1
|
Ma C, Cheng X, Hu M, Wang W, Guo W, Li S. The role of bioactive compounds in the management of metabolic and alcohol-related liver disease. Life Sci 2025; 373:123660. [PMID: 40287054 DOI: 10.1016/j.lfs.2025.123660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/12/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Metabolic and alcohol-related liver disease (MetALD) is a newly defined category within the spectrum of steatotic liver diseases, designed to capture the interplay between metabolic dysfunction and alcohol consumption more effectively. Bioactive compounds, celebrated for their potent antioxidant, anti-inflammatory, and hepatoprotective properties, have emerged as promising therapeutic agents for the management of MetALD. This review comprehensively examines the underlying mechanisms by which these compounds exert their effects, including the modulation of oxidative stress pathways, the enhancement of lipid metabolism, and the promotion of liver regeneration. Specific bioactive constituents, such as polyphenols, flavonoids, and omega-3 fatty acids, have demonstrated potential in ameliorating hepatic steatosis and fibrosis associated with MetALD. Incorporating these natural compounds into treatment regimens presents a novel strategy for managing MetALD, with significant implications for both lifestyle modifications and pharmacological interventions. Future research should prioritize clinical trials, improvements in bioavailability, and investigations into the synergistic effects of multi-compound formulations to establish effective and sustainable treatment strategies for MetALD.
Collapse
Affiliation(s)
- Chang Ma
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xi Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wanyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Sha Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Wang Z, Zhu M, Hu Y, Liu J, Ma X, Zhou H. Comparative effects of 6PPD and 6PPD-Quinone at environmentally relevant concentrations on hepatotoxicity, glucolipid metabolism and ferroptotic response in adult zebrafish. ENVIRONMENTAL RESEARCH 2025; 275:121386. [PMID: 40086579 DOI: 10.1016/j.envres.2025.121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
The antioxidant 6PPD and its oxidized product 6PPD-Quinone (6PPDQ) have attracted considerable attention due to their various acute toxicities to aquatic organisms. However, the chronic toxicity of two compounds in aquatic animals is still unknown. Here, adult zebrafish were exposed to 6PPD and 6PPDQ at environmentally relevant concentrations (20 μg/L) for 28 days, and histological analysis showed that 6PPD caused more severe hepatic vacuolization than 6PPDQ. Meanwhile, 6PPD induced more serious lipid accumulation and a higher increase in triglyceride and total cholesterol levels than 6PPDQ, suggesting higher hepatotoxicity of 6PPD. Furthermore, transcriptomic analysis revealed that both compounds disturbed glucolipid metabolism to different degrees by altering the expression of different peroxisome proliferator-activated receptors (PPARs), in which 6PPD inhibited gene expressions in glucolipid metabolism possibly by PPARα, PPARβ and RXR, while 6PPDQ disrupted the expressions of partial genes in similar pathways probably via PPARγ. Additionally, 6PPD but not 6PPDQ increased Fe2+ content, decreased the protein levels of ferroportin 1, ferritin and glutathione peroxidase 4, accompanied with the increase of malondialdehyde level and the decrease of glutathione content, suggesting ferroptotic response by 6PPD. Overall, our data deepened the understanding of 6PPD- and 6PPDQ-induced hepatotoxicity association with glucolipid metabolism disorders and ferroptotic responses.
Collapse
Affiliation(s)
- Zhe Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mingjun Zhu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yao Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jiaxi Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiaoyu Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
3
|
Wang L, Tang W, Sun N, Lv J, Hu J, Tao L, Zhang C, Wang H, Chen L, Xu DX, Zhang Y, Huang Y. Low-dose tire wear chemical 6PPD-Q exposure elicit fatty liver via promoting fatty acid biosynthesis in ICR mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137574. [PMID: 39986096 DOI: 10.1016/j.jhazmat.2025.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) as a major metabolite of tire wear chemical 6PPD has been demonstrated to be an emerging burden of exposure in human populations, via contamination from drinking water, air particulate matter and food sources. Whilst increasing attention has been moved toward its adverse effect, the potential hepatotoxicity of 6PPD-Q in mammals at realistic dose remains unknown. Here, the toxic effects of 6PPD-Q at environmentally relevant dose on the liver of adult mice and its underlying mechanism were investigated through an integrative approach combining transcriptomic and lipidomic analyses. We found that 6PPD-Q exposure induced excessive lipid deposition following three weeks of exposure, ultimately contributing to the pathogenesis of fatty liver disease. Mechanistically, 6PPD-Q exposure caused a remarkable increase in the contents of fatty acids within the hepatic tissue of mice by enhancing their biosynthesis, thereby facilitating lipid deposition. In summary, this study provides a new understanding on the endocrine disrupting effects of 6PPD-Q on hepatic lipid metabolism and how it may contribute to elevated risk of fatty liver disease. Our findings call for a potential public health attention on the risk assessment of 6PPD-Q, particularly towards the risk of chronic metabolic diseases.
Collapse
Affiliation(s)
- Lili Wang
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Weitian Tang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Nan Sun
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jia Lv
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jiayue Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lin Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Li Chen
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yihao Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Yichao Huang
- School of Public Health, Anhui Medical University, Hefei 230032, China; Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou 234099, China.
| |
Collapse
|
4
|
Wu L, Coletta DK. Obesity and type 2 diabetes mellitus: insights from skeletal muscle extracellular matrix remodeling. Am J Physiol Cell Physiol 2025; 328:C1752-C1763. [PMID: 40244268 DOI: 10.1152/ajpcell.00154.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/23/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are metabolic diseases at epidemic proportions. The economic burden for these diseases is at an all-time high, and as such, there is an urgent need for advancements in identifying targets for treating these complex disorders. The extracellular matrix (ECM), comprising collagen, fibronectin, laminin, elastin, and proteoglycan, surrounds skeletal muscles and plays a critical role in maintaining tissue homeostasis by providing structural support and facilitating cell-to-cell communication. Disruption of the ECM signaling results in changes to its micro/macroenvironment, thereby modifying tissue homeostasis. Skeletal muscle ECM remodeling has been shown to be associated with insulin resistance, an underlying feature of obesity and T2DM. This narrative review explores the critical components of skeletal muscle ECM and its accumulation and remodeling in metabolic diseases. In addition, we discuss potential treatments to mitigate the effects of ECM remodeling in skeletal muscle. We conclude that targeting ECM remodeling in skeletal muscle represents a promising yet underexplored therapeutic avenue in the management of metabolic disorders.
Collapse
Affiliation(s)
- Linda Wu
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | - Dawn K Coletta
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
5
|
Frías M, Chicano-Gálvez E, Rivero-Juárez A, Gordon A, Corona-Mata D, Moyano JM, Peralbo-Molina Á, Camacho Á, Pérez-Valero I, Del Mar Malagón M, Rivero A. Afamin and Apolipoprotein F Associated With Liver Steatosis From People Living With HIV: A Discovery Study. Aliment Pharmacol Ther 2025; 61:1767-1774. [PMID: 40159812 DOI: 10.1111/apt.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Liver steatosis (LS) is a condition that is characterised by hepatic fat accumulation unrelated to significant alcohol consumption. This study explored the serum proteomic profile associated with LS in people living with HIV (PLWH). METHODS The study cohort comprised 266 PLWH, 21.1% and 78.9% of whom had LS and no LS, respectively. Serum samples were analysed using liquid chromatography coupled with mass spectrometry (LC-MS). RESULTS Among the 220 proteins detected, afamin (AFM) and apolipoprotein F (APOF) were identified as proteins associated with LS. Differential expression of AFM and APOF was observed in under- and normoweight patients, emphasising their potential as biomarkers in patients without overweight or obesity. CONCLUSIONS These findings suggest that the identified proteins could serve as promising biomarkers of LS in PLWH, paving the way for further investigations into the roles of these proteins in LS development in this unique population.
Collapse
Affiliation(s)
- Mario Frías
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses Research Group, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Chicano-Gálvez
- Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Antonio Rivero-Juárez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses Research Group, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Gordon
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Diana Corona-Mata
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses Research Group, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - José María Moyano
- Department of Computer Science and Artificial Intelligence, University of Sevilla, Sevilla, Spain
| | - Ángela Peralbo-Molina
- Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Ángela Camacho
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses Research Group, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Pérez-Valero
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses Research Group, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - María Del Mar Malagón
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Rivero
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses Research Group, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Chaslin M, Maroun G, Durand E, Bonafos B, Assou S, Chaiyut J, Vaysse L, Ferrer V, Liengprayoon S, Brioche T, Pessemesse L, Macart M, Bertrand-Gaday C, Pers YM, Coudray C, Brondello JM, Casas F, Feillet-Coudray C. Furan fatty acids supplementation in obese mice reverses hepatic steatosis and protects against cartilage degradation. Biomed Pharmacother 2025; 187:118072. [PMID: 40253827 DOI: 10.1016/j.biopha.2025.118072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Obesity is a major global health problem associated with numerous metabolic dysfunctions, an increased risk of developing Metabolic Associated Steatotic Liver Disease (MASLD) and osteoarthritis. Recently, we demonstrated that in Diet-induced-Obesity (DIO) mouse model, preventive furan fatty acids (FuFA-F2) supplementation, a natural compounds found in many foods, reduced the onset of metabolic disorders and increased muscle mass. Here, we aimed to determine whether a short FuFA-F2 supplementation is capable of providing beneficial health effects in obese mice, notably by reversing metabolic disorders and limiting cartilage degradation. 6-month-old obese C57Bl/6 J mice were fed for four additional weeks on a high-fat and high-sucrose (HFHS) diet, supplemented or not with FuFA-F2 (40 mg/day/kg of body weight). Liver triglyceride content and histologic analysis revealed that 4 weeks of FuFA-F2 supplementation fully reversed hepatic steatosis in obese mice. Liver RNA-sequencing analysis highlighted that FuFA-F2 partly reversed the gene expression signature induced by the HFHS diet and favorably changed the expression of many genes known to be involved in the development of hepatic steatosis such as Pcsk9, Stard4, Insig1 and Sulf2. We also found that FuFA-F2 supplementation increased skeletal muscle mass and protected against cartilage degradation and synovitis induced by obesity. Our findings demonstrated that FuFA-F2 supplementation for 4 weeks in obese mice was enough to reverse the development of MASLD, promote an increase in skeletal muscle mass and protect against cartilage degradation induced by the HFHS diet. This study highlights that nutritional supplementation with FuFA-F2 could be an effective approach to treat obesity-related disorders.
Collapse
Affiliation(s)
| | - Georges Maroun
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France
| | - Erwann Durand
- Qualisud, Univ Montpellier, CIRAD, Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Said Assou
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France
| | - Jatuporn Chaiyut
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | - Laurent Vaysse
- CIRAD, UPR BioWooEB, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Vincent Ferrer
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand; CIRAD, UPR BioWooEB, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | - Yves-Marie Pers
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France; Montpellier University Hospital, Clinical immunology and osteoarticular diseases therapeutic Unit, Lapeyronie, Montpellier, France
| | | | - Jean-Marc Brondello
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France
| | | | | |
Collapse
|
7
|
Song Y, Ye T, Roberts LR, Larson NB, Winham SJ. Mendelian randomization in hepatology: A review of principles, opportunities, and challenges. Hepatology 2025; 81:1836-1846. [PMID: 37874245 DOI: 10.1097/hep.0000000000000649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023]
Abstract
Mendelian randomization has become a popular tool to assess causal relationships using existing observational data. While randomized controlled trials are considered the gold standard for establishing causality between exposures and outcomes, it is not always feasible to conduct a trial. Mendelian randomization is a causal inference method that uses observational data to infer causal relationships by using genetic variation as a surrogate for the exposure of interest. Publications using the approach have increased dramatically in recent years, including in the field of hepatology. In this concise review, we describe the concepts, assumptions, and interpretation of Mendelian randomization as related to studies in hepatology. We focus on the strengths and weaknesses of the approach for a non-statistical audience, using an illustrative example to assess the causal relationship between body mass index and NAFLD.
Collapse
Affiliation(s)
- Yilin Song
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Ting Ye
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Nicholas B Larson
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Hu Z, Xiao S, Yao J, Cao Y, He B, Yang J, Zhao F, Zheng L, Liu D, Zhou Z, Liu X, Wang P. Higher Residual and Metabolic Dysfunction-Associated Fatty Liver Disease Risk of the R-Enantiomer of Famoxadone in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40336186 DOI: 10.1021/acs.jafc.5c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Famoxadone (FAM) is a widely used chiral fungicide that may contribute to metabolic dysfunction-associated fatty liver disease (MAFLD). However, the enantioselective toxicity and mechanism of action of famoxadone enantiomers remain unclear. The enantioselective bioaccumulation of famoxadone in mice was investigated, and the hepatotoxicity of famoxadone enantiomers, specifically in relation to MAFLD, was evaluated by a 12 week oral exposure to Rac-FAM, R-FAM, and S-FAM. R-FAM showed higher bioaccumulation than S-FAM, in which the concentrations of R-FAM were 3.52 and 242.69 times that of S-FAM in the liver at the no observed effect level (NOEL) and 1/10 NOEL, respectively. R-FAM was found to cause an increase in liver coefficients, a decrease in the AST/ALT ratio, enhanced expression of inflammation-related genes, and lipid droplet accumulation in the liver. In contrast, mice treated with S-FAM exhibited no significant changes in the quality of these indicators. These results suggest that R-famoxadone is more likely to be the dominant enantiomer affecting the liver. Furthermore, the important functional genes involved in glucose and lipid metabolism were detected. It was found that R-FAM significantly disrupted key lipid metabolic pathways in the liver, including glucose metabolism, fatty acid synthesis, triglyceride synthesis, and fatty acid β-oxidation. Additionally, R-FAM induced more severe disruptions in liver glucose and lipid metabolism compared to S-FAM. These research findings provide insights into the enantioselective toxicity of famoxadone enantiomers in terms of their role in promoting MAFLD development, contributing to the safe utilization of the chiral pesticide famoxadone.
