradation gene signature. Infiltrating monocyte/macrophage clusters, in contrast, were predicted to be proinflammatory and profibrotic. In vivo, diphtheria toxin-based selective KC ablation during alcohol exposure resulted in a liver failure phenotype with increases in PT/INR and bilirubin, loss of differentiated hepatocyte gene expression, and an increase in expression of hepatocyte progenitor markers such as EpCAM, CK7, and Igf2bp3. Gene set enrichment analysis of whole-liver RNAseq from the KC-ablated WDA mice showed a similar pattern as seen in human alcoholic hepatitis. CONCLUSIONS In this ALD model, KCs are anti-inflammatory and are critical for the maintenance of hepatocyte differentiation. Infiltrating monocytes/macrophages are largely proinflammatory and contribute more to liver fibrosis. Future targeting of specific macrophage subsets may provide new approaches to the treatment of liver failure and fibrosis in ALD.
Collapse
Affiliation(s)
- Kyo Sasaki
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sheetalnath Rooge
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Janice Averilla Hintz
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Priyanka Ghosh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Kyle Yuquimpo
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heer Mehta
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heather L Stevenson
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Omar A Saldarriaga
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ann L Wozniak
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
8
|
Belvončíková P, Feješ A, Gromová B, Janovičová Ľ, Farkašová A, Babál P, Gardlík R. Therapeutic Effects of DNase I on Peripheral and Local Markers of Liver Injury and Neutrophil Extracellular Traps in a Model of Alcohol-Related Liver Disease. Int J Mol Sci 2025; 26:1893. [PMID: 40076519 PMCID: PMC11900009 DOI: 10.3390/ijms26051893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Alcohol-related liver disease (ALD) is a leading cause of chronic liver conditions globally. Chronic alcohol consumption induces liver damage through various mechanisms, including neutrophil extracellular trap (NET) formation. Extracellular DNA (ecDNA), released from damaged hepatocytes and NETotic neutrophils, has emerged as a potential biomarker and contributor to liver disease pathology. Enzyme DNases could be an effective therapy for the denaturation of immunogenic ecDNA. This study investigated the circulating ecDNA and NET markers in ALD and therapeutic effect of DNase I in a murine model of ALD. Female C57BL/6J mice were fed a control diet (n = 13) or Lieber-DeCarli ethanol diet for 10 days followed by a binge ethanol dose to mimic acute-on-chronic alcoholic liver injury. From day 5, mice fed ethanol were randomized into an ethanol diet group (n = 17) and ethanol + DNase group (n = 5), which received additional DNase I treatment every 12 h. Liver damage markers were analyzed. Circulating ecDNA and NETosis were measured by fluorometry and cytometry, respectively. DNase I activity was analyzed with single radial enzyme dispersion assay. The ethanol-fed mice exhibited increased mortality, neutrophil infiltration and structural damage in the liver. Total circulating ecDNA levels and NET markers did not differ between groups. DNase activity was higher in ethanol-fed mice compared to controls and additional daily administration of DNase prevented liver injury. These findings suggest that alcohol-induced liver injury modestly influences systemic NETosis and ecDNA levels. However, increased DNase activity can prevent disease progression and enhanced systemic degradation of ecDNA using DNase I.
Collapse
Affiliation(s)
- Paulína Belvončíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (P.B.); (A.F.); (B.G.); (Ľ.J.); (A.F.)
| | - Andrej Feješ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (P.B.); (A.F.); (B.G.); (Ľ.J.); (A.F.)
| | - Barbora Gromová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (P.B.); (A.F.); (B.G.); (Ľ.J.); (A.F.)
| | - Ľubica Janovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (P.B.); (A.F.); (B.G.); (Ľ.J.); (A.F.)
| | - Anna Farkašová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (P.B.); (A.F.); (B.G.); (Ľ.J.); (A.F.)
| | - Pavel Babál
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Roman Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (P.B.); (A.F.); (B.G.); (Ľ.J.); (A.F.)
| |
Collapse
|
9
|
Rahimi K, Rezaie A, Allahverdi Y, Shahriari P, Taheri Mirghaed M. The effects of alpha-pinene against paracetamol-induced liver damage in male rats. Physiol Rep 2025; 13:e70227. [PMID: 39903586 PMCID: PMC11793005 DOI: 10.14814/phy2.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
This study aims to evaluate the hepatoprotective effect of alpha-pinene against N-acetyl-p-aminophenol, paracetamol, (APA)-induced liver damage in rats. Thirty Wistar rats were divided into five groups (n = 6): Group 1: Normal (control). Group 2: APA 640 mg/kg. Group 3: alpha-pinene 50 mg/kg (APA+ αPi 50 mg/kg). Group 4: alpha-pinene 100 mg/kg (APA+ αPi 100 mg/kg). Group 5: silymarin 50 mg/kg (APA+ SIL). Alpha-pinene or silymarin was orally administered after APA administration for 14 consecutive days. This study investigated liver damage by preparing pathology slides from liver tissue. Levels of AST, ALT, ALP, total bilirubin, total antioxidant capacity (TAC), and total oxidant status (TOS) were measured. Inflammatory factors, including NF-kB gene expression and levels of IL-6 and TNF-a, were also measured. Administering alpha-pinene with APA can prevent liver damage induced by APA. Alpha-pinene can enhance TAC while reducing TOS, ALT, AST, ALP, and total bilirubin. Moreover, the results have also revealed that alpha-pinene decreases NF-kB expression, which leads to a reduction in IL-6 and TNF-a levels. It appears that alpha-pinene induces liver protective effects against APA damage by reducing the activity of liver enzymes, improving antioxidant/oxidative status, and reducing inflammation through the regulation of NF-kB and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Anahita Rezaie
- Department of Pathobiology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Younes Allahverdi
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Parham Shahriari
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| | - Mahtab Taheri Mirghaed
- Department of Basic Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
| |
Collapse
|
10
|
Cao P, Chao X, Ni HM, Ding WX. An Update on Animal Models of Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00032-X. [PMID: 39884572 DOI: 10.1016/j.ajpath.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025]
Abstract
Alcohol-associated liver disease (ALD) is a significant global health concern and a leading cause of liver disease-related deaths. However, the treatment options are limited due to the lack of animal models that accurately replicate ALD pathogenesis. An ideal ALD animal model should have pathological characteristics similar to those of human ALD, with a clear pathological process and ease of drug intervention. Over the years, researchers have focused on developing ideal ALD preclinical animal models by testing various methods, such as ad libitum drinking water with ethanol, acute, single large doses of ethanol gavage, multiple alcohol gavages in a short period, the Lieber-DeCarli liquid diet feeding model, the intragastric infusion model, and the Gao-binge model. With the increasing occurrence of obesity and metabolic dysfunction-associated steatotic liver disease, a new category of metabolic and alcohol-associated liver disease (MetALD) is also emerging. Studies have investigated the combined effects of a high-fat diet combined with binge alcohol or drinking water containing ethanol to mimic MetALD. In addition to mice, other species such as rats, guinea pigs, zebrafish, and non-human primates have also been tested to establish ALD preclinical models. This review aims to summarize current animal ALD models, particularly the emerging MetALD models, with the hope of providing a valuable reference for establishing more effective animal models in ALD studies in the future.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, Division of Gastroenterology, Hepatology & Mobility, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
11
|
Milošević N, Rütter M, Ventura Y, Feinshtein V, David A. Targeted Polymer-Peptide Conjugates for E-Selectin Blockade in Renal Injury. Pharmaceutics 2025; 17:82. [PMID: 39861730 PMCID: PMC11768228 DOI: 10.3390/pharmaceutics17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e., E-selectin, P-selectin, and VCAM-1) present on the inner surface of the inflamed vasculature. Directly interfering with these interactions is a viable strategy to limit the extent of excessive inflammation; however, several small-molecule drug candidates failed during clinical translation. We hypothesized that a synthetic polymer presenting multiple copies of the high-affinity E-selecting binding peptide (P-Esbp) could block E-selectin-mediated functions and decrease leukocytes infiltration, thus reducing the extent of inflammatory kidney injury. METHODS P-Esbp was synthesized by conjugating E-selecting binding peptide (Esbp) to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer with reactive ester groups via aminolysis. The effects of P-Esbp treatment on kidney injury were investigated in two different models: AKI model (renal ischemia-reperfusion injury-RIRI) and CKD model (adenine-induced kidney injury). RESULTS We found that the mRNA levels of E-selectin were up-regulated in the kidney following acute and chronic tissue injury. P-Esbp demonstrated an extended half-life time in the bloodstream, and the polymer accumulated significantly in the liver, lungs, and kidneys within 4 h post injection. Treatment with P-Esbp suppressed the up-regulation of E-selectin in mice with RIRI and attenuated the inflammatory process. In the adenine-induced CKD model, the use of the E-selectin blocking copolymer had little impact on the progression of kidney injury, owing to the compensating function of P-selectin and VCAM-1. CONCLUSION Our findings provide valuable insights into the interconnection between CAMs and compensatory mechanisms in controlling leukocyte migration in AKI and CKD. The combination of multiple CAM blockers, given simultaneously, may provide protective effects for preventing excessive leukocyte infiltration and control renal injury.
