1
|
Shen H, Liangpunsakul S, Iwakiri Y, Szabo G, Wang H. Immunological mechanisms and emerging therapeutic targets in alcohol-associated liver disease. Cell Mol Immunol 2025:10.1038/s41423-025-01291-w. [PMID: 40399593 DOI: 10.1038/s41423-025-01291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/19/2025] [Indexed: 05/23/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a major global health challenge, with inflammation playing a central role in its progression. As inflammation emerges as a critical therapeutic target, ongoing research aims to unravel its underlying mechanisms. This review explores the immunological pathways of ALD, highlighting the roles of immune cells and their inflammatory mediators in disease onset and progression. We also examine the complex interactions between inflammatory cells and non-parenchymal liver cells, as well as their crosstalk with extra-hepatic organs, including the gut, adipose tissue, and nervous system. Furthermore, we summarize current clinical research on anti-inflammatory therapies and discuss promising therapeutic targets. Given the heterogeneity of ALD-associated inflammation, we emphasize the need for precision medicine to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Wang X, Qiu Z, Zhong Z, Liang S. TREM2-expressing macrophages in liver diseases. Trends Endocrinol Metab 2025:S1043-2760(25)00084-0. [PMID: 40368708 DOI: 10.1016/j.tem.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/23/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects over 30% of the global population and spans a spectrum of liver abnormalities, including simple steatosis, inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Recent studies have identified triggering receptors expressed on myeloid cells 2 (TREM2)-expressing macrophages as key regulators of MASLD progression. TREM2 plays a pivotal role in regulating macrophage-mediated processes such as efferocytosis, inflammatory control, and fibrosis resolution. Additionally, soluble TREM2 (sTREM2) was proposed as a noninvasive biomarker for diagnosing and monitoring MASLD progression. However, the molecular mechanisms through which TREM2 influences MASLD pathogenesis remain incompletely understood. This review summarizes the current understanding of TREM2-expressing macrophages in MASLD, with the goal of illuminating future research and guiding the development of innovative therapeutic strategies targeting TREM2 signaling pathways.
Collapse
Affiliation(s)
- Xiaochen Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Qiu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Huang H, Li G, Guo S, Li K, Li W, Zhou Q, He Z, Yang X, Liu L, Wei Q. RNA Methylation and Transcriptome Analysis Reveal Key Regulatory Pathways Related to Cadmium-Induced Liver Damage. Chem Res Toxicol 2025; 38:717-732. [PMID: 40135526 DOI: 10.1021/acs.chemrestox.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Cadmium (Cd) is a prevalent environmental and industrial contaminant that causes significant damage to liver function. However, the role of m6A methylation─a critical epigenetic modification─in Cd-induced liver injury remains poorly understood. This study aimed to investigate the effects of m6A methylation in Cd-induced liver damage. A mouse model of Cd-induced liver injury was established, and exposure to CdCl2 (20 mg/kg) for 90 days resulted in reduced m6A methylation levels. Using methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-Seq), we characterized the m6A methylation profiles in both control and Cd-exposed groups. A total of 8355 unique m6A peaks and 1,101 unique m6A-modified genes were identified. Among these, 673 genes exhibited differential m6A methylated modifications, including 463 hyper-methylated and 210 hypo-methylated genes. Conjoint analysis of MeRIP-seq and RNA-Seq data unveiled genes that showed both differential methylation and expression. These genes were significantly enriched in the AGE-RAGE and PI3K-Akt signaling pathway. Through bioinformatics screening, five key genes (Il-1β, Ccl2, Tlr2, Itgax, and Ccr2) were identified, and expression validation indicated that Itgax and Ccr2 may play pivotal roles in Cd-induced liver injury. Notably, elevated expression of methyltransferase-like 14 (METTL14) was observed in both in vivo and in vitro models. Inhibition of Mettl14 can regulate Cd-induced liver inflammation through m6A-dependent regulation of Ccr2 expression. Collectively, our findings highlight the crucial role of Mettl14 and Ccr2 in Cd-induced liver injury, providing novel insights into the epigenetic mechanisms underlying liver diseases and potential biomarkers for diagnosis and therapy.