Collapse
Affiliation(s)
- Zeyu Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Shouchun Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jianing Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yue Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Bingying He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jiaxing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Fanrong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Li Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
9
|
Chen L, Tian L, Zhang Y, Shi Y, Yuan W, Zou Y, Zhang Q, Chen M, Zeng P. Updated Insights into Probiotic Interventions for Metabolic Syndrome: Mechanisms and Evidence. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10554-x. [PMID: 40332670 DOI: 10.1007/s12602-025-10554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Metabolic syndrome (MetS) is a disease with complex and diverse etiologies. Extrinsic factors such as diet and lifestyle can induce dysbiosis of gut microbes, compromising intestinal barrier integrity and leading to inflammation and insulin resistance, thereby advancing MetS. Probiotic interventions have shown potential in ameliorating gut microbiota dysbiosis and regulating host metabolism by assimilating lipids, metabolizing carbohydrates, and producing short-chain fatty acids (SCFA), indole compounds, secondary bile acids, conjugated linoleic acid (CLA), and other active ingredients. An increasing number of new strains are being isolated and validated for their effective roles intervening on MetS in animal and population studies. This review aims to provide updated insights into the pathogenic mechanisms of MetS, highlight the newly identified probiotic strains that have demonstrated improvements in MetS, and elucidate their mechanisms of action, with the aim of offering contemporary perspectives for the future use of probiotics in mitigating MetS.
Collapse
Affiliation(s)
- Lili Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Lvbo Tian
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Yuqi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Ying Shi
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Wenyi Yuan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Yue Zou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Qin Zhang
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong 510070, Guangzhou, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
10
|
Shi XY, Liu YK, Chen Y, Jiang ZY, Ye MX, Wang J. The correlation of apolipoprotein B and apolipoprotein A1 with metabolic dysfunction-associated steatotic liver disease in children and adolescents with obesity. Pediatr Obes 2025:e70017. [PMID: 40329497 DOI: 10.1111/ijpo.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) has become a prevalent liver condition in children and teenagers with obesity. Unfortunately, there is no standardized treatment. OBJECTIVE To examine the connection between apolipoprotein B (apoB), apolipoprotein A1 (apoA1), and the apoB/apoA1 ratio with the occurrence of MASLD in this population. METHODS A retrospective study was made on children and adolescents with obesity in a children's hospital between the period 2020 and 2022. Anthropometric data, ultrasound results, and blood biochemistry were analysed to assess the connection between apoB, apoA1, and the presence of MASLD. RESULTS Of the 916 participants included, 313 were diagnosed with MASLD. The level of serum apoB reflected a substantial dose-response correlation with the odds of having MASLD. When apoB levels exceeded the 50th percentile, the risk increased significantly, and at the 95th percentile, the odds were 4.83 times higher than at the 50th percentile (95% CI: 2.02-11.56). The ratio of apoB/apoA1 at the 95th percentile was connected to a 2.41-fold higher prevalence compared to the 50th percentile (95% CI: 1.33-4.37). No significant correlation was found between the levels of apoA1 and MASLD prevalence. CONCLUSION Elevated levels of apoB and the apoB/apoA1 ratio have been strongly connected to increased MASLD prevalence in children and adolescents with obesity; hence, signifying their potential usefulness as biomarkers for early detection and intervention.
Collapse
Affiliation(s)
- Xiao-Yan Shi
- Children's Health Management Center, Children's Hospital of Soochow University, Suzhou, China
| | - Ya-Kun Liu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, China
| | - Yan Chen
- Department of Children Health Care, Children's Hospital of Soochow University, Suzhou, China
| | - Zhi-Ying Jiang
- Department of Children Health Care, Children's Hospital of Soochow University, Suzhou, China
| | - Meng-Xuan Ye
- Department of Children Health Care, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Pediatric Research Institute of Soochow University, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Rafaa TA, Khudhair SA, Mohammed ZY, Suleiman AA. Genomic Exploration of Nonalcoholic Fatty Liver Disease: Insights From Gene Expression and Variation in Morbidly Obese Individuals. J Obes 2025; 2025:9245699. [PMID: 40365443 PMCID: PMC12069845 DOI: 10.1155/jobe/9245699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver condition resulting from metabolic syndrome characterized by fat accumulation in the liver. It is often associated with obesity and diabetes, contributing to hepatic steatosis in liver cells. The prevalence of NAFLD is increasing globally, with 32% of the adult population affected. Genetic modifiers, such as single nucleotide polymorphisms, can increase susceptibility to the disease. Gene expression analysis and genetic variation can help identify disease-causing pathways and reveal biomarkers involved in NAFLD. This study employed integrative bioinformatics analysis, including bulk RNA-seq and single-cell RNA-seq, to explore differentially expressed genes and their genetic variants in NAFLD vs. control and NAFLD vs. cirrhosis, highlighting genes influencing NAFLD progression. Moreover, this study identified AKR1D1, LIPC, UGT2B17, DGAT2, and SERPINE1 implicated in metabolic, immune, and lipid functions while being overexpressed in both hepatocyte cells among obese patients identified and validated through Liver Cell Atlas, highlighting their pivotal role in the pathogenesis of the disease in obese patients through perturbed hepatocytes. Furthermore, novel pathogenic variants of AKR1D1, LIPC, and SERPINE1, associated with congenital bile acid synthesis defects, abnormal circulating lipid concentrations, and plasminogen activator inhibitor type 1 deficiency conditions, were identified. Conclusively, this integrative multiomics study highlights the novel pathogenic variants of AKR1D1, LIPC, and SERPINE1 in metabolic, immune, and lipid pathways that are highly expressed among hepatocytes in obese patients while possibly carrying pathogenic mutations that may be associated with NAFLD, emphasizing their potential as novel targets for therapeutic strategies and biomarker development in early diagnosis and treatment before the onset of cirrhosis or hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tamadher Abbas Rafaa
- Department of Higher Education, University Headquarter, University of Anbar, Ramadi, Anbar, Iraq
| | - Safa Abbas Khudhair
- Scientific Affairs Department, University Headquarter, University of Anbar, Ramadi, Anbar, Iraq
| | - Zahraa Yassen Mohammed
- Scientific Affairs Department, University Headquarter, University of Anbar, Ramadi, Anbar, Iraq
| | | |
Collapse
|
12
|
Riestra-Candelaria BL, Rodríguez-Mojica W, Vélez-Morell C, Ramírez-Marcano C, Alvarado-Castillo A, Camareno-Soto G, González-Rodríguez LA. Ultrasound assessment of hepatomegaly and metabolically-associated fatty liver disease among a sample of children: a pilot project. Front Pediatr 2025; 13:1491342. [PMID: 40356786 PMCID: PMC12066509 DOI: 10.3389/fped.2025.1491342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Obesity in children is a global health crisis, with 46% of children in Puerto Rico classified as overweight or obese based on Body Mass Index. This condition is linked to serious comorbidities, including early-onset type 2 diabetes, hypertension, and Metabolic-Associated Fatty Liver Disease (MAFLD), the most common liver disease in U.S. children. This study examines the relationship between body weight, liver size, and texture in children from Puerto Rico. Methods A craniocaudal right liver lobe (RLL) measurement was performed using a panoramic ultrasound image. RLL length and liver texture were assessed based on fat infiltration. BMI was calculated to classify participants into healthy and unhealthy weight groups, and waist circumference (WC) was compared. Statistical analyses, including Shapiro-Wilk, Student's t-tests, ANOVA, and post hoc Tukey HSD, were conducted with significance at p ≤ 0.05. Results Forty-three children aged 7-19 years were recruited. Significant differences were observed in liver size and texture between healthy and unhealthy weight groups: RLL length (p = 0.003), WC (p < 0.001), and BMI (p < 0.001). Obese children had significantly larger RLL and WC than healthy-weight group (p = 0.02; p < 0.001). More children in unhealthy weight group exhibited hepatomegaly (n = 12) and fat infiltration (n = 15). Discussion The findings indicate that large liver and MAFLD are common among children with overweight and obesity, suggesting liver changes related to obesity begin early in life. Strategies to maintain a healthy weight in children are essential to reduce the risk of chronic diseases and potential disabilities in adulthood.
Collapse
Affiliation(s)
| | - Wilma Rodríguez-Mojica
- Department of Radiological Sciences, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Camille Vélez-Morell
- Medical Student, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | | | | | - Gabriel Camareno-Soto
- Medical Student, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Loida A. González-Rodríguez
- Department of Medicine-Endocrinology, Diabetes and Metabolism Division, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
13
|
Banerjee M, Song J, Yan B, Wu H, Norouzi S, Sengoku T, Sharma S, Fan TWM, Lee E, He D, Wang C, Liu J, Schmitt TM, Gao T, Weiss HL, Li J, Evers BM. Neurotensin promotes hepatic steatosis by regulating lipid uptake and mitochondrial adaptation in hepatocytes. Cell Death Dis 2025; 16:347. [PMID: 40287434 PMCID: PMC12033321 DOI: 10.1038/s41419-025-07664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial disease characterized by hepatic steatosis. Mitochondrial dysfunction resulting in the incomplete digestion of surplus fat is one of the key factors that lead to hepatic steatosis but the reason for this remains unclear. We investigated the role of neurotensin (NTS), a gut hormone, in inducing maladaptive fat metabolism in steatotic liver. We identify CD36 and PGC1α, two critical drivers of MASLD, as direct NTS signaling targets in the liver. NTS upregulates CD36, a free fatty acid receptor, in hepatocytes and promotes long chain lipid uptake. Conversely, NTS inhibits PGC1α, which acts as a lipid sensor and translocates to the nucleus to activate lipid catabolism-related genes in an AMPK-dependent manner. Thus, a high fat diet decreases the fatty acid oxidation and oxidative phosphorylation capacity of the liver and hepatocytes from NTS or NTS receptor 1 (NTSR1) wild type mice; whereas NTS deficiency preserves the lipid metabolism capacity of the liver. NTS signaling is significantly upregulated in MASLD and in metabolic dysfunction-associated steatohepatitis (MASH) human liver samples when compared to normal livers, which correlates with the expression of CD36 and oxidative phosphorylation proteins. These findings provide critical mechanistic insights into the maladaptive fat metabolism noted with steatosis in mice and humans and suggest novel strategies for therapeutic intervention of MASLD, which affects nearly one-quarter of the global population.
Collapse
Affiliation(s)
- Moumita Banerjee
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jun Song
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Baoxiang Yan
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Haoming Wu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | - Tomoko Sengoku
- Redox Metabolism Shared Resource Facility, University of Kentucky, Lexington, KY, USA
| | - Savita Sharma
- Redox Metabolism Shared Resource Facility, University of Kentucky, Lexington, KY, USA
| | - Teresa W M Fan
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Eun Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Bioinformatics, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Bioinformatics, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Bioinformatics, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Timothy M Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Jing Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
- Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
14
|
Cavdar VC, Izgi Y, Akbas F. Sexual dysfunction in male patients with obesity: is it still being overlooked? Hormones (Athens) 2025:10.1007/s42000-025-00657-z. [PMID: 40259198 DOI: 10.1007/s42000-025-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
INTRODUCTION Obesity has been linked to an elevated susceptibility to development of erectile dysfunction, yet the interplay between sex hormone levels, sexual function, and obesity remains unclear. This study aimed to investigate sexual dysfunction among male patients with obesity and to emphasize the importance of recognizing the problem and pursuing solutions. METHODS A total of 60 patients were included in the study (30 patients from the obesity center and 30 patients without obesity as the control group). Assessment of androgen hormone deficiency and erectile dysfunction was conducted through the implementation of AMS and IIEF-5 tests. The questionnaire includes aspects of medical history, demographic features, and lifestyle factors. Comprehensive measurements included BMI, WC, BP, lipid panel, total/free testosterone, sex-hormone-binding-globulin (SHBG), dehydroepiandrosterone-sulfate (DHEAS), fasting blood glucose (FBG), fasting insulin, and HbA1C levels. Results were evaluated using SPSS. RESULTS The AMS score in the obesity group was significantly lower compared to the group without obesity. The IIEF-5 score did not exhibit a statistically significant difference between the groups. Testosterone, free testosterone, SHBG, and HDL values were lower in the obesity group compared to the group without obesity. CONCLUSION Although conducted in a small sample, our findings strongly indicate a positive correlation between obesity and the risk of moderate to severe ED. Most of the time, this condition goes unarticulated, thereby adversely affecting the quality of life for individuals with obesity. Clinicians should pay more attention to patients experiencing sexual dysfunction, especially those with obesity.