Collapse
Affiliation(s)
| | | | | | | | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
12
|
Li W, Gao W, Yan S, Yang L, Zhu Q, Chu H. Gut Microbiota as Emerging Players in the Development of Alcohol-Related Liver Disease. Biomedicines 2024; 13:74. [PMID: 39857657 PMCID: PMC11761646 DOI: 10.3390/biomedicines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The global incidence and mortality rates of alcohol-related liver disease are on the rise, reflecting a growing health concern worldwide. Alcohol-related liver disease develops due to a complex interplay of multiple reasons, including oxidative stress generated during the metabolism of ethanol, immune response activated by immunogenic substances, and subsequent inflammatory processes. Recent research highlights the gut microbiota's significant role in the progression of alcohol-related liver disease. In patients with alcohol-related liver disease, the relative abundance of pathogenic bacteria, including Enterococcus faecalis, increases and is positively correlated with the level of severity exhibited by alcohol-related liver disease. Supplement probiotics like Lactobacillus, as well as Bifidobacterium, have been found to alleviate alcohol-related liver disease. The gut microbiota is speculated to trigger specific signaling pathways, influence metabolite profiles, and modulate immune responses in the gut and liver. This research aimed to investigate the role of gut microorganisms in the onset and advancement of alcohol-related liver disease, as well as to uncover the underlying mechanisms by which the gut microbiota may contribute to its development. This review outlines current treatments for reversing gut dysbiosis, including probiotics, fecal microbiota transplantation, and targeted phage therapy. Particularly, targeted therapy will be a vital aspect of future alcohol-related liver disease treatment. It is to be hoped that this article will prove beneficial for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Wei Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Shengqi Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Qingjing Zhu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| |
Collapse
|
13
|
Sun H, Pang X, Li JR, Li H, Tang M, Zhang T, Yu LY, Peng ZG. Isoechinulin B, a natural product from Antarctic fungus, attenuates acute liver injury by inhibiting excessive cell adhesion. Eur J Pharmacol 2024; 984:177065. [PMID: 39427860 DOI: 10.1016/j.ejphar.2024.177065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Abnormal cell adhesion between leukocytes and endothelial cells is closely associated with the development of numerous inflammation-related diseases, with adhesion molecules playing a crucial role. The disruption of cell adhesion directly or indirectly inhibits excessive cell adhesion and thus produces a therapeutic effect. However, there are only a few clinically available antagonists of cell adhesion. One of the biggest challenges is the development of novel and efficient cell adhesion inhibitors. Recently, the anti-inflammatory pharmacological activity of natural products of microbial origin has also received increasing attention. Here, we obtained a potential cell adhesion inhibitor isoechinulin B, an indole diketopiperazine derivative, from the Antarctic fungus Aspergillus sp. CPCC 401072, which is active against cell adhesion. Isoechinulin B decreased the expression of vascular endothelial adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) by inhibiting the activation of the NF-κB signaling pathway, thereby inhibiting cell adhesion between leukocytes and endothelial cells to reduce macrophage infiltration in the liver and significantly attenuate lipopolysaccharide-induced acute liver injury in mice. CONCLUSION: Isoechinulin B is a novel cell adhesion inhibitor derived from fungi found in extreme environments.
Collapse
Affiliation(s)
- Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xu Pang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Li-Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
14
|
Hong X, Huang S, Jiang H, Ma Q, Qiu J, Luo Q, Cao C, Xu Y, Chen F, Chen Y, Sun C, Fu H, Liu Y, Li C, Chen F, Qiu P. Alcohol-related liver disease (ALD): current perspectives on pathogenesis, therapeutic strategies, and animal models. Front Pharmacol 2024; 15:1432480. [PMID: 39669199 PMCID: PMC11635172 DOI: 10.3389/fphar.2024.1432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Alcohol-related liver disease (ALD) is a major cause of morbidity and mortality worldwide. It encompasses conditions such as fatty liver, alcoholic hepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. Numerous recent studies have demonstrated the critical role of oxidative stress, abnormal lipid metabolism, endoplasmic reticulum stress, various forms of cell death (including apoptosis, necroptosis, and ferroptosis), intestinal microbiota dysbiosis, liver immune response, cell autophagy, and epigenetic abnormalities in the pathogenesis of ALD. Currently, abstinence, corticosteroids, and nutritional therapy are the traditional therapeutic interventions for ALD. Emerging therapies for ALD mainly include the blockade of inflammatory pathways, the promotion of liver regeneration, and the restoration of normal microbiota. Summarizing the advances in animal models of ALD will facilitate a more systematic investigation of the pathogenesis of ALD and the exploration of therapeutic targets. This review summarizes the latest insight into the pathogenesis and molecular mechanisms of ALD, as well as the pros and cons of ALD rodent models, providing a basis for further research on therapeutic strategies for ALD.
Collapse
Affiliation(s)
- Xiao Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - He Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunlu Cao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiyang Xu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fuzhe Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufan Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunfeng Sun
- The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| | - Haozhe Fu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiming Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangming Chen
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Qiu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Jiang M, Feng Y, Wang J, Xu X, Liu Z, Li T, Ma S, Wang Y, Guo X, Du S. Saikogenin A improves ethanol-induced liver injury by targeting SIRT1 to modulate lipid metabolism. Commun Biol 2024; 7:1547. [PMID: 39572758 PMCID: PMC11582619 DOI: 10.1038/s42003-024-07234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Chronic alcohol consumption can lead to alcohol live disease (ALD). Steatosis is a critical hallmark of ALD, making it an important stage for therapeutic intervention. Saikosaponin A (SSa), a compound found in Radix Bupleuri, has previously shown promising hepatoprotective, anti-inflammatory, and antioxidant properties. However, its role in ALD remains understudied. We employ cell-based screening models and a chronic-plus-binge ethanol-fed mouse model to investigate the protective mechanisms of SSa and its metabolite Saikogenin A (SGA), against ethanol-induced hepatocyte injury. Our RNA-seq analysis in mice unveils that SSa primarily acts through the mTOR and PPAR-α signaling pathways in the liver. Biophysical assays and loss of function experiments confirm SGA directly binds to and modulates the activity of SIRT1 protein, mitigating ethanol-induced cell injury via the SIRT1-mTOR-PPAR-α axis. Furthermore, SGA displays a survival prolonging advantage compared to resveratrol for treating ALD. This suggests SGA holds promise as a potential therapeutic agent for ALD.
Collapse
Affiliation(s)
- Mingzhu Jiang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Department of neurosurgery, Taihe Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ying Feng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Department of neurosurgery, Taihe Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jingxian Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Department of neurosurgery, Taihe Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xiang Xu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Department of neurosurgery, Taihe Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Zegan Liu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Department of neurosurgery, Taihe Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shinan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Department of neurosurgery, Taihe Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yufeng Wang
- Institute for Systems Genetics, New York University, New York, NY, USA.
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Department of neurosurgery, Taihe Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Shiming Du
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Department of neurosurgery, Taihe Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
16
|
Yan S, Lin Z, Ma M, Arasteh A, Yin XM. Cholestatic insult triggers alcohol-associated hepatitis in mice. Hepatol Commun 2024; 8:e0566. [PMID: 39445893 PMCID: PMC11512636 DOI: 10.1097/hc9.0000000000000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Alcohol-associated hepatitis (AH) is a severe, potentially life-threatening form of alcohol-associated liver disease with limited therapeutic options. Existing evidence shows that biliary dysfunction and cholestasis are common in patients with AH and are associated with poorer prognosis. However, the role of cholestasis in the development of AH is largely unknown. We aimed to examine the hypothesis that cholestasis can be an important etiology factor for AH. METHODS To study the interaction of cholestasis and alcohol, chronically ethanol (EtOH)-fed mice were challenged with a subtoxic dose of α-naphthylisothiocyanate (ANIT), a well-studied intrahepatic cholestasis inducer. Liver injury was measured by biochemical and histological methods. RNAseq was performed to determine hepatic transcriptomic changes. The impact of inflammation was assessed using an anti-LY6G antibody to deplete the neutrophils and DNase I to degrade neutrophil extracellular traps. RESULTS ANIT synergistically enhanced liver injury following a 4-week EtOH feeding with typical features of AH, including increased serum levels of ALT, AST, and total bile acids, cholestasis, necrosis, neutrophil infiltration, and accumulation of neutrophil extracellular traps. RNAseq revealed multiple genes uniquely altered in the livers of EtOH/ANIT-treated mice. Analysis of differentially expressed genes suggested an enrichment of genes related to inflammatory response. Anti-LY6G antibody or DNase I treatment significantly inhibited liver damage in EtOH/ANIT-treated mice. CONCLUSIONS Our results support the hypothesis that cholestasis can be a critical contributor to the pathogenesis of AH. A combined treatment of EtOH and ANIT in mice presents biochemical, histological, and molecular features similar to those found in patients with AH, suggesting that this treatment scheme can be a useful model for studying Alcohol-associated Cholestasis and Hepatitis (AlChoHep).
Collapse
|
17
|
Mandrekar P, Mandal A. Pathogenesis of Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:647-661. [PMID: 39362713 DOI: 10.1016/j.cld.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The pathogenesis of alcohol-associated liver disease (ALD) is complex and multifactorial. Several intracellular, intrahepatic, and extrahepatic factors influence development of early fatty liver injury leading to inflammation and fibrosis. Alcohol metabolism, cellular stress, and gut-derived factors contribute to hepatocyte and immune cell injury leading to cytokine and chemokine production. The pathogenesis of alcohol-associated hepatitis (AH), an advanced form of acute-on-chronic liver failure due to excessive chronic intake in patients with underlying liver disease, is not well understood. While pathogenic mechanisms in early ALD are studied, the pathogenesis of AH requires further investigation to help design effective drugs for patients.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Abhishek Mandal
- Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
18
|
Alarcón-Sánchez BR, Idelfonso-García OG, Guerrero-Escalera D, Piña-Vázquez C, de Anda-Jáuregui G, Pérez-Hernández JL, de la Garza M, García-Sierra F, Sánchez-Pérez Y, Baltiérrez-Hoyos R, Vásquez-Garzón VR, Muriel P, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. A model of alcoholic liver disease based on different hepatotoxics leading to liver cancer. Biochem Pharmacol 2024; 228:116209. [PMID: 38621424 DOI: 10.1016/j.bcp.2024.116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The worst-case scenario related to alcoholic liver disease (ALD) arises after a long period of exposure to the harmful effect of alcohol consumption along with other hepatotoxics. ALD encompasses a broad spectrum of liver-associated disorders, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Based on the chronic administration of different hepatotoxics, including ethanol, sucrose, lipopolysaccharide, and low doses of diethylnitrosamine over a short period, here we aimed to develop a multiple hepatotoxic (MHT)-ALD model in the mouse that recapitulates the human ALD-associated disorders. We demonstrated that the MHT-ALD model induces ADH1A and NXN, an ethanol metabolizer and a redox-sensor enzyme, respectively; promotes steatosis associated with the induction of the lipid droplet forming FSP27, inflammation identified by the infiltration of hepatic neutrophils-positive to LY-6G marker, and the increase of MYD88 level, a protein involved in inflammatory response; and stimulates the early appearance of cellular senescence identified by the senescence markers SA-β-gal activity and p-H2A.XSer139. It also induces fibrosis associated with increased desmin, a marker of hepatic stellate cells whose activation leads to the deposition of collagen fibers, accompanied by cell death and compensatory proliferation revealed by increased CASP3-mediated apoptosis, and KI67- and PCNA-proliferation markers, respectively. It also induces histopathological traits of malignancy and the level of the HCC marker, GSTP1. In conclusion, we provide a useful model for exploring the chronological ALD-associated alterations and stages, and addressing therapeutic approaches.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico; Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico.
| | | | - Dafne Guerrero-Escalera
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico
| | - Carolina Piña-Vázquez
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico; Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City, Mexico
| | - José Luis Pérez-Hernández
- Department of Gastroenterology and Hepatology, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Francisco García-Sierra
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología - INCan, Mexico City, Mexico
| | - Rafael Baltiérrez-Hoyos
- Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City, Mexico; Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, 'Benito Juárez' Autonomous University of Oaxaca - UABJO, Oaxaca, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City, Mexico; Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, 'Benito Juárez' Autonomous University of Oaxaca - UABJO, Oaxaca, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | | | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico; Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City, Mexico.
| |
Collapse
|
19
|
Wang ZY, Gao ST, Gou XJ, Qiu FR, Feng Q. IL-1 receptor-associated kinase family proteins: An overview of their role in liver disease. Eur J Pharmacol 2024; 978:176773. [PMID: 38936453 DOI: 10.1016/j.ejphar.2024.176773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The interleukin-1 receptor-associated kinase (IRAK) family is a group of serine-threonine kinases that regulates various cellular processes via toll-like receptor (TLR)/interleukin-1 receptor (IL1R)-mediated signaling. The IRAK family comprises four members, including IRAK1, IRAK2, IRAK3, and IRAK4, which play an important role in the expression of various inflammatory genes, thereby contributing to the inflammatory response. IRAKs are key proteins in chronic and acute liver diseases, and recent evidence has implicated IRAK family proteins (IRAK1, IRAK3, and IRAK4) in the progression of liver-related disorders, including alcoholic liver disease, non-alcoholic steatohepatitis, hepatitis virus infection, acute liver failure, liver ischemia-reperfusion injury, and hepatocellular carcinoma. In this article, we provide a comprehensive review of the role of IRAK family proteins and their associated inflammatory signaling pathways in the pathogenesis of liver diseases. The purpose of this study is to explore whether IRAK family proteins can serve as the main target for the treatment of liver related diseases.
Collapse
Affiliation(s)
- Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Si-Ting Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Jun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Fu-Rong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
20
|
Nagesh PT, Cho Y, Zhuang Y, Babuta M, Ortega-Ribera M, Joshi R, Brezani V, Patel A, Datta AA, Brezani V, Hsieh YC, Ramos A, Mehta J, Copeland C, Kanata E, Jiang ZG, Vlachos I, Asara J, AlcHepNet Consortium, Szabo G. In vivo Bruton's tyrosine kinase inhibition attenuates alcohol-associated liver disease by regulating CD84-mediated granulopoiesis. Sci Transl Med 2024; 16:eadg1915. [PMID: 39110779 PMCID: PMC11831603 DOI: 10.1126/scitranslmed.adg1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2024] [Accepted: 07/15/2024] [Indexed: 01/22/2025]
Abstract
Severe alcohol-associated hepatitis (AH) is a life-threatening form of alcohol-associated liver disease. Liver neutrophil infiltration is a hallmark of AH, yet the effects of alcohol on neutrophil functions remain elusive. Identifying therapeutic targets to reduce neutrophil-mediated liver damage is essential. Bruton's tyrosine kinase (BTK) plays an important role in neutrophil development and function; however, the role of BTK in AH is unknown. Using RNA sequencing of circulating neutrophils, we found an increase in Btk expression (P = 0.05) and phosphorylated BTK (pBTK) in patients with AH compared with healthy controls. In vitro, physiologically relevant doses of alcohol resulted in a rapid, TLR4-mediated induction of pBTK in neutrophils. In a preclinical model of AH, administration of a small-molecule BTK inhibitor (evobrutinib) or myeloid-specific Btk knockout decreased proinflammatory cytokines and attenuated neutrophil-mediated liver damage. We found that pBTK was essential for alcohol-induced bone marrow granulopoiesis and liver neutrophil infiltration. In vivo, BTK inhibition or myeloid-specific Btk knockout reduced granulopoiesis, circulating neutrophils, liver neutrophil infiltration, and liver damage in a mouse model of AH. Mechanistically, using liquid chromatography-tandem mass spectrometry, we identified CD84 as a kinase target of BTK, which is involved in granulopoiesis. In vitro, CD84 promoted alcohol-induced interleukin-1β and tumor necrosis factor-α in primary human neutrophils, which was inhibited by CD84-blocking antibody treatment. Our findings define the role of BTK and CD84 in regulating neutrophil inflammation and granulopoiesis, with potential therapeutic implications in AH.
Collapse
Affiliation(s)
- Prashanth Thevkar Nagesh
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yeonhee Cho
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yuan Zhuang
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mrigya Babuta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Marti Ortega-Ribera
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Radhika Joshi
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Veronika Brezani
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Arman Patel
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aditi Ashish Datta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Viliam Brezani
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yun-Cheng Hsieh
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Adriana Ramos
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeeval Mehta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher Copeland
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eleni Kanata
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhenghui Gordon Jiang
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ioannis Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
21
|
Choi YJ, Kim Y, Hwang S. Role of Neutrophils in the Development of Steatotic Liver Disease. Semin Liver Dis 2024; 44:300-318. [PMID: 39117322 DOI: 10.1055/s-0044-1789207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review explores the biological aspects of neutrophils, their contributions to the development of steatotic liver disease, and their potential as therapeutic targets for the disease. Although alcohol-associated and metabolic dysfunction-associated liver diseases originate from distinct etiological factors, the two diseases frequently share excessive lipid accumulation as a common contributor to their pathogenesis, thereby classifying them as types of steatotic liver disease. Dysregulated lipid deposition in the liver induces hepatic injury, triggering the activation of the innate immunity, partially through neutrophil recruitment. Traditionally recognized for their role in microbial clearance, neutrophils have recently garnered attention for their involvement in sterile inflammation, a pivotal component of steatotic liver disease pathogenesis. In conclusion, technological innovations, including single-cell RNA sequencing, have gradually disclosed the existence of various neutrophil subsets; however, how the distinct subsets of neutrophil population contribute differentially to the development of steatotic liver disease remains unclear.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
22
|
Ogino N, Leite MF, Guerra MT, Kruglov E, Asashima H, Hafler DA, Ito T, Pereira JP, Peiffer BJ, Sun Z, Ehrlich BE, Nathanson MH. Neutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis. J Clin Invest 2024; 134:e171691. [PMID: 38916955 PMCID: PMC11324315 DOI: 10.1172/jci171691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Neutrophil infiltration occurs in a variety of liver diseases, but it is unclear how neutrophils and hepatocytes interact. Neutrophils generally use granule proteases to digest phagocytosed bacteria and foreign substances or neutralize them in neutrophil extracellular traps. In certain pathological states, granule proteases play a destructive role against the host as well. More recently, nondestructive actions of neutrophil granule proteins have been reported, such as modulation of tissue remodeling and metabolism. Here, we report a completely different mechanism by which neutrophils act nondestructively, by inserting granules directly into hepatocytes. Specifically, elastase-containing granules were transferred to hepatocytes where elastase selectively degraded intracellular calcium channels to reduce cell proliferation without cytotoxicity. In response, hepatocytes increased expression of Serpin E2 and A3, which inhibited elastase activity. Elastase insertion was seen in patient specimens of alcohol-associated hepatitis, and the relationship between elastase-mediated ITPR2 degradation and reduced cell proliferation was confirmed in mouse models. Moreover, neutrophils from patients with alcohol-associated hepatitis were more prone to degranulation and more potent in reducing calcium channel expression than neutrophils from healthy individuals. This nondestructive and reversible action on hepatocytes defines a previously unrecognized role for neutrophils in the transient regulation of epithelial calcium signaling mechanisms.