Collapse
Affiliation(s)
- Vahit Can Cavdar
- University of Health Sciences, Department of Internal Medicine, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Yagmur Izgi
- University of Health Sciences, Department of Internal Medicine, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Feray Akbas
- University of Health Sciences, Department of Internal Medicine, Istanbul Training and Research Hospital, Istanbul, Turkey.
| |
Collapse
|
15
|
Ivashkevich D, Ponomarenko A, Manzhulo I, Egoraeva A, Dyuizen I. Hepatoprotective and Antiatherosclerotic Effects of Oleoylethanolamide-Based Dietary Supplement in Dietary-Induced Obesity in Mice. PATHOPHYSIOLOGY 2025; 32:16. [PMID: 40265441 PMCID: PMC12015875 DOI: 10.3390/pathophysiology32020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Metabolic effects of oleoylethanolamide-based dietary supplement (OEA-DS) were studied in a model of dietary-induced obesity in mice. Obesity was induced by a 2-month high-fat, high-cholesterol diet, resulting in significant morphological changes in liver tissues and elevated cholesterol levels in the animals' blood serum. Elevated levels of proinflammatory cytokines, oxidative stress, and hepatocyte apoptosis were also observed in the liver tissue. The aim of this study was to examine the mechanisms through which an OEA-based dietary supplement (OEA-DS) exerts a comprehensive influence on multiple aspects of the pathogenesis of MASLD, thereby demonstrating a robust hepatoprotective effect. Methods: mice were fed a high-fat, high-cholesterol diet with or without OEA-DS supplementation. Liver tissues and blood serum were analyzed for cholesterol levels, inflammatory markers (CD68, Iba-1, CD163, IL-1β, IL-6, TNFα), apoptotic markers (Bad, Bax, Bcl-2), nuclear receptors (PPAR-α, PPAR-γ, AdipoR1), and enzymes involved in lipolysis (Acox1, Cpt1a) and cholesterol metabolism (Ldlr, Furin, Pcsk9). Immunohistochemistry, Western blotting, and RT-PCR were used to assess protein expression and gene transcription. Results: administration of OEA-DS normalized cholesterol levels, decreased expression of inflammatory markers (CD68 and Iba-1), pro-apoptotic markers (Bad, Bax) and levels of pro-inflammatory cytokines (IL-1β, IL-6, TNFα). In parallel, the expression of nuclear receptors PPAR-α and PPAR-γ, adiponectin receptor 1 (AdipoR1), and anti-inflammatory (CD163) and anti-apoptotic (Bcl-2) markers have risen. OEA-DS administration induced the expression of liver lipolysis enzymes (Acox1, Cpt1a) and cholesterol metabolism factors (Ldlr, Furin), while simultaneously reducing the transcription of the proatherogenic factor Pcsk9. Conclusions: The results of this study suggest a complex action of OEA-DS in obesity-associated liver damage, which includes reduction of systemic inflammation.
Collapse
Affiliation(s)
| | | | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str., 17, 690041 Vladivostok, Russia; (D.I.); (A.P.); (A.E.); (I.D.)
| | | | | |
Collapse
|
16
|
Park E, Jeon H, Oh KI, Jeong J, Kim DW, Jin HS, Jeong SY. Coactosin-like F-actin binding protein (Cotl1) plays a key role in adipocyte differentiation and obesity. Commun Biol 2025; 8:628. [PMID: 40246959 PMCID: PMC12006365 DOI: 10.1038/s42003-025-08062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Actin dynamics, mediated by various actin-binding proteins, plays an important role in adipocyte differentiation. We investigated the role of coactosin-like F-actin binding protein (Cotl1) in adipocyte differentiation in vitro and in vivo. Cotl1 expression level was increased during adipocyte differentiation in mouse 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) and during weight gain in adipose tissues. However, Cotl1 deficient in 3T3-L1 and ADSCs inhibited adipocyte differentiation, and Cotl1-/- mice displayed resistance to high-fat diet (HFD)-induced weight gain, hepatic steatosis and adipocyte enlargement compared to HFD-fed wild type (WT) mice. Ingenuity Pathway Analysis of RNA-sequencing in adipose tissues of HFD-WT and HFD-Cotl1-/- mice predicted complicated relationships between Cotl1, differentiation of adipocytes, obesity and organization of actin cytoskeleton. Particularly, peroxisome proliferator-activated receptor gamma (Pparg) emerged as a central player, with Cotl1 influencing Pparg expression, consequently regulating adipocyte differentiation. These findings suggest Cotl1 as a pivotal regulator of terminal adipocyte differentiation by modulating adipogenic genes.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
- Department of Biological Research Laboratory, Jeonbuk Institute for Food-Bioindustry, Jeonju, Republic of Korea
| | - Hyoju Jeon
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Kang-Il Oh
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Junhwan Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Do-Wan Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Republic of Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
17
|
Tanaka T, Kojima T, Pathadka S, Khare S, Leith A, Higgins V, Shingaki T. Real-world cross-sectional study evaluating patient characteristics, disease burden, and treatment approaches in people with obesity disease in Japan. Curr Med Res Opin 2025:1-10. [PMID: 40162611 DOI: 10.1080/03007995.2025.2486167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
AIM To describe clinical characteristics, disease burden, and treatment patterns among people with obesity disease (PwOD) in Japan, using data from the Adelphi Real World Obesity Disease Specific Programme™ (DSP). METHODS Secondary data from the Japanese DSP cohort (July to December 2022) were analyzed. PwOD had a BMI ≥25 kg/m2 and ≥1 obesity-related complications (ORCs). Outcomes were summarized for all PwOD or stratified by obesity class (BMI ≥25-<35 or ≥35 kg/m2 [high-degree obesity disease]) and use of anti-obesity medications (AOMs). RESULTS The study included 442 PwOD (mean age: 52.8 years; 54.8% males; BMI ≥25-<35 kg/m2: 64.5%; BMI ≥35 kg/m2: 35.5%; AOM users: n = 228; non-AOM users: n = 214). High-degree obesity disease was associated with worsened SF-36v2 scores (Physical Component Summary, Physical Functioning, Bodily Pain, and General Health), greater activity impairment, and reduced work productivity. Common weight management approaches were diet (79.9%) and exercise (51.1%). Common prescription AOMs included traditional herbal medicine (67.5%) and mazindol (21.1%). People with high-degree obesity disease (BMI ≥35 vs. ≥25-<35 kg/m2) used more prescription AOMs (57.3 vs. 48.4%), behavioral therapy (9.6 vs. 1.8%), and weight loss surgery (2.6 vs. 0.4%). The difference in weight reduction between AOM and non-AOM users was modest. CONCLUSIONS People with high-degree obesity disease experienced greater disease burden. Diet and exercise are common for weight management, while behavioral therapy is less frequently implemented. These findings highlight the challenges and unmet medical needs in treating obesity in Japan and could inform better treatment strategies in Japan and globally among the Asian population.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taisuke Kojima
- Japan Drug Development and Medical Affairs, Eli Lilly Japan K.K., Kobe, Japan
| | - Swathi Pathadka
- Lilly Capability Center, Eli Lilly Services India Private Limited, Bengaluru, India
| | | | | | | | - Tomotaka Shingaki
- Japan Drug Development and Medical Affairs, Eli Lilly Japan K.K., Kobe, Japan
| |
Collapse
|
18
|
Sun Y, Shan X, Li M, Niu Y, Sun Z, Ma X, Wang T, Zhang J, Niu D. Autoimmune mechanisms and inflammation in obesity-associated type 2 diabetes, atherosclerosis, and non-alcoholic fatty liver disease. Funct Integr Genomics 2025; 25:84. [PMID: 40205260 DOI: 10.1007/s10142-025-01587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Obesity, characterized by the excessive accumulation of white adipose tissue, is a significant global health burden and a major risk factor for a range of diseases, including malignancies and metabolic disorders. Individuals with high visceral fat content are particularly susceptible to severe complications such as type 2 diabetes, cardiovascular diseases, and liver disorders. However, the pathogenesis of obesity-related metabolic diseases extends beyond simple adiposity. Chronic obesity triggers a prolonged inflammatory response, which leads to tissue fibrosis and sustained organ damage, contributing to multi-organ dysfunction. This review explores the autoimmune mechanisms and inflammatory pathways underlying obesity-induced type 2 diabetes, atherosclerosis, and non-alcoholic fatty liver disease, with an emphasis on their interrelated pathophysiology and the potential for therapeutic interventions.
Collapse
Grants
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- 2021C02068-4 Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding
- 2021C02068-4 Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding
Collapse
Affiliation(s)
- Yuanyuan Sun
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xueting Shan
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mingyang Li
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yifan Niu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhongxin Sun
- Department of Plastic, Reconstructive & Hand Microsurgery, Ningbo NO.6 Hospital, Ningbo, 315000, Zhejiang, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China.
| | - Jufang Zhang
- Department of Plastic and Aesthetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
19
|
Passini FS, Bornstein B, Rubin S, Kuperman Y, Krief S, Masschelein E, Mehlman T, Brandis A, Addadi Y, Shalom SHO, Richter EA, Yardeni T, Tirosh A, De Bock K, Zelzer E. Piezo2 in sensory neurons regulates systemic and adipose tissue metabolism. Cell Metab 2025; 37:987-1000.e6. [PMID: 39919739 DOI: 10.1016/j.cmet.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
Systemic metabolism ensures energy homeostasis through inter-organ crosstalk regulating thermogenic adipose tissue. Unlike the well-described inductive role of the sympathetic system, the inhibitory signal ensuring energy preservation remains poorly understood. Here, we show that, via the mechanosensor Piezo2, sensory neurons regulate morphological and physiological properties of brown and beige fat and prevent systemic hypermetabolism. Targeting runt-related transcription factor 3 (Runx3)/parvalbumin (PV) sensory neurons in independent genetic mouse models resulted in a systemic metabolic phenotype characterized by reduced body fat and increased insulin sensitivity and glucose tolerance. Deletion of Piezo2 in PV sensory neurons reproduced the phenotype, protected against high-fat-diet-induced obesity, and caused adipose tissue browning and beiging, likely driven by elevated norepinephrine levels. Finding that brown and beige fat are innervated by Runx3/PV sensory neurons expressing Piezo2 suggests a model in which mechanical signals, sensed by Piezo2 in sensory neurons, protect energy storage and prevent a systemic hypermetabolic phenotype.
Collapse
Affiliation(s)
- Fabian S Passini
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Bavat Bornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Evi Masschelein
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- MICC Cell Observatory, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Huri-Ohev Shalom
- Bert Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Erik A Richter
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Tal Yardeni
- Bert Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Tel-Hashomer, Israel
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Institute of Endocrinology, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katrien De Bock
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Darwish OI, Di Cio P, Sinkus R, Neji R. 3D MR elastography at 0.55 T: Concomitant field effects and feasibility. Magn Reson Med 2025; 93:1602-1614. [PMID: 39587762 PMCID: PMC11782726 DOI: 10.1002/mrm.30377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE To demonstrate the feasibility of hepatic 3D MR elastography (MRE) at 0.55 T in healthy volunteers using Hadamard encoding and to study the effects of concomitant fields in the domain of MRE in general. METHODS Concomitant field effects in MRE are assessed using a Taylor series expansion and an encoding scheme is proposed to study the corresponding effects on 3D MRE at 0.55 T in numerical simulations and in phantom experiments. In addition, five healthy volunteers were enrolled and scanned at 60 Hz mechanical excitation with a Hadamard-encoded 3D MRE sequence at 0.55 T and were also scanned with a reference 3D MRE sequence at 3 T for comparison. The retrieved biomechanical parameters were the magnitude of the complex shear modulus (|G*|), the shear wave speed (Cs), and the loss modulus (G″). Comparison of apparent SNR between 3 T and 0.55 T was performed. RESULTS Theoretical analysis, numerical simulations and phantom experiments demonstrated that the effects of concomitant fields in 3D MRE at 0.55 T are negligible. In the healthy volunteer experiments, the mean values of |G*|, Cs, and G″ in the liver were 2.1 ± 0.3 kPa, 1.5 ± 0.1 m/s, and 0.8 ± 0.1 kPa at 0.55 T, respectively, and 2.0 ± 0.2 kPa, 1.5 ± 0.1 m/s, and 0.9 ± 0.1 kPa at 3 T, respectively. Bland-Altman analysis demonstrated good agreement between the biomechanical parameters retrieved at 0.55 T and 3 T. A 2.1-fold relative apparent SNR decrease was observed in 3D MRE at 0.55 T in comparison with 3 T. CONCLUSION Hepatic 3D MRE is feasible at 0.55 T, showing promising initial results in healthy volunteers.
Collapse
Affiliation(s)
- Omar Isam Darwish
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- MR PredevelopmentSiemens Healthineers AGErlangenGermany
| | - Pierluigi Di Cio
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Ralph Sinkus
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- INSERM U1148, LVTSUniversity Paris DiderotParisFrance
| | - Radhouene Neji
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| |
Collapse
|
21
|
Cheng YM, Wang SW, Wang C, Wang CC. Unmet needs of metabolic dysfunction - Associated "fatty or steatotic" liver disease. Tzu Chi Med J 2025; 37:152-156. [PMID: 40321956 PMCID: PMC12048125 DOI: 10.4103/tcmj.tcmj_232_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 05/08/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), first named in 1980, is currently the most common chronic liver disease, imposing significant health, social, and economic burdens. However, it is defined as a diagnosis of exclusion, lacking a clear underlying cause in its diagnostic criteria. In 2020, metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed as a replacement for NAFLD, introducing additional criteria related to metabolic dysfunction. In 2023, metabolic dysfunction-associated steatotic liver disease (MASLD) was suggested to replace NAFLD, aiming to avoid the stigmatizing term "fatty" and incorporating cardiometabolic criteria for metabolic dysfunction. This divergence in nomenclature and diagnostic criteria between MAFLD and MASLD presents challenges to medical communication and progress. This review outlines the pros and cons of both terminologies, based on current research evidence, in the hope of fostering global consensus in the future.