Collapse
Affiliation(s)
- Noriyoshi Ogino
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - M. Fatima Leite
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- INCT - NanoBiofar – Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mateus T. Guerra
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emma Kruglov
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Takeshi Ito
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - João P. Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brandon J. Peiffer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barbara E. Ehrlich
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Michael H. Nathanson
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Chen N, Wang X, Guo Y, Zhao M, Cao B, Zhan B, Li Y, Zhou T, Zhu F, Guo C, Shi Y, Wang Q, Zhang L, Li Y. IL-37d suppresses Rheb-mTORC1 axis independently of TCS2 to alleviate alcoholic liver disease. Commun Biol 2024; 7:756. [PMID: 38907105 PMCID: PMC11192940 DOI: 10.1038/s42003-024-06427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Tuberous sclerosis complex 2 (TSC2) crucially suppresses Rheb activity to prevent mTORC1 activation. However, mutations in TSC genes lead to mTORC1 overactivation, thereby causing various developmental disorders and cancer. Therefore, the discovery of novel Rheb inhibitors is vital to prevent mTOR overactivation. Here, we reveals that the anti-inflammatory cytokine IL-37d can bind to lysosomal Rheb and suppress its activity independent of TSC2, thereby preventing mTORC1 activation. The binding of IL-37d to Rheb switch-II subregion destabilizes the Rheb-mTOR and mTOR-S6K interactions, further halting mTORC1 signaling. Unlike TSC2, IL-37d is reduced under ethanol stimulation, which results in mitigating the suppression of lysosomal Rheb-mTORC1 activity. Consequently, the recombinant human IL-37d protein (rh-IL-37d) with a TAT peptide greatly improves alcohol-induced liver disorders by hindering Rheb-mTORC1 axis overactivation in a TSC2- independent manner. Together, IL-37d emerges as a novel Rheb suppressor independent of TSC2 to terminate mTORC1 activation and improve abnormal lipid metabolism in the liver.
Collapse
Affiliation(s)
- Nuo Chen
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xiaoyu Wang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Ming Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Baihui Cao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Bing Zhan
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yubin Li
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Tian Zhou
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chun Guo
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Qun Wang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, China.
| |
Collapse
|
24
|
Feng D, Hwang S, Guillot A, Wang Y, Guan Y, Chen C, Maccioni L, Gao B. Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets. Cell Mol Gastroenterol Hepatol 2024; 18:101352. [PMID: 38697358 PMCID: PMC11234022 DOI: 10.1016/j.jcmgh.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.
Collapse
Affiliation(s)
- Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yang Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
25
|
Gutierrez V, Kim-Vasquez D, Shum M, Yang Q, Dikeman D, Louie SG, Shirihai OS, Tsukamoto H, Liesa M. The mitochondrial biliverdin exporter ABCB10 in hepatocytes mitigates neutrophilic inflammation in alcoholic hepatitis. Redox Biol 2024; 70:103052. [PMID: 38290384 PMCID: PMC10844117 DOI: 10.1016/j.redox.2024.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Acute liver failure caused by alcoholic hepatitis (AH) is only effectively treated with liver transplantation. Livers of patients with AH show a unique molecular signature characterized by defective hepatocellular redox metabolism, concurrent to hepatic infiltration of neutrophils that express myeloperoxidase (MPO) and form neutrophil extracellular traps (NETs). Exacerbated NET formation and MPO activity contribute to liver damage in mice with AH and predicts poor prognosis in AH patients. The identification of pathways that maladaptively exacerbate neutrophilic activity in liver could inform of novel therapeutic approaches to treat AH. Whether the redox defects of hepatocytes in AH directly exacerbate neutrophilic inflammation and NET formation is unclear. Here we identify that the protein content of the mitochondrial biliverdin exporter ABCB10, which increases hepatocyte-autonomous synthesis of the ROS-scavenger bilirubin, is decreased in livers from humans and mice with AH. Increasing ABCB10 expression selectively in hepatocytes of mice with AH is sufficient to decrease MPO gene expression and histone H3 citrullination, a specific marker of NET formation. These anti-inflammatory effects can be explained by ABCB10 function reducing ROS-mediated actions in liver. Accordingly, ABCB10 gain-of-function selectively increased the mitochondrial GSH/GSSG ratio and decreased hepatic 4-HNE protein adducts, without elevating mitochondrial fat expenditure capacity, nor mitigating steatosis and hepatocyte death. Thus, our study supports that ABCB10 function regulating ROS-mediated actions within surviving hepatocytes mitigates the maladaptive activation of infiltrated neutrophils in AH. Consequently, ABCB10 gain-of-function in human hepatocytes could potentially decrease acute liver failure by decreasing the inflammatory flare caused by excessive neutrophil activity.
Collapse
Affiliation(s)
- Vincent Gutierrez
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Molecular and Cellular Integrative Physiology, Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Doyeon Kim-Vasquez
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael Shum
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qihong Yang
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dante Dikeman
- Department of Clinical Pharmacy, School of Pharmacy, The University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Stan G Louie
- Department of Clinical Pharmacy, School of Pharmacy, The University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Orian S Shirihai
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Molecular and Cellular Integrative Physiology, Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Marc Liesa
- Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Catalonia, Spain.
| |
Collapse
|
26
|
Wang J, Wang X, Peng H, Dong Z, Liangpunsakul S, Zuo L, Wang H. Platelets in Alcohol-Associated Liver Disease: Interaction With Neutrophils. Cell Mol Gastroenterol Hepatol 2024; 18:41-52. [PMID: 38461963 PMCID: PMC11127035 DOI: 10.1016/j.jcmgh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Alcohol-associated liver disease (ALD) is a major contributor to liver-related mortality globally. An increasing body of evidence underscores the pivotal role of platelets throughout the spectrum of liver injury and recovery, offering unique insights into liver homeostasis and pathobiology. Alcoholic-associated steatohepatitis is characterized by the infiltration of hepatic neutrophils. Recent studies have highlighted the extensive distance neutrophils travel through sinusoids to reach the liver injury site, relying on a platelet-paved endothelium for efficient crawling. The adherence of platelets to neutrophils is crucial for accurate migration from circulation to the inflammatory site. A gradual decline in platelet levels leads to diminished neutrophil recruitment. Platelets exhibit the ability to activate neutrophils. Platelet activation is heightened upon the release of platelet granule contents, which synergistically activate neutrophils through their respective receptors. The sequence culminates in the formation of platelet-neutrophil complexes and the release of neutrophil extracellular traps intensifies liver damage, fosters inflammatory immune responses, and triggers hepatotoxic processes. Neutrophil infiltration is a hallmark of alcohol-associated steatohepatitis, and the roles of neutrophils in ALD pathogenesis have been studied extensively, however, the involvement of platelets in ALD has received little attention. The current review consolidates recent findings on the intricate and diverse roles of platelets and neutrophils in liver pathophysiology and in ALD. Potential therapeutic strategies are highlighted, focusing on targeting platelet-neutrophil interactions and activation in ALD. The anticipation is that innovative methods for manipulating platelet and neutrophil functions will open promising avenues for future ALD therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Xianda Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Haodong Peng
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zijian Dong
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
27
|
Abstract
Alcohol-associated liver disease (ALD) is a major cause of chronic liver disease worldwide, and comprises a spectrum of several different disorders, including simple steatosis, steatohepatitis, cirrhosis, and superimposed hepatocellular carcinoma. Although tremendous progress has been made in the field of ALD over the last 20 years, the pathogenesis of ALD remains obscure, and there are currently no FDA-approved drugs for the treatment of ALD. In this Review, we discuss new insights into the pathogenesis and therapeutic targets of ALD, utilizing the study of multiomics and other cutting-edge approaches. The potential translation of these studies into clinical practice and therapy is deliberated. We also discuss preclinical models of ALD, interplay of ALD and metabolic dysfunction, alcohol-associated liver cancer, the heterogeneity of ALD, and some potential translational research prospects for ALD.
Collapse
|
28
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Warner JB, Hardesty JE, Song YL, Floyd AT, Deng Z, Jebet A, He L, Zhang X, McClain CJ, Hammock BD, Warner DR, Kirpich IA. Hepatic Transcriptome and Its Regulation Following Soluble Epoxide Hydrolase Inhibition in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:71-84. [PMID: 37925018 PMCID: PMC10768534 DOI: 10.1016/j.ajpath.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/02/2023] [Accepted: 09/27/2023] [Indexed: 11/06/2023]
Abstract
Alcohol-associated liver disease (ALD) is a serious public health problem with limited pharmacologic options. The goal of the current study was to investigate the efficacy of pharmacologic inhibition of soluble epoxide hydrolase (sEH), an enzyme involved in lipid metabolism, in experimental ALD, and to examine the underlying mechanisms. C57BL/6J male mice were subjected to acute-on-chronic ethanol (EtOH) feeding with or without the sEH inhibitor 4-[[trans-4-[[[[4-trifluoromethoxy phenyl]amino]carbonyl]-amino]cyclohexyl]oxy]-benzoic acid (TUCB). Liver injury was assessed by multiple end points. Liver epoxy fatty acids and dihydroxy fatty acids were measured by targeted metabolomics. Whole-liver RNA sequencing was performed, and free modified RNA bases were measured by mass spectrometry. EtOH-induced liver injury was ameliorated by TUCB treatment as evidenced by reduced plasma alanine aminotransferase levels and was associated with attenuated alcohol-induced endoplasmic reticulum stress, reduced neutrophil infiltration, and increased numbers of hepatic M2 macrophages. TUCB altered liver epoxy and dihydroxy fatty acids and led to a unique hepatic transcriptional profile characterized by decreased expression of genes involved in apoptosis, inflammation, fibrosis, and carcinogenesis. Several modified RNA bases were robustly changed by TUCB, including N6-methyladenosine and 2-methylthio-N6-threonylcarbamoyladenosine. These findings show the beneficial effects of sEH inhibition by TUCB in experimental EtOH-induced liver injury, warranting further mechanistic studies to explore the underlying mechanisms, and highlighting the translational potential of sEH as a drug target for this disease.
Collapse
Affiliation(s)
- Jeffrey B Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Josiah E Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Ying L Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Alison T Floyd
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Zhongbin Deng
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, Kentucky; Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Audriy Jebet
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky; Robley Rex Veterans Medical Center, Louisville, Kentucky
| | - Bruce D Hammock
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| | - Dennis R Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky.
| |
Collapse
|
30
|
Ishqi HM, Ali M, Dawra R. Recent advances in the role of neutrophils and neutrophil extracellular traps in acute pancreatitis. Clin Exp Med 2023; 23:4107-4122. [PMID: 37725239 DOI: 10.1007/s10238-023-01180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Pancreatitis is an inflammatory disease, which is triggered by adverse events in acinar cells of the pancreas. After the initial injury, infiltration of neutrophils in pancreas is observed. In the initial stages of pancreatitis, the inflammation is sterile. It has been shown that the presence of neutrophils at the injury site can modulate the disease. Their depletion in experimental animal models of the acute pancreatitis has been shown to be protective. But information on mechanism of contribution to inflammation by neutrophils at the injury site is not clear. Once at injury site, activated neutrophils release azurophilic granules containing proteolytic enzymes and generate hypochlorous acid which is a strong microbicidal agent. Additionally, emerging evidence shows that neutrophil extracellular traps (NETs) are formed which consist of decondensed DNA decorated with histones, proteases and granular and cytosolic proteins. NETs are considered mechanical traps for microbes, but there is preliminary evidence to indicate that NETs, which constitute a special mechanism of the neutrophil defence system, play an adverse role in pancreatitis by contributing to the pancreatic inflammation and distant organ injury. This review presents the overall current information about neutrophils and their role including NETs in acute pancreatitis (AP). It also highlights current gaps in knowledge which should be explored to fully elucidate the role of neutrophils in AP and for therapeutic gains.
Collapse
Affiliation(s)
- Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Misha Ali
- Department of Radiation Oncology and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
31
|
Winkler R, Lu H. Cell-Specific Regulation of Inflammatory Cytokines and Acute-Phase Proteins by the Glucocorticoid Receptor. Mediators Inflamm 2023; 2023:4399998. [PMID: 39619227 PMCID: PMC11606692 DOI: 10.1155/2023/4399998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Literature and data mining found abnormal induction of chemokine (C-X-C motif) ligand 1 (CXCL1) and CXCL8 and down-regulation of CXCL2 in inflammatory liver diseases. This study was performed to understand the glucocorticoid receptor's (GR's) effects on chemokine and acute-phase protein expression in human liver, in settings of bacterial infection (modeled using LPS) or inflammation (modeled using TNFα). METHODS Primary human hepatocytes (PHH) were treated with combinations of tumor necrosis factor alpha (TNFα), lipopolysaccharide (LPS), and dexamethasone (DEX) for 24 h, following which chemokine mRNA and protein expression were analyzed using qPCR and enzyme-linked immunosorbent assay assays. Dual luciferase assays were performed on transfected cell lines. Mutant CXCL2 promoters were used in dual luciferase assays to identify specific regions of the CXCL2 promoter affected by GR, TNFα, or hepatocyte nuclear factor 4α (HNF4α, a liver-enriched transcription factor). RESULTS In PHH from donor 1, GR strongly inhibited LPS-induced CXCL1 and CXCL8 translation and transcription, whereas CXCL2 transcription tended to increase with DEX treatment. In PHH from donor 2, DEX treatment inhibited protein expression and secretion of CXCL1 and CXCL8 induced by TNFα and/or LPS, whereas CXCL2 upregulation was largely unaffected by DEX treatment. In nonliver HEK293T cells GR activity inhibited CXCL2 promoter activity. However, in liver-derived HEPG2 cells, GR induced CXCL2 promoter activity. A 407-base pair region upstream of CXCL2 promoter is necessary for full GR functionality in HEPG2 cells. TNFα synergized with HNF4α in inducing CXCL2 promoter activity in HEPG2 cells. CONCLUSIONS GR's effects on chemokine expression are cell-type specific and chemokine specific. GR down-regulated CXCL1 and CXCL8 in different cell types, whereas the specific activation of CXCL2 in hepatocytes and down-regulation of CXCL2 in nonhepatocytes by GR appears due to cell-specific utilization of CXCL2 promoter. By specifically increasing GR activity in the liver, we may normalize chemokine imbalances and prevent sepsis in inflammatory liver diseases.
Collapse
Affiliation(s)
- Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
32
|
Chou AH, Lee HC, Liao CC, Yu HP, Liu FC. ERK/NF-kB/COX-2 Signaling Pathway Plays a Key Role in Curcumin Protection against Acetaminophen-Induced Liver Injury. Life (Basel) 2023; 13:2150. [PMID: 38004290 PMCID: PMC10672507 DOI: 10.3390/life13112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Recent experimental studies have highlighted the beneficial effects of curcumin on liver injury induced by acetaminophen (APAP). However, the specific molecular mechanisms underlying curcumin's hepatoprotective effects against APAP-induced liver injury remain to be fully elucidated. This study aimed to investigate the therapeutic effect of curcumin on APAP-induced liver injury using a mouse model. In the experiment, mice were subjected to an intraperitoneal hepatotoxic dose of APAP (300 mg/kg) to induce hepatotoxicity. After 30 min of APAP administration, the mice were treated with different concentrations of curcumin (0, 10, 25, or 50 mg/kg). After 16 h, mice with hepatotoxicity showed elevated levels of serum alanine transaminase (ALT), aspartate transaminase (AST), hepatic myeloperoxidase (MPO), TNF-α, and IL-6, and decreased levels of glutathione (GSH). Moreover, there was an increased infiltration of neutrophils and macrophages following intraperitoneal injection of APAP. However, curcumin-treated mice displayed a pronounced reduction in serum ALT, AST, hepatic MPO, TNF-α, and IL-6 levels, coupled with a notable elevation in GSH levels compared to the APAP-treated hepatotoxic mice. Moreover, curcumin treatment led to reduced infiltration of neutrophils and macrophages. Additionally, curcumin inhibited the phosphorylation of ERK and NF-kB proteins while reducing the expression of cyclooxygenase-2 (COX-2). These findings highlight the hepatoprotective potential of curcumin against APAP-induced liver injury through the suppression of the ERK, NF-kB, and COX-2 signaling pathways.
Collapse
Affiliation(s)
- An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
33
|
Li G, Liu L, Lu T, Sui Y, Zhang C, Wang Y, Zhang T, Xie Y, Xiao P, Zhao Z, Cheng C, Hu J, Chen H, Xue D, Chen H, Wang G, Kong R, Tan H, Bai X, Li Z, McAllister F, Li L, Sun B. Gut microbiota aggravates neutrophil extracellular traps-induced pancreatic injury in hypertriglyceridemic pancreatitis. Nat Commun 2023; 14:6179. [PMID: 37794047 PMCID: PMC10550972 DOI: 10.1038/s41467-023-41950-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Hypertriglyceridemic pancreatitis (HTGP) is featured by higher incidence of complications and poor clinical outcomes. Gut microbiota dysbiosis is associated with pancreatic injury in HTGP and the mechanism remains unclear. Here, we observe lower diversity of gut microbiota and absence of beneficial bacteria in HTGP patients. In a fecal microbiota transplantation mouse model, the colonization of gut microbiota from HTGP patients recruits neutrophils and increases neutrophil extracellular traps (NETs) formation that exacerbates pancreatic injury and systemic inflammation. We find that decreased abundance of Bacteroides uniformis in gut microbiota impairs taurine production and increases IL-17 release in colon that triggers NETs formation. Moreover, Bacteroides uniformis or taurine inhibits the activation of NF-κB and IL-17 signaling pathways in neutrophils which harness NETs and alleviate pancreatic injury. Our findings establish roles of endogenous Bacteroides uniformis-derived metabolic and inflammatory products on suppressing NETs release, which provides potential insights of ameliorating HTGP through gut microbiota modulation.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Yuhang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Can Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Peng Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Dongbo Xue
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China
| | - Hongtao Tan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xuewei Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhibo Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China.
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, China.
| |
Collapse
|
34
|
Khan RS, Lalor PF, Thursz M, Newsome PN. The role of neutrophils in alcohol-related hepatitis. J Hepatol 2023; 79:1037-1048. [PMID: 37290590 DOI: 10.1016/j.jhep.2023.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Alcohol-related liver disease is a major cause of liver disease-associated mortality, with inpatient care being a major contributor to its clinical and economic burden. Alcohol-related hepatitis (AH) is an acute inflammatory form of alcohol-related liver disease. Severe AH is associated with high short-term mortality, with infection being a common cause of death. The presence of AH is associated with increased numbers of circulating and hepatic neutrophils. We review the literature on the role of neutrophils in AH. In particular, we explain how neutrophils are recruited to the inflamed liver and how their antimicrobial functions (chemotaxis, phagocytosis, oxidative burst, NETosis) may be altered in AH. We highlight evidence for the existence of 'high-density' and 'low-density' neutrophil subsets. We also describe the potentially beneficial roles of neutrophils in the resolution of injury in AH through their effects on macrophage polarisation and hepatic regeneration. Finally, we discuss how manipulation of neutrophil recruitment/function may be used as a therapeutic strategy in AH. For example, correction of gut dysbiosis in AH could help to prevent excess neutrophil activation, or treatments could aim to enhance miR-223 function in AH. The development of markers that can reliably distinguish neutrophil subsets and of animal models that accurately reproduce human disease will be crucial for facilitating translational research in this important field.