Collapse
Affiliation(s)
- Yu-Ming Cheng
- Department of Gastroenterology and Hepatology, Tung’s Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Shao-Wen Wang
- Department of Education, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei, Taiwan
| | - Ching Wang
- Department of Education, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Chi Wang
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
22
|
Leite JSM, Vilas-Boas EA, Takahashi HK, Munhoz AC, Araújo LCC, Carvalho CR, Jr JD, Curi R, Carpinelli AR, Cruzat V. Liver lipid metabolism, oxidative stress, and inflammation in glutamine-supplemented ob/ob mice. J Nutr Biochem 2025; 138:109842. [PMID: 39824260 DOI: 10.1016/j.jnutbio.2025.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Glutamine availability may be reduced in chronic diseases, such as type 2 diabetes mellitus (T2DM)-induced by obesity. Herein, the antioxidant, anti-inflammatory and lipid metabolism effects of chronic oral glutamine supplementation in its free and dipeptide form were assessed in ob/ob mice. Adult male C57BL/6J ob/ob mice were supplemented with L-alanyl-L-glutamine (DIP) or free L-glutamine (GLN) in the drinking water for 40 days, whilst C57BL/6J Wild-type lean (WT) and control ob/ob mice (CTRL) received fresh water only. Plasma and tissue (skeletal muscle and liver) glutamine levels, and insulin resistance parameters (e.g., GTT, ITT, insulin) were determined. Oxidative stress (e.g., GSH system, Nrf2 translocation), inflammatory (e.g., NFkB translocation, TNF-α gene expression) and lipid metabolism parameters (e.g., plasma and liver triglyceride levels, SRBP-1, FAS, ACC, and ChRBP gene expression) were also analyzed. CTRL ob/ob mice showed lower glutamine levels in plasma and tissue, as well as increased insulin resistance and fat in the liver. Conversely, chronic DIP supplementation restored glutamine levels in plasma and tissues, improved glucose homeostasis and reduced plasma and liver lipid levels. Also, Nrf2 restoration, reduced NFkB translocation, and lower TNF-α gene expression was observed in the DIP group. Interestingly, chronic free GLN only increased muscle glutamine stores but reduced overall insulin resistance, and attenuated plasma and liver lipid metabolic biomarkers. The results presented herein indicate that restoration of body glutamine levels reduces oxidative stress and inflammation in obese and T2DM ob/ob mice. This effect attenuated hepatic lipid metabolic changes observed in obesity.
Collapse
Affiliation(s)
- Jaqueline Santos Moreira Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Eloisa Aparecida Vilas-Boas
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | - Hilton K Takahashi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Ana Cláudia Munhoz
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Layanne C C Araújo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Carla Roberta Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Jose Donato Jr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, ICAFE, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil; Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Vinicius Cruzat
- Faculty of Health, Southern Cross University, Gold Coast, Queensland, Australia.
| |
Collapse
|
23
|
Askeland A, Rasmussen RW, Gjela M, Frøkjær JB, Højlund K, Mellergaard M, Handberg A. Non-invasive liver fibrosis markers are increased in obese individuals with non-alcoholic fatty liver disease and the metabolic syndrome. Sci Rep 2025; 15:10652. [PMID: 40148373 PMCID: PMC11950363 DOI: 10.1038/s41598-025-85508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/03/2025] [Indexed: 03/29/2025] Open
Abstract
The need for early non-invasive diagnostic tools for chronic liver fibrosis is growing, particularly in individuals with obesity, non-alcoholic fatty liver disease (NAFLD), and the metabolic syndrome (MetS) since prevalence of these conditions is increasing. This case-control study compared non-invasive liver fibrosis markers in obesity with NAFLD and MetS (NAFLD-MetS, n = 33), in obese (n = 28) and lean (n = 27) control groups. We used MRI (T1 relaxation times (T1) and liver stiffness), circulating biomarkers (CK18, PIIINP, and TIMP1), and algorithms (FIB-4 index, Forns score, FNI, and MACK3 score) to assess their potential in predicting liver fibrosis risk. We found that T1 (892 ± 81 ms vs. 818 ± 64 ms, p < 0.001), FNI (15 ± 12% vs. 9 ± 7%, p = 0.018), CK18 (166 ± 110 U/L vs. 113 ± 41 U/L, p = 0.019), and MACK3 (0.18 ± 0.15 vs. 0.05 ± 0.04, p < 0.001) were higher in the NAFLD-MetS group compared with the obese control group. Moreover, correlations were found between CK18 and FNI (r = 0.69, p < 0.001), CK18 and T1 (r = 0.41, p < 0.001), FNI and T1 (r = 0.33, p = 0.006), MACK3 and FNI (r = 0.79, p < 0.001), and MACK3 and T1 (r = 0.50, p < 0.001). We show that liver fibrosis markers are increased in obese individuals with NAFLD and MetS without clinical signs of liver fibrosis. More studies are needed to validate the use of these non-invasive biomarkers for early identification of liver fibrosis risk.
Collapse
Affiliation(s)
- Anders Askeland
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Mimoza Gjela
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
24
|
Wang B, Yang Y, Yin Z, Yang W. The causal impact of body mass index on metabolic biomarkers and nonalcoholic fatty liver disease risk. Sci Rep 2025; 15:10314. [PMID: 40133380 PMCID: PMC11937590 DOI: 10.1038/s41598-024-84165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/20/2024] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a growing global health concern linked to obesity. METHODS This study employed a Mendelian randomization approach to explore the causal influence of BMI on metabolic biomarkers and the subsequent risk of NAFLD. We analyzed data from multiple sources, including 249 metabolic traits, to establish direct and mediating relationships among BMI, metabolic factors, and NAFLD risk. RESULTS Our findings revealed a significant positive correlation between BMI and NAFLD across various datasets. We identified 176 metabolites associated with BMI, of which 106 were also linked to NAFLD. Importantly, 86 metabolites were found to mediate the relationship between BMI and NAFLD risk. Specifically, elevated levels of branched-chain amino acids, triglycerides, and certain cholesterol esters were notably associated with increased NAFLD risk, whereas changes in free cholesterol and phospholipid levels also played critical roles. CONCLUSION This study highlights the complex interactions between BMI, metabolic biomarkers, and NAFLD risk. By elucidating these relationships, we highlight potential targets for interventions aimed at reducing NAFLD incidence in populations with elevated BMI, ultimately contributing to improved metabolic health.
Collapse
Affiliation(s)
- Bo Wang
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yanjiang Yang
- Department of Rheumatology and Immunology, The People's Hospital of Qiandongnan Autonomous Prefecture, Kaili, 556000, Guizhou Province, China
| | - Zhaoqiang Yin
- Department of Minimally Invasive and Biliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China.
| | - Wenwen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
25
|
Chowdhury K, Das D, Huang M. Advancing the Metabolic Dysfunction-Associated Steatotic Liver Disease Proteome: A Post-Translational Outlook. Genes (Basel) 2025; 16:334. [PMID: 40149485 PMCID: PMC11941888 DOI: 10.3390/genes16030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder with limited treatment options. This review explores the role of post-translational modifications (PTMs) in MASLD pathogenesis, highlighting their potential as therapeutic targets. We discuss the impact of PTMs, including their phosphorylation, ubiquitylation, acetylation, and glycosylation, on key proteins involved in MASLD, drawing on studies that use both human subjects and animal models. These modifications influence various cellular processes, such as lipid metabolism, inflammation, and fibrosis, contributing to disease progression. Understanding the intricate PTM network in MASLD offers the potential for developing novel therapeutic strategies that target specific PTMs to modulate protein function and alleviate disease pathology. Further research is needed to fully elucidate the complexity of PTMs in MASLD and translate these findings into effective clinical applications.
Collapse
Affiliation(s)
- Kushan Chowdhury
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (K.C.); (D.D.)
| | - Debajyoti Das
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (K.C.); (D.D.)
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin & Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Ou-Yang K, He Y, Yang H, Wang L, Zhang Q, Li D, Li L. Microcystin-LR induces fatty liver metabolic disease in zebrafish through the PPARα-NOD1 pathway: In vivo, in vitro, and in silico investigations. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136813. [PMID: 39657491 DOI: 10.1016/j.jhazmat.2024.136813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Hepatic lipid metabolism dysfunction caused by cyanobacteria bloom-released microcystin-LR (MC-LR) contributes to the development of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH), thereby severely impacting the health and safety of animals and humans. In this study, the effects and mechanisms of different environmental concentrations of MC-LR (0, 0.1, 1, and 10 μg/L) on fatty liver metabolic disease in zebrafish were investigated using in vivo, in vitro, and in silico models. Exposure to 10 μg/L of MC-LR-induced NASH in zebrafish, characterized by hepatic steatosis, toxic saturated fatty acid (SFA) accumulation, and inflammation. Analyses of the liver transcriptome, molecular docking, molecular dynamics simulation, and in vitro experiments indicated that PPARα might be a key molecular target in MC-LR-induced steatosis and in toxic-SFA accumulation. The results obtained from molecular docking, molecular dynamics simulation, and NOD1-inhibitor experiments further revealed that MC-LR-derived SFAs, such as palmitic acid, could target the NOD1 protein to initiate hepatitis in zebrafish. The benchmark dose model identified palmitic acid as a sensitive indicator of MC-LR-induced NASH, and the point of departure value was estimated to be 1.634 μg/L. In conclusion, our findings offer new insights into the mechanism of MC-LR-induced NASH and aid in the prognosis and treatment of MC-LR-related liver metabolic diseases, as well as in assessing the health risks associated with cyanobacterial blooms.
Collapse
Affiliation(s)
- Kang Ou-Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qian Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
27
|
Yang J, Shrestha A, Ramalingam L. Fishing for Solutions: How Pre-Conceptional Fish Oil Supplementation in Obese Fathers Reduces Risk of Non-Alcoholic Fatty Liver Disease in Offspring Mice. Mol Nutr Food Res 2025; 69:e202400452. [PMID: 39910853 PMCID: PMC11874265 DOI: 10.1002/mnfr.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/30/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Metabolic dysfunction associated fatty liver disease (MAFLD) is a chronic condition with hepatic fat accumulation. The intergenerational effect of obesity has predominantly focused on mothers, with limited studies on paternal obesity. Nutritional intervention with fish oil (FO) has beneficial effects in reducing markers of obesity. We hypothesized that supplementing obese fathers with FO before conception could enhance the metabolic health of their offspring liver. Male mice were assigned to low-fat (LF), high fat (HF), or HF supplemented with FO for 10 weeks. Subsequently, these males were mated with females on a chow diet. Offspring were sacrificed at 8 weeks, and liver tissues were analyzed for gene expression and histology. Offspring body weight was not significantly impacted by paternal diet. However, male offspring of HF fathers had higher levels of markers of inflammation and fatty acid synthesis compared to offspring of LF fed fathers. Paternal FO supplementation significantly reduced fatty acid synthesis and glucose metabolism, while increasing fatty acid oxidation in male offspring, with a less pronounced effect in female offspring. These findings suggest that FO supplementation in obese fathers prior to conception attenuates the development of MAFLD in male offspring. This data underscores the significance of paternal nutritional intervention in promoting offspring health.
Collapse
Affiliation(s)
- Junhui Yang
- Department of Nutrition and Food StudiesSyracuse UniversitySyracuseNew YorkUSA
| | - Akriti Shrestha
- Department of Nutrition and Food StudiesSyracuse UniversitySyracuseNew YorkUSA
| | - Latha Ramalingam
- Department of Nutrition and Food StudiesSyracuse UniversitySyracuseNew YorkUSA
| |
Collapse
|
28
|
Weiss J, Bernatz S, Johnson J, Thiriveedhi V, Mak RH, Fedorov A, Lu MT, Aerts HJWL. Opportunistic assessment of steatotic liver disease in lung cancer screening eligible individuals. J Intern Med 2025; 297:276-288. [PMID: 39868889 PMCID: PMC11846076 DOI: 10.1111/joim.20053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND Steatotic liver disease (SLD) is a potentially reversible condition but often goes unnoticed with the risk for end-stage liver disease. PURPOSE To opportunistically estimate SLD on lung screening chest computed tomography (CT) and investigate its prognostic value in heavy smokers participating in the National Lung Screening Trial (NLST). MATERIAL AND METHODS We used a deep learning model to segment the liver on non-contrast-enhanced chest CT scans of 19,774 NLST participants (age 61.4 ± 5.0 years; 41.2% female) at baseline and on the 1-year follow-up scan if no cancer was detected. SLD was defined as hepatic fat fraction (HFF) ≥5% derived from Hounsfield unit measures of the segmented liver. Participants with SLD were categorized as lean (body mass index [BMI] < 25 kg/m2) and overweight (BMI ≥ 25 kg/m2). The primary outcome was all-cause mortality. Cox proportional hazard regression assessed the association between (1) SLD and mortality at baseline and (2) the association between a change in HFF and mortality within 1 year. RESULTS There were 5.1% (1000/19,760) all-cause deaths over a median follow-up of 6 (range, 0.8-6) years. At baseline, SLD was associated with increased mortality in lean but not in overweight/obese participants as compared to participants without SLD (hazard ratio [HR] adjusted for risk factors: 1.93 [95% confidence interval 1.52-2.45]; p = 0.001). Individuals with an increase in HFF within 1 year had a significantly worse outcome than participants with stable HFF (HR adjusted for risk factors: 1.29 [1.01-1.65]; p = 0.04). CONCLUSION SLD is an independent predictor for long-term mortality in heavy smokers beyond known clinical risk factors.