Collapse
Affiliation(s)
- Reenam S Khan
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Patricia F Lalor
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mark Thursz
- Hepatology Unit, Imperial College School of Medicine, St. Mary's Hospital, London, W21NY, England, UK
| | - Philip N Newsome
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
35
|
Huang C, Fan X, Shen Y, Shen M, Yang L. Neutrophil subsets in noncancer liver diseases: Cellular crosstalk and therapeutic targets. Eur J Immunol 2023; 53:e2250324. [PMID: 37495829 DOI: 10.1002/eji.202250324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Neutrophils are the most abundant circulating granulocytes, linking innate and adaptive immunity. Neutrophils can regulate inflammatory and immune responses through degranulation, reactive oxygen species generation, the production of cytokines and chemokines, and NETosis. Emerging evidence has indicated that neutrophils contribute to the pathogenesis of various noncancer liver diseases, including nonalcoholic fatty liver disease, alcohol-associated liver disease, hepatic ischemia-reperfusion injury, and liver fibrosis. Cellular interactions among neutrophils, other immune cells, and nonimmune cells constitute a complex network that regulates the immune microenvironment of the liver. This review summarizes novel neutrophil subtypes, including CD177+ neutrophils and low-density neutrophils. Moreover, we provide an overview of the cellular cros stalk of neutrophils in noncancer liver diseases, aiming to shed new light on mechanistic studies of novel neutrophil subtypes. In addition, we discuss the potential of neutrophils as therapeutic targets in noncancer liver diseases, including inhibitors targeting NETosis, granule proteins, and chemokines.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Zou J, Yang R, Feng R, Liu J, Wan JB. Ginsenoside Rk2, a dehydroprotopanaxadiol saponin, alleviates alcoholic liver disease via regulating NLRP3 and NLRP6 inflammasome signaling pathways in mice. J Pharm Anal 2023; 13:999-1012. [PMID: 37842661 PMCID: PMC10568107 DOI: 10.1016/j.jpha.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heavy alcohol consumption results in alcoholic liver disease (ALD) with inadequate therapeutic options. Here, we first report the potential beneficial effects of ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin isolated from streamed ginseng, against alcoholic liver injury in mice. Chronic-plus-single-binge ethanol feeding caused severe liver injury, as manifested by significantly elevated serum aminotransferase levels, hepatic histological changes, increased lipid accumulation, oxidative stress, and inflammation in the liver. These deleterious effects were alleviated by the treatment with Rk2 (5 and 30 mg/kg). Acting as an nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inhibitor, Rk2 ameliorates alcohol-induced liver inflammation by inhibiting NLRP3 inflammasome signaling in the liver. Meanwhile, the treatment with Rk2 alleviated the alcohol-induced intestinal barrier dysfunction via enhancing NLRP6 inflammasome in the intestine. Our findings indicate that Rk2 is a promising agent for the prevention and treatment of ALD and other NLPR3-driven diseases.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Rujie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
37
|
Niemelä O, Bloigu A, Bloigu R, Nivukoski U, Kultti J, Pohjasniemi H. Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder. Int J Mol Sci 2023; 24:13124. [PMID: 37685930 PMCID: PMC10487441 DOI: 10.3390/ijms241713124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Recent data have emphasized the role of inflammation and intestinal immunoglobulin A (IgA) responses in the pathogenesis of alcoholic liver disease (ALD). In order to further explore such associations, we compared IgA titers against antigens targeted to ethanol metabolites and tissue transglutaminase with pro- and anti-inflammatory mediators of inflammation, markers of liver status, transferrin protein desialylation and extracellular matrix metabolism in alcohol-dependent patients with or without liver disease and in healthy controls. Serum IgAs against protein adducts with acetaldehyde (HbAch-IgA), the first metabolite of ethanol, and tissue transglutaminase (tTG-IgA), desialylated transferrin (CDT), pro- and anti-inflammatory cytokines, markers of liver status (GT, ALP) and extracellular matrix metabolism (PIIINP, PINP, hyaluronic acid, ICTP and CTx) were measured in alcohol-dependent patients with (n = 83) or without (n = 105) liver disease and 88 healthy controls representing either moderate drinkers or abstainers. In ALD patients, both tTG-IgA and HbAch-IgA titers were significantly higher than those in the alcoholics without liver disease (p < 0.0005 for tTG-IgA, p = 0.006 for Hb-Ach-IgA) or in healthy controls (p < 0.0005 for both comparisons). The HbAch-IgA levels in the alcoholics without liver disease also exceeded those found in healthy controls (p = 0.0008). In ROC analyses, anti-tTG-antibodies showed an excellent discriminative value in differentiating between ALD patients and healthy controls (AUC = 0.95, p < 0.0005). Significant correlations emerged between tTG-IgAs and HbAch-IgAs (rs = 0.462, p < 0.0005), CDT (rs = 0.413, p < 0.0001), GT (rs = 0.487, p < 0.0001), alkaline phosphatase (rs = 0.466, p < 0.0001), serum markers of fibrogenesis: PIIINP (rs = 0.634, p < 0.0001), hyaluronic acid (rs = 0.575, p < 0.0001), ICTP (rs = 0.482, p < 0.0001), pro-inflammatory cytokines IL-6 (rs = 0.581, p < 0.0001), IL-8 (rs = 0.535, p < 0.0001) and TNF-α (rs = 0.591, p < 0.0001), whereas significant inverse correlations were observed with serum TGF-β (rs = -0.366, p < 0.0001) and CTx, a marker of collagen degradation (rs = -0.495, p < 0.0001). The data indicate that the induction of IgA immune responses toward ethanol metabolites and tissue transglutaminaseis a characteristic feature of patients with AUD and coincides with the activation of inflammation, extracellular matrix remodeling and the generation of aberrantly glycosylated proteins. These processes appear to work in concert in the sequence of events leading from heavy drinking to ALD.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Aini Bloigu
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Risto Bloigu
- Infrastructure of Population Studies, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Ulla Nivukoski
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Johanna Kultti
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Heidi Pohjasniemi
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
38
|
Maji RK, Czepukojc B, Scherer M, Tierling S, Cadenas C, Gianmoena K, Gasparoni N, Nordström K, Gasparoni G, Laggai S, Yang X, Sinha A, Ebert P, Falk-Paulsen M, Kinkley S, Hoppstädter J, Chung HR, Rosenstiel P, Hengstler JG, Walter J, Schulz MH, Kessler SM, Kiemer AK. Alterations in the hepatocyte epigenetic landscape in steatosis. Epigenetics Chromatin 2023; 16:30. [PMID: 37415213 DOI: 10.1186/s13072-023-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Fatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in transcriptional and epigenomic profiles. In this study, we took up a multi-omics approach and integrated gene expression, methylation signals, and chromatin signals to study the epigenomic effects of a high-fat and alcohol-containing diet on mouse hepatocytes. We identified four relevant gene network clusters that were associated with relevant pathways that promote steatosis. Using a machine learning approach, we predict specific transcription factors that might be responsible to modulate the functionally relevant clusters. Finally, we discover four additional CpG loci and validate aging-related differential CpG methylation. Differential CpG methylation linked to aging showed minimal overlap with altered methylation in steatosis.
Collapse
Affiliation(s)
- Ranjan Kumar Maji
- Institute for Cardiovascular Regeneration, Goethe-University, 60590, Frankfurt, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60590, Frankfurt, Germany
| | - Beate Czepukojc
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Michael Scherer
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
| | - Sascha Tierling
- Department of Genetics, Saarland University, 66123, Saarbrücken, Germany
| | - Cristina Cadenas
- IfADo: Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Kathrin Gianmoena
- IfADo: Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Nina Gasparoni
- Department of Genetics, Saarland University, 66123, Saarbrücken, Germany
| | - Karl Nordström
- Department of Genetics, Saarland University, 66123, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, 66123, Saarbrücken, Germany
| | - Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Xinyi Yang
- Institute of Medical Bioinformatics and Biostatistics, Philipps University of Marburg, 35032, Marburg, Germany
| | - Anupam Sinha
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Peter Ebert
- Core Unit Bioinformatics, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123, Saarbrücken, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Sarah Kinkley
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Ho-Ryun Chung
- Institute of Medical Bioinformatics and Biostatistics, Philipps University of Marburg, 35032, Marburg, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Jan G Hengstler
- IfADo: Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, 66123, Saarbrücken, Germany
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe-University, 60590, Frankfurt, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60590, Frankfurt, Germany.
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, 66123, Saarbrücken, Germany.
- Excellence Cluster on Multimodal Computing and Interaction, Saarland University, 66123, Saarbrücken, Germany.
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany.
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany.
- Halle Research Centre for Drug Therapy (HRCDT), Halle, Germany.
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
39
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
40
|
Li N, Liu H, Xue Y, Xu Z, Miao X, Guo Y, Li Z, Fan Z, Xu Y. Targetable Brg1-CXCL14 axis contributes to alcoholic liver injury by driving neutrophil trafficking. EMBO Mol Med 2023; 15:e16592. [PMID: 36722664 PMCID: PMC9994483 DOI: 10.15252/emmm.202216592] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Alcoholic liver disease (ALD) accounts for a large fraction of patients with cirrhosis and hepatocellular carcinoma. In the present study we investigated the involvement of Brahma-related gene 1 (Brg1) in ALD pathogenesis and implication in ALD intervention. We report that Brg1 expression was elevated in mouse models of ALD, in hepatocyte exposed to alcohol, and in human ALD specimens. Manipulation of Brg1 expression in hepatocytes influenced the development of ALD in mice. Flow cytometry showed that Brg1 deficiency specifically attenuated hepatic infiltration of Ly6G+ neutrophils in the ALD mice. RNA-seq identified C-X-C motif chemokine ligand 14 (CXCL14) as a potential target for Brg1. CXCL14 knockdown alleviated whereas CXCL14 over-expression enhanced ALD pathogenesis in mice. Importantly, pharmaceutical inhibition of Brg1 with a small-molecule compound PFI-3 or administration of an antagonist to the CXCL14 receptor ameliorated ALD pathogenesis in mice. Finally, a positive correlation between Brg1 expression, CXCL14 expression, and neutrophil infiltration was detected in ALD patients. In conclusion, our data provide proof-of-concept for targeting the Brg1-CXCL14 axis in ALD intervention.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of PathophysiologyNanjing Medical UniversityNanjingChina
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of PathophysiologyNanjing Medical UniversityNanjingChina
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of PathophysiologyNanjing Medical UniversityNanjingChina
| | - Zheng Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of PathophysiologyNanjing Medical UniversityNanjingChina
| | - Xiulian Miao
- Collage of Life Sciences and Institute of Biomedical Research, Liaocheng UniversityLiaochengChina
| | - Yan Guo
- Collage of Life Sciences and Institute of Biomedical Research, Liaocheng UniversityLiaochengChina
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of PharmacologyChina Pharmaceutical UniversityNanjingChina
| | - Zhiwen Fan
- Department of PathologyNanjing Drum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of PathophysiologyNanjing Medical UniversityNanjingChina
- Collage of Life Sciences and Institute of Biomedical Research, Liaocheng UniversityLiaochengChina
- State Key Laboratory of Natural Medicines, Department of PharmacologyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
41
|
Mackowiak B, Xu M, Lin Y, Guan Y, Seo W, Ren R, Feng D, Jones JW, Wang H, Gao B. Hepatic CYP2B10 is highly induced by binge ethanol and contributes to acute-on-chronic alcohol-induced liver injury. Alcohol Clin Exp Res 2022; 46:2163-2176. [PMID: 36224745 PMCID: PMC9771974 DOI: 10.1111/acer.14954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/10/2022] [Accepted: 10/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The chronic-plus-binge model of ethanol consumption, where chronically (8-week) ethanol-fed mice are gavaged a single dose of ethanol (E8G1), is known to induce steatohepatitis in mice. However, how chronically ethanol-fed mice respond to multiple binges of ethanol remains unknown. METHODS We extended the E8G1 model to three gavages of ethanol (E8G3) spaced 24 h apart, sacrificed each group 9 h after the final gavage, analyzed liver injury, and examined gene expression changes using microarray analyses in each group to identify mechanisms contributing to liver responses to binge ethanol. RESULTS Surprisingly, E8G3 treatment induced lower levels of liver injury, steatosis, inflammation, and fibrosis as compared to mice after E8G1 treatment. Microarray analyses identified several pathways that may contribute to the reduced liver injury after E8G3 treatment compared to E8G1 treatment. The gene encoding cytochrome P450 2B10 (Cyp2b10) was one of the top upregulated genes in the E8G1 group and was further upregulated in the E8G3 group, but only moderately induced after chronic ethanol consumption, as confirmed by RT-qPCR and western blot analyses. Genetic disruption of Cyp2b10 worsened liver injury in E8G1 and E8G3 mice with higher blood ethanol levels compared to wild-type control mice, while in vitro experiments revealed that CYP2b10 did not directly promote ethanol metabolism. Metabolomic analyses revealed significant differences in hepatic metabolites from E8G1-treated Cyp2b10 knockout and WT mice, and these metabolic alterations may contribute to the reduced liver injury in Cyp2b10 knockout mice. CONCLUSION Hepatic Cyp2b10 expression is highly induced after ethanol binge, and such upregulation reduces acute-on-chronic ethanol-induced liver injury via the indirect modification of ethanol metabolism.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Niemelä O, Aalto M, Bloigu A, Bloigu R, Halkola AS, Laatikainen T. Alcohol Drinking Patterns and Laboratory Indices of Health: Does Type of Alcohol Preferred Make a Difference? Nutrients 2022; 14:4529. [PMID: 36364789 PMCID: PMC9658819 DOI: 10.3390/nu14214529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
Although excessive alcohol consumption is a highly prevalent public health problem the data on the associations between alcohol consumption and health outcomes in individuals preferring different types of alcoholic beverages has remained unclear. We examined the relationships between the amounts and patterns of drinking with the data on laboratory indices of liver function, lipid status and inflammation in a national population-based health survey (FINRISK). Data on health status, alcohol drinking, types of alcoholic beverages preferred, body weight, smoking, coffee consumption and physical activity were recorded from 22,432 subjects (10,626 men, 11,806 women), age range 25-74 years. The participants were divided to subgroups based on the amounts of regular alcohol intake (abstainers, moderate and heavy drinkers), patterns of drinking (binge or regular) and the type of alcoholic beverage preferred (wine, beer, cider or long drink, hard liquor or mixed). Regular drinking was found to be more typical in wine drinkers whereas the subjects preferring beer or hard liquor were more often binge-type drinkers and cigarette smokers. Alcohol use in all forms was associated with increased frequencies of abnormalities in the markers of liver function, lipid status and inflammation even at rather low levels of consumption. The highest rates of abnormalities occurred, however, in the subgroups of binge-type drinkers preferring beer or hard liquor. These results demonstrate that adverse consequences of alcohol occur even at moderate average drinking levels especially in individuals who engage in binge drinking and in those preferring beer or hard liquor. Further emphasis should be placed on such patterns of drinking in policies aimed at preventing alcohol-induced adverse health outcomes.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, 60220 Seinäjoki, Finland
| | - Mauri Aalto
- Department of Psychiatry, Seinäjoki Central Hospital, Tampere University, 33100 Tampere, Finland
| | - Aini Bloigu
- Center for Life Course Health Research, University of Oulu, 90570 Oulu, Finland
| | - Risto Bloigu
- Infrastructure of Population Studies, Faculty of Medicine, University of Oulu, 90570 Oulu, Finland
| | - Anni S. Halkola
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, 60220 Seinäjoki, Finland
| | - Tiina Laatikainen
- Department of Public Health Solutions, National Institute for Health and Welfare (THL), 00271 Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland
- Joint Municipal Authority for North Karelia Social and Health Services, 80210 Joensuu, Finland
| |
Collapse
|
43
|
Blood Cell Responses Following Heavy Alcohol Consumption Coincide with Changes in Acute Phase Reactants of Inflammation, Indices of Hemolysis and Immune Responses to Ethanol Metabolites. Int J Mol Sci 2022; 23:ijms232112738. [PMID: 36361528 PMCID: PMC9656529 DOI: 10.3390/ijms232112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Aberrations in blood cells are common among heavy alcohol drinkers. In order to shed further light on such responses, we compared blood cell status with markers of hemolysis, mediators of inflammation and immune responses to ethanol metabolites in alcohol-dependent patients at the time of admission for detoxification and after abstinence. Blood cell counts, indices of hemolysis (LDH, haptoglobin, bilirubin), calprotectin (a marker of neutrophil activation), suPAR, CD163, pro- and anti-inflammatory cytokines and autoantibodies against protein adducts with acetaldehyde, the first metabolite of ethanol, were measured from alcohol-dependent patients (73 men, 26 women, mean age 43.8 ± 10.4 years) at baseline and after 8 ± 1 days of abstinence. The assessments also included information on the quantities of alcohol drinking and assays for biomarkers of alcohol consumption (CDT), liver function (AST, ALT, ALP, GGT) and acute phase reactants of inflammation. At baseline, the patients showed elevated values of CDT and biomarkers of liver status, which decreased significantly during abstinence. A significant decrease also occurred in LDH, bilirubin, CD163 and IgA and IgM antibodies against acetaldehyde adducts, whereas a significant increase was noted in blood leukocytes, platelets, MCV and suPAR levels. The changes in blood leukocytes correlated with those in serum calprotectin (p < 0.001), haptoglobin (p < 0.001), IL-6 (p < 0.02) and suPAR (p < 0.02). The changes in MCV correlated with those in LDH (p < 0.02), MCH (p < 0.01), bilirubin (p < 0.001) and anti-adduct IgG (p < 0.01). The data indicates that ethanol-induced changes in blood leukocytes are related with acute phase reactants of inflammation and release of neutrophil calprotectin. The studies also highlight the role of hemolysis and immune responses to ethanol metabolites underlying erythrocyte abnormalities in alcohol abusers.
Collapse
|
44
|
Lee SW, Baek SM, Lee YJ, Kim TU, Yim JH, Son JH, Kim HY, Kang KK, Kim JH, Rhee MH, Park SJ, Choi SK, Park JK. Ginsenoside Rg3-enriched Korean red ginseng extract attenuates Non-Alcoholic Fatty Liver Disease by way of suppressed VCAM-1 expression in liver sinusoidal endothelium. J Ginseng Res 2022; 47:429-439. [DOI: 10.1016/j.jgr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
|
45
|
Zhou B, Luo Y, Ji N, Mao F, Xiang L, Bian H, Zheng MH, Hu C, Li Y, Lu Y. Promotion of nonalcoholic steatohepatitis by RNA N 6-methyladenosine reader IGF2BP2 in mice. LIFE METABOLISM 2022; 1:161-174. [PMID: 39872354 PMCID: PMC11749640 DOI: 10.1093/lifemeta/loac006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 06/07/2022] [Indexed: 01/30/2025]
Abstract
Nonalcoholic steatohepatitis (NASH) has emerged as the major cause of end-stage liver diseases. However, an incomplete understanding of its molecular mechanisms severely dampens the development of pharmacotherapies. In the present study, through systematic screening of genome-wide mRNA expression from three mouse models of hepatic inflammation and fibrosis, we identified IGF2BP2, an N6-methyladenosine modification reader, as a key regulator that promotes NASH progression in mice. Adenovirus or adeno-associated virus-mediated overexpression of IGF2BP2 could induce liver steatosis, inflammation, and fibrosis in mice, at least in part, by increasing Tab2 mRNA stability. Besides, hepatic overexpression of IGF2BP2 mimicked gene expression profiles and molecular pathways of human NASH livers. Of potential clinical significance, IGF2BP2 expression is significantly upregulated in the livers of NASH patients. Moreover, knockdown of IGF2BP2 substantially alleviated liver injury, inflammation, and fibrosis in diet-induced NASH mice. Taken together, our findings reveal an important role of IGF2BP2 in NASH, which may provide a new therapeutic target for the treatment of NASH.