Collapse
Affiliation(s)
- Jakob Weiss
- Artificial Intelligence in Medicine (AIM) ProgramMass General BrighamHarvard Medical SchoolHarvard Institutes of Medicine (HIM)BostonMassachusettsUSA
- Department of Radiation OncologyBrigham and Women's HospitalDana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's HospitalDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
- Department of Diagnostic and Interventional RadiologyFaculty of MedicineUniversity Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Simon Bernatz
- Artificial Intelligence in Medicine (AIM) ProgramMass General BrighamHarvard Medical SchoolHarvard Institutes of Medicine (HIM)BostonMassachusettsUSA
- Department of Radiation OncologyBrigham and Women's HospitalDana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Radiology and Nuclear MedicineCARIM & GROWMaastricht UniversityMaastrichtThe Netherlands
| | - Justin Johnson
- Artificial Intelligence in Medicine (AIM) ProgramMass General BrighamHarvard Medical SchoolHarvard Institutes of Medicine (HIM)BostonMassachusettsUSA
- Department of Radiation OncologyBrigham and Women's HospitalDana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Vamsi Thiriveedhi
- Department of RadiologyBrigham and Women's HospitalDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
| | - Raymond H. Mak
- Artificial Intelligence in Medicine (AIM) ProgramMass General BrighamHarvard Medical SchoolHarvard Institutes of Medicine (HIM)BostonMassachusettsUSA
- Department of Radiation OncologyBrigham and Women's HospitalDana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Andriy Fedorov
- Department of RadiologyBrigham and Women's HospitalDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
| | - Michael T. Lu
- Artificial Intelligence in Medicine (AIM) ProgramMass General BrighamHarvard Medical SchoolHarvard Institutes of Medicine (HIM)BostonMassachusettsUSA
- Cardiovascular Imaging Research CenterMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Hugo J. W. L. Aerts
- Artificial Intelligence in Medicine (AIM) ProgramMass General BrighamHarvard Medical SchoolHarvard Institutes of Medicine (HIM)BostonMassachusettsUSA
- Department of Radiation OncologyBrigham and Women's HospitalDana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's HospitalDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
- Radiology and Nuclear MedicineCARIM & GROWMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
29
|
Lyu C, Kang SY, Shao H, Kim D, Jung HW. Ameliorative effects of Asiasarum root and rhizome extract on high fat diet‑induced obesity in mice through regulation of the SIRT1/PGC1α/AMPK pathways in muscle and liver tissues. Mol Med Rep 2025; 31:76. [PMID: 39886968 PMCID: PMC11795245 DOI: 10.3892/mmr.2025.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025] Open
Abstract
Asiasarum root and rhizome (Asarum) is commonly used as a diaphoretic. Due to its warm and pungent characteristics in traditional Chinese and Korean medicine, it is considered as having the potential to prevent disease. The present study investigated the effects of Asarum extract on the symptoms of obesity in mice, and the regulation of energy metabolism in the liver and skeletal muscle tissues. In addition, to identify the potential molecular targets and signaling pathways involved in the mechanism of action of Asarum extract in obesity, network pharmacological and molecular docking analysis was performed. In vitro studies demonstrated that Asarum extract significantly increased the expression of regulators of energy metabolism [sirtuin 1 (SIRT1), peroxisome proliferator‑activated receptor γ coactivator 1‑α (PGC1α), nuclear respiratory factor 1, AMP‑activated protein kinase (AMPK) and glucose transporter type 4 (GLUT4)] and myogenic regulatory factors (MyoD, myogenin and myosin heavy chain) in C2C12 myotubes. Furthermore, the in vivo studies demonstrated that Asarum extract could reduce increases in body weight, and the levels of blood glucose, insulin, total cholesterol, triglycerides and low‑density lipoprotein cholesterol in the sera of obese mice. Asarum extract also improved pathological changes in the liver and pancreatic tissues of obese mice, and significantly increased the ratio of brown fat mass to body weight. In addition, Asarum extract reversed the expression of energy metabolism regulators and myogenic regulatory factors in the gastrocnemius tissues of obese mice. Asarum extract also activated the expression of SIRT1, PGC1α and AMPK in the liver tissues of obese mice. These findings indicated that Asarum extract may exert anti‑obesity effects, such as body weight loss, decreases in lipid metabolite levels, and inhibition of pancreatic and liver damage. Using network pharmacological analysis, the mechanisms underlying the effects of Asarum extract on the regulation of energy metabolism were explored, particularly in skeletal muscle and liver tissues.
Collapse
Affiliation(s)
- Chenzi Lyu
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Seok Yong Kang
- Korean Medicine R&D Center, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Haifeng Shao
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Dongeun Kim
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
- Korean Medicine R&D Center, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| |
Collapse
|
30
|
Di Prinzio P, Morgan VA, Waterreus A. Factors associated with clinically relevant weight loss in men and women with psychotic disorders. Schizophr Res 2025; 277:102-110. [PMID: 40048812 DOI: 10.1016/j.schres.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Weight gain presents a substantial problem for people with psychotic disorders. Three quarters of individuals are overweight or obese and those starting antipsychotics experience rapid weight gain in the first 6-12months of treatment and this weight gain does not appear to plateau. The high prevalence of modifiable lifestyle risk factors and antipsychotic medication use all contribute to the increased risk of weight gain and cardiovascular disease. Sex may also play a role in the amount of weight gained. Crucially, a 5-10 % reduction in weight has a positive impact on cardiovascular disease risk factors. This study aimed to investigate clinically relevant weight loss (CRWL) and its associated factors, separately by sex. This naturalistic longitudinal study examined the weight of 372 men and women with psychotic disorders at baseline and follow-up on average 3.3 years later and compared those who had lost ≥7 % of their baseline weight with those who had not. Results showed 20.3 % of men and 19.9 % of women had CRWL and a different set of factors were observed to be associated with CRWL for each sex. For men, older age, higher baseline weight, and stopping use of antipsychotics compared to use of antipsychotics with a high-risk of weight gain were associated with an increased odds of CRWL. For women, only better quality of sleep was associated with an increased odds of CRWL. Greater understanding of the factors associated with weight loss in men and women with psychotic disorders may inform the development and implementation of targeted strategies.
Collapse
Affiliation(s)
- P Di Prinzio
- Neuropsychiatric Epidemiology Research Unit, School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Vera A Morgan
- Neuropsychiatric Epidemiology Research Unit, School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - A Waterreus
- Neuropsychiatric Epidemiology Research Unit, School of Population and Global Health, The University of Western Australia, Perth, Australia.
| |
Collapse
|
31
|
Hu S, Kang H, Bae M, Kim MB, Jang H, Corvino O, Pham TX, Lee Y, Smyth JA, Park YK, Lee JY. Histone Deacetylase 9 Deletion Inhibits Hepatic Steatosis and Adipose Tissue Inflammation in Male Diet-Induced Obese Mice. J Gastroenterol Hepatol 2025; 40:741-749. [PMID: 39730208 PMCID: PMC11875955 DOI: 10.1111/jgh.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
AIM The goal of this study was to determine the role of histone deacetylase 9 (HDAC9) in the development of diet-induced metabolic dysfunction-associated steatohepatitis (MASH) and white adipose tissue (WAT) dysfunctions. METHODS We fed male and female mice with global Hdac9 knockout (KO) and their wild-type (WT) littermates an obesogenic high-fat/high-sucrose/high-cholesterol (35%/34%/2%, w/w) diet for 20 weeks. RESULTS Hdac9 deletion markedly inhibited body weight gain and liver steatosis with lower liver weight and triglyceride content than WT in male mice but not females. Consistently, hepatic expression of genes crucial for de novo lipogenesis was markedly suppressed only in male, but not female, Hdac9 KO mice. However, Hdac9 deletion had a minimal effect on hepatic inflammation and fibrosis. In WAT, Hdac9 KO showed less adipocyte hypertrophy, inflammation, and fibrosis in male mice compared with WT. In addition, indirect calorimetry demonstrated that male Hdac9 KO mice had significantly higher metabolic rates, respiratory exchange ratios, and energy expenditure without altering physical activities than WT, which was not observed in female mice. CONCLUSIONS Our findings indicate that global deletion of Hdac9 prevented the development of obesity, hepatic steatosis, and WAT inflammation and fibrosis in male mice with diet-induced obesity and MASH, suggesting that a sex-dependent role of HDAC9 may exist in the pathways mentioned above.
Collapse
Affiliation(s)
- Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Department of Food and Nutrition, Yonsei University, Seoul, South Korea
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Hyungryun Jang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Olivia Corvino
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Joan A Smyth
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
32
|
Knezović E, Hefer M, Blažanović S, Petrović A, Tomičić V, Srb N, Kirner D, Smolić R, Smolić M. Drug Pipeline for MASLD: What Can Be Learned from the Successful Story of Resmetirom. Curr Issues Mol Biol 2025; 47:154. [PMID: 40136408 PMCID: PMC11941580 DOI: 10.3390/cimb47030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), represent a growing global health problem linked to obesity, insulin resistance, and dyslipidemia. MASLD often leads to fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, therapeutic options are limited, emphasizing the need for novel, targeted pharmacological interventions. Resmetirom, a selective thyroid hormone receptor beta (THR-β) agonist, offers a promising approach by specifically enhancing hepatic metabolism while minimizing systemic effects. Clinical trials have demonstrated its capacity to reduce hepatic triglyceride accumulation and improve lipid profiles. Early- and advanced-phase studies, including the MAESTRO program, highlight significant reductions in hepatic fat content and favorable impacts on noninvasive biomarkers of fibrosis with minimal side effects. This review highlights evidence from pivotal studies, explores resmetirom's mechanism of action, and compares its efficacy and safety with other emerging therapeutic agents. While resmetirom marks a breakthrough in non-cirrhotic MASH management, further long-term studies are essential to fully evaluate its clinical benefits and potential regulatory approval for broader use in MASLD and MASH.
Collapse
Affiliation(s)
- Elizabeta Knezović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
- Clinical Institute of Translational Medicine, University Hospital Osijek, 31000 Osijek, Croatia
| | - Marija Hefer
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Suzana Blažanović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Ana Petrović
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Vice Tomičić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Nika Srb
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Damir Kirner
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Robert Smolić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| | - Martina Smolić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (E.K.); (M.H.); (S.B.); (A.P.); (V.T.); (N.S.); (D.K.); (R.S.)
| |
Collapse
|
33
|
Rodríguez-Rodríguez R, Baena M, Zagmutt S, Paraiso WK, Reguera AC, Fadó R, Casals N. International Union of Basic and Clinical Pharmacology: Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes. Pharmacol Rev 2025; 77:100051. [PMID: 40106976 DOI: 10.1016/j.pharmr.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The carnitine palmitoyltransferases (CPTs) play a key role in controlling the oxidation of long-chain fatty acids and are potential therapeutic targets for diseases with a strong metabolic component, such as obesity, diabetes, and cancer. Four distinct proteins are CPT1A, CPT1B, CPT1C, and CPT2, differing in tissue expression and catalytic activity. CPT1s are finely regulated by malonyl-CoA, a metabolite whose intracellular levels reflect the cell's nutritional state. Although CPT1C does not exhibit significant catalytic activity, it is capable of modulating the functioning of other neuronal proteins. Structurally, all CPTs share a Y-shaped catalytic tunnel that allows the entry of 2 substrates and accommodation of the acyl group in a hydrophobic pocket. Several molecules targeting these enzymes have been described, some showing potential in normalizing blood glucose levels in diabetic patients, and others that, through a central mechanism, are anorexigenic and enhance energy expenditure. However, given the critical roles that CPTs play in certain tissues, such as the heart, liver, and brain, it is essential to fully understand the differences between the various isoforms. We analyze in detail the structure of these proteins, their cellular and physiological functions, and their potential as therapeutic targets in diseases such as obesity, diabetes, and cancer. We also describe drugs identified to date as having inhibitory or activating capabilities for these proteins. This knowledge will support the design of new drugs specific to each isoform, and the development of nanomedicines that can selectively target particular tissues or cells. SIGNIFICANCE STATEMENT: Carnitine palmitoyltransferase (CPT) proteins, as gatekeepers of fatty acid oxidation, have great potential as pharmacological targets to treat metabolic diseases like obesity, diabetes, and cancer. In recent years, significant progress has been made in understanding the 3-dimensional structure of CPTs and their pathophysiological functions. A deeper understanding of the differences between the various CPT family members will enable the design of selective drugs and therapeutic approaches with fewer side effects.
Collapse
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miguel Baena
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Sebastián Zagmutt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - West Kristian Paraiso
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Ana Cristina Reguera
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
34
|
Tawfeeq HR, Lackey AI, Zhou Y, Diolintzi A, Zacharisen SM, Lau YH, Quadro L, Storch J. Tissue-Specific Ablation of Liver Fatty Acid-Binding Protein Induces a Metabolically Healthy Obese Phenotype in Female Mice. Nutrients 2025; 17:753. [PMID: 40077623 PMCID: PMC11901660 DOI: 10.3390/nu17050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high-fat (HF)-fed LFABP knockout (LFABP-/-) mice developed higher fat mass than their wild-type (WT) counterparts but displayed a metabolically healthy obese (MHO) phenotype with normoglycemia, normoinsulinemia, and reduced hepatic steatosis compared with WT. Since LFABP is expressed in both liver and intestine, in the present study, we generated LFABP conditional knockout (cKO) mice to determine the contributions of LFABP specifically within the liver or within the intestine, to the whole-body phenotype of the global knockout. Methods: Female liver-specific LFABP knockout (LFABPliv-/-), intestine-specific LFABP knockout (LFABPint-/-), and "floxed" LFABP (LFABPfl/fl) control mice were fed a 45% Kcal fat semipurified HF diet for 12 weeks. Results: While not as dramatic as found for whole-body LFABP-/- mice, both LFABPliv-/- and LFABPint-/- mice had significantly higher body weights and fat mass compared with LFABPfl/fl control mice. As with the global LFABP nulls, both LFABPliv-/- and LFABPint-/- mice remained normoglycemic and normoinsulinemic. Despite their greater fat mass, the LFABPliv-/- mice did not develop hepatic steatosis. Additionally, LFABPliv-/- and LFABPint-/- mice had higher endurance exercise capacity when compared with LFABPfl/fl control mice. Conclusions: The results suggest, therefore, that either liver-specific or intestine-specific ablation of LFABP in female mice is sufficient to induce, at least in part, the MHO phenotype observed following whole-body ablation of LFABP.
Collapse
Affiliation(s)
- Hiba Radhwan Tawfeeq
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| | - Atreju I. Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| | - Yinxiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Anastasia Diolintzi
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| | - Sophia M. Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yin Hei Lau
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Loredana Quadro
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
- Department of Food Science, Rutgers University, New Brunswick, NJ 07102, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| |
Collapse
|
35
|
Meade R, Ibrahim D, Engel C, Belaygorod L, Arif B, Hsu FF, Adak S, Catlett R, Zhou M, Ilagan MXG, Semenkovich CF, Zayed MA. Targeting fatty acid synthase reduces aortic atherosclerosis and inflammation. Commun Biol 2025; 8:262. [PMID: 39972116 PMCID: PMC11840040 DOI: 10.1038/s42003-025-07656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Fatty acid synthase (FAS) is predominantly expressed in the liver and adipose tissue. It plays vital roles in de novo synthesis of saturated fatty acids and regulates insulin sensitivity. We previously demonstrated that serum circulating FAS (cFAS) is a clinical biomarker for advanced atherosclerosis, and that it is conjugated to low-density lipoproteins (LDL). However, it remains unknown whether cFAS can directly impact atheroprogression. To investigate this, we evaluate whether cFAS impacts macrophage foam cell formation - an important cellular process leading to atheroprogression. Macrophages exposed to human serum containing high levels of cFAS show increased foam cell formation as compared to cells exposed to serum containing low levels of cFAS. This difference is not observed using serum containing either high or low LDL. Pharmacological inhibition of cFAS using Platensimycin (PTM) decreases foam cell formation in vitro. In Apoe-/- mice with normal FAS expression, administration of PTM over 16 weeks along with a high fat diet decreases cFAS activity and aortic atherosclerosis without affecting circulating total cholesterol. This effect is also observed in Apoe-/- mice with liver-specific knockout of hepatic Fasn. Reductions in aortic root plaque are associated with decreased macrophage infiltration. These findings demonstrate that cFAS plays an important role in arterial atheroprogression.
Collapse
Affiliation(s)
- Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Dina Ibrahim
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Connor Engel
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Larisa Belaygorod
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Batool Arif
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Fong-Fu Hsu
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sangeeta Adak
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Catlett
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mingzhou Zhou
- Department Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ma Xenia G Ilagan
- Department Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Clay F Semenkovich
- Metabolism & Lipid Research, Division of Endocrinology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO, USA.
- McKelvey School of Engineering, Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- CardioVascular Research Innovation in Surgery & Engineering Center, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Surgical Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Andishgar A, Bazmi S, Lankarani KB, Taghavi SA, Imanieh MH, Sivandzadeh G, Saeian S, Dadashpour N, Shamsaeefar A, Ravankhah M, Deylami HN, Tabrizi R, Imanieh MH. Comparison of time-to-event machine learning models in predicting biliary complication and mortality rate in liver transplant patients. Sci Rep 2025; 15:4768. [PMID: 39922959 PMCID: PMC11807176 DOI: 10.1038/s41598-025-89570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/06/2025] [Indexed: 02/10/2025] Open
Abstract
Post-Liver transplantation (LT) survival rates stagnate, with biliary complications (BC) as a major cause of death. We analyzed longitudinal data with a median 19-month follow-up. BC was diagnosed with ultrasounds and MRCP. Missing data was imputed using mean and median. Data preprocessing involved feature scaling and one-hot encoding. Survival analysis used filter (Cox-P, Cox-c) and embedded (RSF, LASSO) feature selection methods. Seven survival machine learning algorithms were used: LASSO, Ridge, RSF, E-NET, GBS, C-GBS, and FS-SVM. Model development employed 5-fold cross-validation, random oversampling, and hyperparameter tuning. Random oversampling addressed data imbalance. Optimal hyperparameters were determined based on average C-index. Features importance was assessed using standardized regression coefficients and permutation importance for top models. Stability was evaluated using 5-fold cross-validation standard deviation. Finally, 1799 observations with 40 outcome predictors were included. RSF with Ridge achieved the highest performance (C-index: 0.699) for BC prediction, while RSF with RSF had the highest performance (C-index: 0.784) for mortality prediction. Top BC predictors were LT graft types, IBD in recipients, recipient's BMI, recipient's history of PVT, and previous LT history. For mortality, they were post-transplant AST, creatinine, recipient's age, post-transplant ALT, and tacrolimus consumption. We identified BC and mortality risk factors, improving decision-making and outcomes.
Collapse
Affiliation(s)
- Aref Andishgar
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Sina Bazmi
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Kamran B Lankarani
- Health Policy Research Center, Institute of Heath, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Alireza Taghavi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, 9th Floor, Mohammad Rasoul Allah Research Tower, Khalili St, 7193635899, Shiraz, Iran
| | - Mohammad Hadi Imanieh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, 9th Floor, Mohammad Rasoul Allah Research Tower, Khalili St, 7193635899, Shiraz, Iran
| | - Gholamreza Sivandzadeh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, 9th Floor, Mohammad Rasoul Allah Research Tower, Khalili St, 7193635899, Shiraz, Iran
| | - Samira Saeian
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, 9th Floor, Mohammad Rasoul Allah Research Tower, Khalili St, 7193635899, Shiraz, Iran
| | - Nazanin Dadashpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, 9th Floor, Mohammad Rasoul Allah Research Tower, Khalili St, 7193635899, Shiraz, Iran
| | - Alireza Shamsaeefar
- Abu Ali Sina Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Ravankhah
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 74616-86688, Iran.
- Clinical Research Development Unit of Vali Asr Hospital, Fasa University of Medical Science, Fasa, Iran.
| | - Mohammad Hossein Imanieh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, 9th Floor, Mohammad Rasoul Allah Research Tower, Khalili St, 7193635899, Shiraz, Iran.
| |
Collapse
|
37
|
Koh J, Mohamed A, Kong G, Wong E, Chen Y, Anand VV, Chong B, Chin YH, Wang JW, Khoo CM, Chan SP, Muthiah M, Dimitriadis GK, Chan MYY, Loh PH, Chew NWS. Long-term all-cause mortality of metabolic-dysfunction associated steatotic liver disease based on body weight phenotypes following acute myocardial infarction: A retrospective cohort study. Diabetes Obes Metab 2025; 27:683-696. [PMID: 39529446 DOI: 10.1111/dom.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) and obesity increases risk of cardiovascular disease. This cohort study examines the prognostic value of MASLD, across body weight categories, in a secondary preventative acute myocardial infarction (AMI) cohort. METHODS Patients with AMI were stratified into four phenotypes-obesity MASLD, non-obesity MASLD, obesity non-MASLD, non-obesity non-MASLD. The primary outcome was all-cause mortality. Cox regression analysis was performed to investigate determinants of long-term all-cause mortality. RESULTS Of 5702 patients, majority were in the non-obesity non-MASLD group (66.7%), followed by obesity MASLD (16.1%), non-obesity MASLD (11.2%) and non-obesity MASLD (6.0%). Across the four phenotypes, obesity MASLD had the highest cardiometabolic burden, followed by non-obesity MASLD. Non-obesity MASLD had the highest risk of heart failure (p = 0.034), cardiogenic shock (p < 0.001), and all-cause long-term mortality (p = 0.019). The non-obesity MASLD (HR 1.400, 95%CI 1.077-1.820, p = 0.012) and obesity MASLD phenotypes (HR 1.222, 95%CI 1.005-1.485, p = 0.044) were independently associated with long-term all-cause mortality. CONCLUSIONS Obesity and non-obesity MASLD phenotypes were predictors of all-cause mortality following AMI, with an even larger magnitude of mortality risk in the non-obesity MASLD group. The recognition of MASLD and its body weight phenotypes will be beneficial in the prognostication following AMI.
Collapse
Affiliation(s)
- Jaycie Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ayman Mohamed
- King Fahd Military Medical Complex, Dhahran, Saudi Arabia
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore
- Cardiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gwyneth Kong
- Department of Medicine, National University Hospital, Singapore, Singapore
| | - Esther Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yiming Chen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vickram Vijay Anand
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Bryan Chong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yip Han Chin
- Department of Medicine, National University Hospital, Singapore, Singapore
| | - Jiong-Wei Wang
- Cardiovascular Research Institute, National University Heart Centre, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chin Meng Khoo
- Division of Endocrinology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Siew Pang Chan
- Department of Medicine, National University Hospital, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, National University Health System, Singapore, Singapore
| | - Mark Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Georgios K Dimitriadis
- Department of Endocrinology ASO/EASO COM, King's College Hospital NHS Foundation Trust, London, UK
- Obesity, Type 2 Diabetes and Immunometabolism Research Group, Department of Diabetes, Faculty of Cardiovascular Medicine & Sciences, School of Life Course Sciences, King's College London, London, UK
| | - Mark Yan-Yee Chan
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poay-Huan Loh
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Cardiology, Department of Medicine, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Nicholas W S Chew
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Jawara D, Krebsbach CM, Venkatesh M, Murtha JA, Hanlon BM, Lauer KV, Stalter LN, Funk LM. U.S. weight trends: a longitudinal analysis of an NIH-partnered dataset. Int J Obes (Lond) 2025; 49:315-321. [PMID: 39472690 PMCID: PMC11805667 DOI: 10.1038/s41366-024-01661-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Obesity is a major public health challenge in the U.S. Existing datasets utilized for calculating obesity prevalence, such as the National Health and Nutrition Examination Survey (NHANES) and Behavioral Risk Factor Surveillance System (BRFSS), have limitations. Our objective was to analyze weight trends in the U.S. using a nationally representative dataset that incorporates longitudinal electronic health record data. METHODS Using the National Institutes of Health All of Us Research Program (AoU) dataset, we identified patients aged 18-70 years old who had at least two height and weight measurements within a 5-year period from 2008 to 2021. Baseline and most recent BMI values were used to calculate total body weight (%TBW) changes. %TBW change predictors were determined using multivariable linear regression. RESULTS We included 30,862 patients (mean age 48.9 [ ± 12.6] years; 60.5% female). At the 5-year follow-up, the prevalences of obesity and severe obesity were 37.4% and 20.7%, respectively. The frequency of patients with normal weight or overweight BMI who gained ≥5% TBW at follow-up was 37.8% and 33.1%, respectively. Nearly 24% of the cohort lost ≥ 5% TBW, and 6.5% with severe obesity lost weight to achieve a BMI < 30 kg/m2. In adjusted analyses, male sex (-1.10%, 95% CI [-1.36, -0.85]), non-Hispanic Asian race/ethnicity (-1.69% [-2.44, -0.94]), and type 2 diabetes (-1.58% [-1.95, -1.22]) were associated with weight loss, while obstructive sleep apnea (1.80% [1.40, 2.19]) was associated with weight gain. CONCLUSIONS This evaluation of an NIH-partnered dataset suggests that patients are continuing to gain weight in the U.S. AoU represents a unique tool for obesity prediction, prevention, and treatment given its longitudinal nature and unique behavioral and genetic data.
Collapse
Affiliation(s)
- Dawda Jawara
- Department of Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Manasa Venkatesh
- Department of Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Bret M Hanlon
- Department of Surgery, University of Wisconsin, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Kate V Lauer
- Department of Surgery, University of Wisconsin, Madison, WI, USA
| | - Lily N Stalter
- Department of Surgery, University of Wisconsin, Madison, WI, USA
| | - Luke M Funk
- Department of Surgery, University of Wisconsin, Madison, WI, USA.
- Department of Surgery, William S. Middleton Memorial VA, Madison, WI, USA.
| |
Collapse
|
39
|
Luthra R, Sheth A. Understanding MASH: An Examination of Progression and Clinical Outcomes by Disease Severity in the TARGET-NASH Database. Adv Ther 2025; 42:1165-1195. [PMID: 39739194 PMCID: PMC11787050 DOI: 10.1007/s12325-024-03085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Metabolic dysfunction-associated steatohepatitis (MASH), the progressive form of metabolic dysfunction-associated steatotic liver disease (MASLD), is linked to cardiometabolic risk factors such as obesity and type 2 diabetes (T2D). The rising prevalence of MASH and risk of hepatic and extra-hepatic complications emphasize the need for a better understanding of disease progression and associated outcomes. This study aimed to evaluate the incidence of, and demographic and clinical characteristics associated with, progression to MASH-related complications by disease severity in patients with non-cirrhotic MASH or MASH cirrhosis. Alignment between noninvasive tests (NITs) and biopsy-determined fibrosis stage was also assessed. METHODS This analysis used data from the TARGET-NASH cohort that includes adults with MASH across academic and community sites in the United States. Patients with non-cirrhotic MASH or MASH cirrhosis were stratified by disease severity based on fibrosis stage or cirrhosis. Progression to MASH-related outcomes, including all-cause mortality, cirrhosis, and liver transplantation, was assessed. RESULTS Among the 2378 patients included in this analysis, 48% had MASH cirrhosis. Incidence of all-cause mortality increased with disease severity from 0.14/100 person-months (100PM) at fibrosis stage 0-1 (F0-F1) to 2.02/100PM with compensated cirrhosis and 4.62/100PM with decompensated cirrhosis. Compared with patients with F0-F1, risk of progression to cirrhosis was higher in patients with F3 [hazard ratio (HR), 95% confidence interval (CI); 18.66, 10.97-31.73] and F2 (HR, 95% CI; 3.74, 2.00-6.98). Among those who progressed to MASH-related outcomes, 67.9% had T2D and 73.9% had hypertension. Vibration-controlled transient elastography showed better alignment with biopsy-determined fibrosis stage than Fibrosis-4 Index (FIB-4). CONCLUSIONS Progression to all-cause mortality in patients with MASH was significantly associated with the presence of higher fibrosis stage and cirrhosis. Cardiometabolic comorbidities such as T2D and hypertension were prevalent in patients with MASH progression. Early identification and management of MASH may mitigate disease progression and liver-related complications.