Collapse
Affiliation(s)
- Bing Zhou
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunchen Luo
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Ji
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Qingpu Branch of Zhongshan Hospital, Fudan University, Wenzhou, China
| | - Fei Mao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liping Xiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hua Bian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Metabolism and Regenerative Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
46
|
Yin F, Wu MM, Wei XL, Ren RX, Liu MH, Chen CQ, Yang L, Xie RQ, Jiang SY, Wang XF, Wang H. Hepatic NCoR1 deletion exacerbates alcohol-induced liver injury in mice by promoting CCL2-mediated monocyte-derived macrophage infiltration. Acta Pharmacol Sin 2022; 43:2351-2361. [PMID: 35149852 PMCID: PMC9433401 DOI: 10.1038/s41401-022-00863-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Nuclear receptor corepressor 1 (NCoR1) is a corepressor of the epigenetic regulation of gene transcription that has important functions in metabolism and inflammation, but little is known about its role in alcohol-associated liver disease (ALD). In this study, we developed mice with hepatocyte-specific NCoR1 knockout (NCoR1Hep-/-) using the albumin-Cre/LoxP system and investigated the role of NCoR1 in the pathogenesis of ALD and the underlying mechanisms. The traditional alcohol feeding model and NIAAA model of ALD were both established in wild-type and NCoR1Hep-/- mice. We showed that after ALD was established, NCoR1Hep-/- mice had worse liver injury but less steatosis than wild-type mice. We demonstrated that hepatocyte-specific loss of NCoR1 attenuated liver steatosis by promoting fatty acid oxidation by upregulating BMAL1 (a circadian clock component that has been reported to promote peroxisome proliferator activated receptor alpha (PPARα)-mediated fatty β-oxidation by upregulating de novo lipid synthesis). On the other hand, hepatocyte-specific loss of NCoR1 exacerbated alcohol-induced liver inflammation and oxidative stress by recruiting monocyte-derived macrophages via C-C motif chemokine ligand 2 (CCL2). In the mouse hepatocyte line AML12, NCoR1 knockdown significantly increased ethanol-induced CCL2 release. These results suggest that hepatocyte NCoR1 plays distinct roles in controlling liver inflammation and steatosis, which provides new insights into the development of treatments for steatohepatitis induced by chronic alcohol consumption.
Collapse
Affiliation(s)
- Fan Yin
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Miao-Miao Wu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Li Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Rui-Xue Ren
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Meng-Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Chong-Qing Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Liu Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Rui-Qian Xie
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Shan-Yue Jiang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xue-Fu Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
47
|
Sasaki-Tanaka R, Ray R, Moriyama M, Ray RB, Kanda T. Molecular Changes in Relation to Alcohol Consumption and Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23179679. [PMID: 36077080 PMCID: PMC9456124 DOI: 10.3390/ijms23179679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/12/2022] Open
Abstract
Alcohol is the one of the major causes of liver diseases and promotes liver cirrhosis and hepatocellular carcinoma (HCC). In hepatocytes, alcohol is converted to acetaldehyde, which causes hepatic steatosis, cellular apoptosis, endoplasmic reticulum stress, peroxidation, production of cytokines and reduces immune surveillance. Endotoxin and lipopolysaccharide produced from intestinal bacteria also enhance the production of cytokines. The development of hepatic fibrosis and the occurrence of HCC are induced by these alcohol metabolites. Several host genetic factors have recently been identified in this process. Here, we reviewed the molecular mechanism associated with HCC in alcoholic liver disease.
Collapse
Affiliation(s)
- Reina Sasaki-Tanaka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (R.S.-T.); (T.K.); Tel.: +81-3-3972-8111 (R.S.-T. & T.K.)
| | - Ranjit Ray
- Departments of Internal Medicine, and Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (R.S.-T.); (T.K.); Tel.: +81-3-3972-8111 (R.S.-T. & T.K.)
| |
Collapse
|
48
|
Grube J, Woitok MM, Mohs A, Erschfeld S, Lynen C, Trautwein C, Otto T. ACSL4-dependent ferroptosis does not represent a tumor-suppressive mechanism but ACSL4 rather promotes liver cancer progression. Cell Death Dis 2022; 13:704. [PMID: 35963845 PMCID: PMC9376109 DOI: 10.1038/s41419-022-05137-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is a novel type of programmed cell death that differs from apoptosis in that it involves iron-dependent peroxidation of membrane phospholipids. Its role in a variety of human disorders, including cancer has been hypothesized in recent years. While it may function as an endogenous tumor suppressor in a variety of cancers, its role during initiation and progression of liver cancer, particularly hepatocellular carcinoma (HCC), is yet unknown. Because HCC is most commonly found in chronically injured livers, we utilized two well-established mouse models of chronic injury-dependent HCC formation: Treatment with streptozotocin and high-fat diet as metabolic injury model, as well as treatment with diethylnitrosamine and carbon tetrachloride as toxic injury model. We used mice with hepatocyte-specific deletion of Acsl4, a key mediator of ferroptosis, to explore the significance of ferroptotic cell death in hepatocytes, the cell type of origin for HCC. Surprisingly, preventing ferroptotic cell death in hepatocytes by deleting Acsl4 does not increase the formation of HCC. Furthermore, Acsl4-deficient livers display less fibrosis and proliferation, especially in the HCC model of toxic damage. Intriguingly, in this model, the absence of ACSL4-dependent processes such as ferroptosis significantly slow down the growth of HCC. These findings suggest that during HCC formation in a chronically injured liver, ferroptotic cell death is not an endogenous tumor-suppressive mechanism. Instead, we find that ACSL4-dependent processes have an unanticipated cancer-promoting effect during HCC formation, which is most likely due to aggravated liver damage as demonstrated by increased hepatic fibrosis. Previous studies suggested that ferroptosis might have beneficial effects for patients during HCC therapy. As a result, during HCC progression and therapy, ferroptosis may have both cancer-promoting and cancer-inhibitory effects, respectively.
Collapse
Affiliation(s)
- Julia Grube
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Marius Maximilian Woitok
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Antje Mohs
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Stephanie Erschfeld
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Celina Lynen
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Christian Trautwein
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| | - Tobias Otto
- grid.412301.50000 0000 8653 1507Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, 52074 Germany
| |
Collapse
|
49
|
Xu W, Wu M, Chen B, Wang H. Myeloid cells in alcoholic liver diseases: Mechanism and prospect. Front Immunol 2022; 13:971346. [PMID: 36032154 PMCID: PMC9399804 DOI: 10.3389/fimmu.2022.971346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Alcoholic liver disease (ALD) is a leading chronic liver disease in which immune cells play a vital role. Myeloid cells have been extensively studied in ALD, including granulocytes, macrophages, monocytes, and dendritic cells, which are involved in the occurrence and progression of steatosis, inflammation, fibrosis, and eventual cirrhosis. These cells can be popularly targeted and regulated by factors from different sources, including cytokines secreted by other cells, extracellular vesicles, and substances in serum—for example, infiltration of monocytes or neutrophils, activation of Kupffer cells, and polarization of macrophages. These processes can affect and change the function and phenotype of myeloid cells. Here we mainly review the key mediators that affect the infiltration and function of mainly myeloid cells in ALD as well as their regulatory mechanisms on target cells, which may provide novel immunotherapeutic approaches. The single-cell multimodal omics of myeloid cells is also discussed to help transform them into basic research or therapeutic strategy of ALD clinically.
Collapse
Affiliation(s)
- Wentao Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Miaomiao Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- *Correspondence: Hua Wang,
| |
Collapse
|
50
|
Brouwers MCGJ, Simons N, Kooi ME, de Ritter R, van Dongen MCJM, Eussen SJPM, Bekers O, Kooman J, van Greevenbroek MMJ, van der Kallen CJH, Schram MT, Schaper NC, Schalkwijk CG, Stehouwer CDA. Intrahepatic lipid content is independently associated with soluble E-selectin levels: The Maastricht study. Dig Liver Dis 2022; 54:1038-1043. [PMID: 35135742 DOI: 10.1016/j.dld.2022.01.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Evidence is accumulating that liver sinusoidal endothelial cells are involved in the pathogenesis of non-alcoholic fatty liver disease. Previous studies have suggested that the endothelial biomarker soluble E-selectin (sE-selectin) is to an important extent liver-derived. AIMS To study the relationship of intrahepatic lipid (IHL) content with sE-selectin at the population level. METHODS This study was conducted in participants of The Maastricht Study (n = 1,634), a population-based cohort study enriched with patients with type 2 diabetes. We assessed the cross-sectional association between IHL content, quantified by MRI, and sE-selectin via multivariable regression with adjustment for age, sex, type 2 diabetes, educational level, BMI, Dutch Healthy Diet index, physical activity, and the Matsuda index. RESULTS Standardized IHL content was associated with (log) sE-selectin (age-, sex- and type 2 diabetes-adjusted regression coefficient [B]: 0.048 [95%CI:0.038;0.058], p<0.001), even after full adjustment (B: 0.030 [0.019;0.042], p<0.001). Such an association was not observed for soluble vascular cell adhesion molecule 1 (sVCAM-1) levels. CONCLUSION IHL content is an independent determinant of sE-selectin at the population level. These findings support further studies to unravel the involvement of liver sinusoidal endothelial cells in the different stages of non-alcoholic fatty liver disease and the specific role of E-selectin herein.
Collapse
Affiliation(s)
- Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Centre, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| | - Nynke Simons
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Centre, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Division of General Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marianne Eline Kooi
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Rianneke de Ritter
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Martien C J M van Dongen
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands; CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
| | - Otto Bekers
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jeroen Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Centre, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Marleen M J van Greevenbroek
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Division of General Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Carla J H van der Kallen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Miranda T Schram
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Heart & Vascular Centre, Maastricht University Medical Centre, the Netherlands
| | - Nicolaas C Schaper
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Centre, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Division of General Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|