Collapse
Affiliation(s)
- Rakesh Luthra
- Novo Nordisk Inc., 800 Scudders Mill Rd, Plainsboro, NJ, 08536, USA
| | - Aarth Sheth
- Novo Nordisk Inc., 800 Scudders Mill Rd, Plainsboro, NJ, 08536, USA.
| |
Collapse
|
40
|
Khalafi M, Maleki AH, Ehsanifar M, Symonds ME, Rosenkranz SK. Longer-term effects of intermittent fasting on body composition and cardiometabolic health in adults with overweight and obesity: A systematic review and meta-analysis. Obes Rev 2025; 26:e13855. [PMID: 39501676 DOI: 10.1111/obr.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 01/11/2025]
Abstract
The aim of the present study was to investigate the effects of long-term intermittent fasting (IF) on body composition and cardiometabolic health in adults with overweight and obesity. PubMed, Web of Science, and Scopus were searched from inception to March 2024 to identify original randomized trials that investigated the effects of IF versus either a control diet (CON) and/or continuous caloric restriction (CR). Participants were adults with overweight and obesity and intervention durations were ≥ 6 months. Overall, a total of 24 studies involving 2032 participants were included in the meta-analysis. Compared with CON, IF significantly reduced body weight [WMD: -2.84 kg], BMI [WMD: -1.41 kg.m2], fat mass [WMD: -3.06 kg], fat-free mass [WMD: -0.81 kg], waist circumference [WMD: -3.85 cm], visceral fat [SMD: -0.37], fasting glucose [WMD: -0.14 mmol/l], triglycerides [WMD: -0.12 mmol/l], and diastolic blood pressure [WMD: -2.24 mmHg]. Conversely, IF significantly increased high-density lipoproteins [WMD: 0.04 mmol/l] when compared with CON, but had no effects on insulin, hemoglobin A1c%, total cholesterol, low-density lipoprotein, or systolic blood pressure. Compared with CR, IF significantly reduced fat mass [WMD: -0.70 kg], body fat percentage [WMD: -0.59%], and DBP [WMD: -0.91 mmHg], and increased HDL [WMD: 0.03 mmol/l], with no other significant effects. Subgroup analyses showed that the mode of IF and intervention duration were the primary moderators of IF effects on the markers. In adults with overweight or obesity, IF and CR are comparably effective for reducing body weight and adiposity, as well as for improving cardiometabolic health markers.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Aref Habibi Maleki
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Mahsa Ehsanifar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Michael E Symonds
- Centre for Perinatal Research, Academic Unit of Population and Lifespan Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, USA
| |
Collapse
|
41
|
Malandris K, Korakas E, Sarakapina A, Kalopitas G, Iatridi F, Liakos A, Bekiari E, Giouleme O, Tzatzagou G, Karagiannis T, Paschos P, Vasilakou D, Lambadiari V, Tzamou E, Daravigkas D, Sinakos E, Tsapas A. Accuracy of Controlled Attenuation Parameter for Liver Steatosis in High-Risk Patients for MASLD Using MRI-Proton Density Fat Fraction as Reference Standard. Dig Dis Sci 2025; 70:814-824. [PMID: 39708259 DOI: 10.1007/s10620-024-08799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
AIM Controlled attenuation parameter (CAP) enables the noninvasive diagnosis of liver steatosis. Magnetic resonance imaging proton density fat fraction (MRI-PDFF) is increasingly used over biopsy for the assessment of steatosis in patients at risk for metabolic dysfunction-associated steatotic liver disease (MASLD). We assessed the accuracy of CAP for liver steatosis defined as MRI-PDFF ≥ 5%. METHODS We performed a cross-sectional, diagnostic accuracy study. We prospectively recruited consecutive adult participants with type 2 diabetes and body mass index (BMI) ≥ 25 kg/m2, who underwent CAP and MRI-PDFF within two weeks. RESULTS We included 113 participants. The area under the receiver operating characteristic (AUROC) of CAP for MRI-PDFF ≥ 5% was 0.82 [95% confidence interval (CI) 0.74-0.89]. CAP thresholds for ruling-out (sensitivity > 90%) and ruling-in (specificity > 90%) liver steatosis were below 249 and over 328 dB/m respectively. The AUROC of CAP for the detection of MRI-PDFF ≥ 10% was 0.81 (0.73-0.88). CAP thresholds for ruling-out and ruling-in MRI-PDFF ≥ 10% were below 271 and over 345 dB/m respectively. CAP measurements with an interquartile range (IQR) < 30 dB/m improved the detection of higher steatosis grades. CONCLUSION CAP has acceptable accuracy for diagnosing MRI-PDFF defined steatosis. Values below 249 dB/m can be used to rule-out liver steatosis, while values over 328 dB/m can set the diagnosis. An IQR < 30 dB/m might improve the accuracy of CAP for higher steatosis grades. CLINICAL TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Konstantinos Malandris
- Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642, Thessaloniki, Greece.
| | - Emmanouil Korakas
- Second Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Sarakapina
- First Medical Department, "Papageorgiou" Hospital, Thessaloniki, Greece
| | - Georgios Kalopitas
- First Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini Iatridi
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642, Thessaloniki, Greece
| | - Aris Liakos
- Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642, Thessaloniki, Greece
| | - Eleni Bekiari
- Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642, Thessaloniki, Greece
| | - Olga Giouleme
- Second Propedeutic Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Thomas Karagiannis
- Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642, Thessaloniki, Greece
| | - Paschalis Paschos
- First Medical Department, "Papageorgiou" Hospital, Thessaloniki, Greece
| | - Despoina Vasilakou
- Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642, Thessaloniki, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, Athens, Greece
| | - Elli Tzamou
- Affidea Diagnostic Center, Thessaloniki, Greece
| | | | - Emmanouil Sinakos
- Fourth Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Tsapas
- Second Medical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642, Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Jawara D, Lauer KV, Venkatesh M, Stalter LN, Hanlon B, Churpek MM, Funk LM. Using Machine Learning to Predict Weight Gain in Adults: an Observational Analysis From the All of Us Research Program. J Surg Res 2025; 306:43-53. [PMID: 39742657 PMCID: PMC11911080 DOI: 10.1016/j.jss.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Obesity, defined as a body mass index ≥30 kg/m2, is a major public health concern in the United States. Preventative approaches are essential, but they are limited by an inability to accurately predict individuals at highest risk of weight gain. Our objective was to develop accurate weight gain prediction models using the National Institutes of Health All of Us dataset. We hypothesized that machine learning models using both electronic health record and behavioral survey data would outperform models using electronic health record data alone. METHODS The All of Us dataset was used to identify adults between 18 and 70 ys old with weight measurements 2 y apart between 2008 and 2022. Patients with a history of cancer, bariatric surgery, or pregnancy were excluded. Demographics, vital signs, laboratory results, comorbidities, and survey data (Alcohol Use Disorder Identification Test, Patient-Reported Outcomes Measurement Information System physical and mental health scores) were included as model parameters. Elastic net and XGBoost machine learning models were developed with and without survey data to predict ≥10% total body weight gain within 2 y. The data were split into a training sample (60%) and a testing sample (40%), and parameters were tuned using 10-fold cross-validation. Performance was compared using area under the receiver operating characteristic curves (AUCs). RESULTS Our cohort consisted of 34,715 patients (mean [SD] age 50.9 [13.4] y; 45.7% White; 55.3% female). Over a 2-y span, 10.4% of the cohort gained ≥10% total body weight. AUCs were 0.677 [95% DeLong confidence interval 0.665-0.688] for elastic net and 0.706 [0.695-0.717] for XGBoost. Incorporation of survey data did not improve predictability, with AUCs of 0.681 [0.669-0.692] and 0.705 [0.694-0.716], respectively. CONCLUSIONS Our machine learning weight gain prediction models had modest performance that was not improved by survey data. The addition of other All of Us variables, including genomic data, may be informative in future studies.
Collapse
Affiliation(s)
- Dawda Jawara
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
| | - Kate V Lauer
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
| | - Manasa Venkatesh
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
| | - Lily N Stalter
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bret Hanlon
- Department of Surgery, University of Wisconsin, Madison, Wisconsin; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | | | - Luke M Funk
- Department of Surgery, University of Wisconsin, Madison, Wisconsin; Department of Surgery, William S. Middleton Memorial VA, Madison, Wisconsin.
| |
Collapse
|
43
|
Ren R, Wang Q, Deng D, Guo A, Chen X, Meng Y, Fang Y, Zheng G, Xu Z, Li M, Hu J. Hu-lu-su-pian ameliorates hepatic steatosis by regulating CIDEA expression in AKT-driven MASLD mice. Front Pharmacol 2025; 15:1503247. [PMID: 39958875 PMCID: PMC11825746 DOI: 10.3389/fphar.2024.1503247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/31/2024] [Indexed: 02/18/2025] Open
Abstract
Introduction Hu-lu-su-pian (HLSP) is an oral tablet derived from the active compounds of Cucumis melo L., a traditional Chinese medicine. This contemporary formulation is frequently employed in clinical settings for the management of liver ailments. However, the molecular mechanism by which HLSP affects metabolic dysfunction-associated steatotic liver disease (MASLD) remains unclear. This study aimed to explore the therapeutic potential of HLSP on MASLD and the underlying mechanism. Methods The researchers used ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) to identify the primary chemical components of HLSP. A mouse model of MASLD induced by AKT was established through hydrodynamic transfection with activated forms of AKT. Serum biochemical indices and liver pathological assessments were employed to evaluate the pharmacodynamic effects of HLSP on MASLD. Transcriptomic analysis of the liver was conducted to detect differentially expressed genes (DEGs). Further examination of significant DEGs and proteins was performed using quantitative real-time polymerase chain reaction (RT-qPCR), Western blotting, and immunohistochemistry (IHC) techniques, respectively. The efficacy and molecular mechanisms of HLSP in MASLD were further explored in HepG2 and Huh-7 cells in the presence of gene overexpression. Results From the UPLC-Q-TOF-MS/MS results, we detected fifteen components from HLSP. From the results of serum biochemical indices and hepatic pathology analyses, it is clear that HLSP is effective in treating MASLD. The findings from hepatic transcription studies revealed CIDEA as an essential DEG that facilitates lipid droplet (LD) fusion and enhances de novo fatty acid synthesis from scratch in cases of hepatic steatosis, which HLSP has the potential to counteract. In addition, HLSP significantly reduced lipid accumulation and expression of critical genes for de novo fatty acid synthesis in HepG2 and Huh-7 cells overexpressing CIDEA. Discussion The present study preliminarily suggests that HLSP can ameliorate hepatic steatosis by inhibiting CIDEA-mediated de novo fatty acid synthesis and LD formation, which may offer a potential strategy for treating MASLD.
Collapse
Affiliation(s)
- Rumeng Ren
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Dongjie Deng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Aoao Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Xin Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Ying Fang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Guohua Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Health Management Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Man Li
- Department of Integrated Traditional and Western Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| |
Collapse
|
44
|
Smith K, Dennis KMJH, Hodson L. The ins and outs of liver fat metabolism: The effect of phenotype and diet on risk of intrahepatic triglyceride accumulation. Exp Physiol 2025. [PMID: 39861959 DOI: 10.1113/ep092001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/22/2024] [Indexed: 01/27/2025]
Abstract
In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation. The processes of FA uptake, FA synthesis and the intracellular partitioning of FAs into storage, oxidation or secretory pathways are tightly regulated. An imbalance in these processes causes intrahepatic triglyceride to accumulate and is associated with the development of metabolic dysfunction-associated steatotic liver disease. It is well appreciated that many factors can influence intrahepatic FA partitioning, and although there is good evidence that both phenotype (e.g., sex, ethnicity and adiposity) and dietary macronutrient composition can play a role in intrahepatic triglyceride accumulation, their interaction remains poorly understood. The aim of this review is to explore how the respective pathways of FA delivery, synthesis and disposal are altered by phenotype and understand how dietary macronutrient composition might influence the partitioning of FAs in the liver in vivo, in humans.
Collapse
Affiliation(s)
- Kieran Smith
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Kaitlyn M J H Dennis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
45
|
Barbhuiya PA, Ahmed A, Dutta PP, Sen S, Pathak MP. Mitigating Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD): The Role of Bioactive Phytoconstituents in Indian Culinary Spices. Curr Nutr Rep 2025; 14:20. [PMID: 39841356 DOI: 10.1007/s13668-024-00598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 01/30/2025]
Abstract
PURPOSE OF REVIEW The term metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a group of progressive steatotic liver conditions that include metabolic dysfunction-associated steatohepatitis (MASH), which has varying degrees of liver fibrosis and may advance to cirrhosis, and independent hepatic steatosis. MASLD has a complex underlying mechanism, with patients exhibiting diverse causes and phases of the disease. India has a pool prevalence of MASLD of 38.6% in adults. In 2023, the term NAFLD has been redefined and changed to MASLD. Currently, there are no drugs approved by the FDA for the treatment of MASLD. This study investigates the potential of bioactive phytoconstituents present in spices as a therapeutic approach for MASLD. Moreover, it offers comprehensive data on several pre-clinical studies of bioactive phytoconstituents derived from spices that primarily focus on treating obesity-associated MASLD. RECENT FINDINGS Spices include a high amount of bioactive chemicals and several research have indicated their diverse pharmacological activities. Bioactive phytoconstituents from common Indian spices like cinnamic acid, eugenol, curcumin, allicin, 6-gingerols, capsaicin, piperine, eucalyptol, trigonelline, and linalool have been reported to exhibit anti-MASLD effects both in-vivo and in-vitro. Bioactive phytoconstituents from different culinary species of India have shown promising potential against MASLD in pre-clinical status. Further clinical studies on a large scale would be beneficial for paving the path to the development of a new drug which is the need of time.
Collapse
Affiliation(s)
- Pervej Alom Barbhuiya
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
| | - Ameena Ahmed
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Rahman Institute of Pharmaceutical Sciences and Research, Tepesia, Sonapur, Assam, India, PIN - 782402
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026.
- Centre for Research On Ethnomedicine, Faculty of Pharmaceutical Science, Assam Down Town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India, PIN - 781026.
| |
Collapse
|
46
|
Guo J, Xue S, Wang X, Wang L, Wen SY. Emerging insights on the role of Elovl6 in human diseases: Therapeutic challenges and opportunities. Life Sci 2025; 361:123308. [PMID: 39675554 DOI: 10.1016/j.lfs.2024.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
ELOVL6, elongation-of-very-long-chain-fatty acids 6, a crucial enzyme in lipid metabolism, primarily responsible for the elongation of carbon chains of C12-C16 saturated fatty acids. It plays a significant role in various human diseases, particularly those associated with metabolic disorders related to fatty acid synthesis, such as insulin resistance, non-alcoholic fatty liver disease, cancer, and cardiovascular diseases. Emerging research also links ELOVL6 to kidney diseases, neurological conditions such as epilepsy, and pulmonary fibrosis. The enzyme's expression is regulated by various factors including diet, oxidative stress, and circadian rhythms. For instance, a high-carbohydrate diet can promote an increase in ELOVL6 expression. This abnormality leads to an accumulation of long-chain fatty acids and lipid deposition, ultimately resulting in pathological consequences across multiple systems in the body. As a biological target, ELOVL6 holds promise for diagnostic and therapeutic applications, with future research expected to uncover its mechanisms and therapeutic potential, paving the way for novel interventions in multiple disease areas. Here, the expression regulation and function of ELOVL6 in various human diseases are reviewed. This review underscores ELOVL6 as a significant therapeutic target for human diseases, with its potential for diagnostic and therapeutic applications anticipated to drive future research and enable innovative interventions in various pathological conditions.
Collapse
Affiliation(s)
- Jiao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shulan Xue
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
47
|
Koerts NDK, Horváth B. Exploring Health Literacy among Adults with Hidradenitis Suppurativa. Dermatology 2025; 241:184-193. [PMID: 39756388 PMCID: PMC11965821 DOI: 10.1159/000543286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025] Open
Abstract
INTRODUCTION Health literacy plays an important role in the management of chronic and debilitating skin diseases like hidradenitis suppurativa (HS). Adequate health literacy empowers patients to understand their disease, manage it effectively, and make informed decisions about their health. Exploring the interplay between health literacy and HS is essential to improve healthcare outcomes in this population. This study aimed to assess the prevalence of limited health literacy among HS patients and its associated factors which has never been studied before. METHODS In this epidemiological cross-sectional study, data were collected via a population-wide survey within the Lifelines Cohort Study in the Netherlands. Health literacy of participants with HS was compared to non-HS controls. The health literacy was measured using six validated questions covering functional, communicative, and critical health literacy. Associations between the characteristics of the HS group and limited health literacy were examined. RESULTS Out of 56,084 adult respondents, 1,156 participants with HS were identified. The prevalence of limited functional health literacy was 24.5% in the non-HS group and 26.4% in the HS group. Our findings indicate that limited health literacy among HS patients is associated with higher body mass index (BMI) (26.9 vs. 25.8) (OR: 0.969, 95% CI: 0.941-0.998), lower education level (34.5% vs. 19.9%) (OR: 0.495, 95% CI: 0.350-0.701), lower socioeconomic status (-0.68 vs. -0.58) (OR: 1.194, 95% CI: 1.029-1.386), and more severe disease stage according to the Hurley stage (33.0% vs. 25.8%) (OR: 1.400, 95% CI: 1.005-1.952). CONCLUSIONS Our study highlights the importance of addressing health literacy in HS patients, given the high prevalence of limited health literacy among this group and associations with higher BMI and more severe disease stage. Limited health literacy may contribute to poorer health outcomes, suboptimal healthcare utilization, elevated healthcare costs, and health disparities. Targeted interventions to improve health literacy could enhance care quality and outcomes for HS patients. INTRODUCTION Health literacy plays an important role in the management of chronic and debilitating skin diseases like hidradenitis suppurativa (HS). Adequate health literacy empowers patients to understand their disease, manage it effectively, and make informed decisions about their health. Exploring the interplay between health literacy and HS is essential to improve healthcare outcomes in this population. This study aimed to assess the prevalence of limited health literacy among HS patients and its associated factors which has never been studied before. METHODS In this epidemiological cross-sectional study, data were collected via a population-wide survey within the Lifelines Cohort Study in the Netherlands. Health literacy of participants with HS was compared to non-HS controls. The health literacy was measured using six validated questions covering functional, communicative, and critical health literacy. Associations between the characteristics of the HS group and limited health literacy were examined. RESULTS Out of 56,084 adult respondents, 1,156 participants with HS were identified. The prevalence of limited functional health literacy was 24.5% in the non-HS group and 26.4% in the HS group. Our findings indicate that limited health literacy among HS patients is associated with higher body mass index (BMI) (26.9 vs. 25.8) (OR: 0.969, 95% CI: 0.941-0.998), lower education level (34.5% vs. 19.9%) (OR: 0.495, 95% CI: 0.350-0.701), lower socioeconomic status (-0.68 vs. -0.58) (OR: 1.194, 95% CI: 1.029-1.386), and more severe disease stage according to the Hurley stage (33.0% vs. 25.8%) (OR: 1.400, 95% CI: 1.005-1.952). CONCLUSIONS Our study highlights the importance of addressing health literacy in HS patients, given the high prevalence of limited health literacy among this group and associations with higher BMI and more severe disease stage. Limited health literacy may contribute to poorer health outcomes, suboptimal healthcare utilization, elevated healthcare costs, and health disparities. Targeted interventions to improve health literacy could enhance care quality and outcomes for HS patients.
Collapse
Affiliation(s)
- Nicole D K Koerts
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara Horváth
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Tawfeeq HR, Lackey AI, Zhou Y, Diolointzi A, Zacharisen S, Lau YH, Quadro L, Storch J. Tissue-Specific Ablation of Liver Fatty Acid-Binding Protein Induces a Metabolically Healthy Obese Phenotype in Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631082. [PMID: 39803463 PMCID: PMC11722216 DOI: 10.1101/2025.01.02.631082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Background/Objectives Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high fat (HF) fed LFABP knockout (LFABP-/-) mice developed higher fat mass than their wild-type (WT) counterparts but displayed a metabolically healthy obese (MHO) phenotype with normoglycemia, normoinsulinemia, and reduced hepatic steatosis compared with WT. LFABP is expressed in both liver and intestine, thus in the present study, LFABP conditional knockout (cKO) mice were generated to determine the contributions of LFABP specifically within the liver or the intestine to the whole body phenotype of the global knockout. Methods Female liver-specific LFABP knockout (LFABPliv-/-), intestine-specific LFABP knockout (LFABPint-/-), and floxed LFABP (LFABPfl/fl) control mice were fed a 45% Kcal fat semipurified HF diet for 12 weeks. Results While not as dramatic as found for whole-body LFABP-/- mice, both LFABPliv-/- and LFABPint-/- mice had significantly higher body weights and fat mass compared with LFABPfl/fl control mice. As with the global LFABP nulls, both LFABPliv-/- and LFABPint-/- mice remained normoglycemic and normoinsulinemic. Despite their greater fat mass, the LFABPliv-/- mice did not develop hepatic steatosis. Additionally, LFABPliv-/- and LFABPint-/- mice had higher endurance exercise capacity when compared with LFABPfl/fl control mice. Conclusions The results suggest, therefore, that either liver-specific or intestine-specific ablation of LFABP in female mice is sufficient to induce, at least in part, the MHO phenotype observed following whole-body ablation of LFABP.
Collapse
Affiliation(s)
- Hiba Radhwan Tawfeeq
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Yinxiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Anastasia Diolointzi
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Sophia Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Yin Hei Lau
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Loredana Quadro
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
- Department of Food Science, Rutgers University, New Brunswick, New Jersey
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| |
Collapse
|
49
|
Alshahrani MY, Al Amri FS, Alzahrani MA, Alshahrani AS, Abdel Kader DH, Almasabi F, Zafrah H, Dallak M, Osman OM, Al-Ani B, Alzamil NM. Metformin ameliorates diabetes-induced hepatic ultrastructural damage and the immune biomarker CD86 and inflammation in rats. Ultrastruct Pathol 2025; 49:58-66. [PMID: 39663585 DOI: 10.1080/01913123.2024.2440479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Diabetes is a known inducer of hepatic ultrastructural alterations, and the expression of the immune biomarker that involves in T-cell immunity, cluster of differentiation 86 (CD86) is increased in diabetic patients with liver cirrhosis. The antidiabetic drug metformin has not previously been used to protect against type 2 diabetes mellitus (T2DM)-induced alternations in hepatic ultrastructure and the induction of the hepatic CD86/inflammation axis in diabetic animal models induced by streptozotocin and a high fat diet. To test our hypotheses, T2DM was induced in rats (model group) and the protective animals were treated with the antidiabetic drug metformin (200 mg/kg) until being sacrificed at week 12. A profound ultrastructural damage to the hepatocytes and liver tissue injury was induced by T2DM as demonstrated by hepatocytes with dark shrunken irregular nuclei, rarefied cytoplasm with lipid droplets, mitochondria with disrupted cristae, as well as depletion of glycogen granules and damaged of liver architecture, which were effectively (p < .0001) protected with metformin. Metformin also suppressed diabetes-induced hepatic gene expression of CD86 and inflammation as well as glycemia and liver injury markers. Furthermore, a significant correlation between hepatocyte damage and CD86, inflammation, glycemia, and biomarkers of liver injury was observed. These findings demonstrate that diabetes is associated with the induction of the hepatic CD86/inflammation axis and hepatocyte ultrastructural alterations while being protected by metformin.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad S Al Amri
- Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A Alzahrani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdulaziz S Alshahrani
- Department of Internal Medicine, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Dina H Abdel Kader
- Department of Medical Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Faris Almasabi
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hind Zafrah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Osama M Osman
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Norah M Alzamil
- Department of Family and Community Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Shen C, Pan Z, Xie W, Zhao J, Miao D, Zhao L, Liu M, Zhong Y, Zhong C, Gonzalez FJ, Wang W, Gao Y, Liu C. Hepatocyte-specific SLC27A4 deletion ameliorates nonalcoholic fatty liver disease in mice via suppression of phosphatidylcholine-mediated PXR activation. Metabolism 2025; 162:156054. [PMID: 39489412 DOI: 10.1016/j.metabol.2024.156054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The protein Solute carrier family 27 member 4 (SLC27A4) is crucial for fatty acid synthesis and β-oxidation, but its role in hepatic steatosis and nonalcoholic fatty liver disease (NAFLD) progression is not fully understood. METHODS Mice with AAV-mediated overexpression of Slc27a4 in liver and hepatocytes-specific deletion of Slc27a4 were fed a standard chow diet, a high-fat diet (HFD), or a methionine and choline-deficient diet (MCD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, lipidomic analysis, RNA-seq analysis, qPCR, western blot and immunofluorescence. RESULTS This study found elevated expression of SLC27A4 in individuals with NAFLD and OAPA-treated MPHs cells, leading to increased lipid accumulation and diet-induced liver steatosis, inflammation, and fibrosis. Conversely, hepatocyte-specific deletion of Slc27a4 improved the development of both NAFLD and NASH. SLC27A4 overexpression resulted in increased hepatic pregnane X receptor (PXR) expression and accumulation of phosphatidylcholine (PC), which activates PXR signaling and inducing SLC27A4 expression. PXR overexpression hinders the protective impact of Slc27a4 deletion on lipid accumulation and inflammation, whereas its deficiency in mice reduces the effect of Slc27a4 overexpression on NAFLD development. CONCLUSION These results indicate that SLC27A4 plays a critical role of lipid accumulation and inflammation, and is implicated in the development of NAFLD progression, rendering it potentially actionable target for NAFLD treatment.
Collapse
Affiliation(s)
- Chuangpeng Shen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China; ShenShan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shanwei 516600,China
| | - Zhisen Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wenmin Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Jian Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Deyu Miao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Ling Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Min Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanhua Zhong
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chong Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405,China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China.
| | - Yong Gao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China.
| | - Changhui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510405,China.
| |
Collapse
|