Collapse
Affiliation(s)
- Hao Huang
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, China
| | - Guoliang Li
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Sihui Guo
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, China
| | - Kaile Li
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, China
| | - Wei Li
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, China
| | - Qinwen Zhou
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, China
| | - Zhini He
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, China
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Qinzhi Wei
- School of Public Health, Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Dhengle S, Maharana KC, Meenakshi S, Singh S. Mechanistic Insights into the Role of MCP-1 in Diverse Liver Pathological Conditions: A Recent Update. Curr Pharm Des 2025; 31:1167-1179. [PMID: 39779567 DOI: 10.2174/0113816128332969241120030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is regarded as a crucial proinflammatory cytokine that controls the migration and entry of macrophages. It has been demonstrated that chemokine ligand 2 and its receptor, chemokine receptor 2, are both implicated in several liver disorders. In a similar context, immunity mediators are overexpressed and stimulated by MCP-1. Additionally, MCP-1 alters the physiology of the hepatocytes, promoting immunologic and inflammatory responses beyond regular metabolism. Alcoholism and other factor including abnormal diet stimulate the liver's synthesis of MCP-1, which can result in inflammation in liver. Studies shows how MCP-1' linked to various liver disorders like alcoholic liver disease, liver fibrosis, non-alcoholic fatty liver disease, hepatitis, hepatic steatosis, hepatocellular cancer, primary biliary cirrhosis. MCP-1 not only predicts the onset, progression, and prognosis of the illness, but it is also directly related to the degree and stage of liver inflammation. In this review, we will explore the mechanism and connection between MCP-1's overexpression in liver disorders, further how it can be linked as a therapeutic biomarker in the above scenario.
Collapse
Affiliation(s)
- Sahil Dhengle
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sarasa Meenakshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
5
|
Bases E, El-Sheekh MM, El Shafay SM, El-Shenody R, Nassef M. Therapeutic anti-inflammatory immune potentials of some seaweeds extracts on chemically induced liver injury in mice. Sci Rep 2025; 15:4370. [PMID: 39910080 PMCID: PMC11799325 DOI: 10.1038/s41598-025-87379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Carbon tetrachloride (CCl4) is a well-known hepatotoxin. This work aimed to assess the therapeutic anti-inflammatory immune potentials of the seaweeds Padina pavonia and Jania rubens extracts on carbon tetrachloride (CCL4)-caused liver damage in mice. Our experimentation included two testing regimens: pre-treatment and post-treatment of P. pavonia and J. rubens extracts in CCL4/mice. Pre-treatment and post-treatment of P. pavonia and J. rubens extracts in CCL4/mice increased WBCs count and lymphocytes relative numbers and reduced the neutrophils and monocytes relative numbers. Pre-treatment and post-treatment of CCL4/mice with P. pavonia and J. rubens extracts significantly reduced the release amounts of pro-inflammatory cytokines TNF-α and IL-6 and significantly inhibited the increased CRP level. Furthermore, pre-treatment and post-treatment of CCL4/mice with P. pavonia and J. rubens extracts recovered the activities of GSH, and significantly decreased MDA level. CCL4/mice pre-treated and post-treated with P. pavonia and J. rubens extracts decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Pre- and post-treatment of CCL4/mice with the P. pavonia and J. rubens extracts ameliorated the liver damages caused by CCl4 and significantly inhibited the necrotic area, indicating hepatic cell death and decreased periportal hepatic degeneration, fibrosis, and inflammation.
Collapse
Affiliation(s)
- Eman Bases
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | | | - Rania El-Shenody
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Wang Z, Gao H, Ma X, Zhu D, Zhao L, Xiao W. Adrenic acid: A promising biomarker and therapeutic target (Review). Int J Mol Med 2025; 55:20. [PMID: 39575474 PMCID: PMC11611323 DOI: 10.3892/ijmm.2024.5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 01/05/2025] Open
Abstract
Adrenic acid is a 22‑carbon unsaturated fatty acid that is widely present in the adrenal gland, liver, brain, kidney and vascular system that plays a regulatory role in various pathophysiological processes, such as inflammatory reactions, lipid metabolism, oxidative stress, vascular function, and cell death. Adrenic acid is a potential biomarker for various ailments, including metabolic, neurodegenerative and cardiovascular diseases and cancer. In addition, adrenic acid is influenced by the pharmacological properties of several natural products, such as astragaloside IV, evodiamine, quercetin, kaempferol, Berberine‑baicalin and prebiotics, so it is a promising new target for clinical treatment and drug development. However, the molecular mechanisms by which adrenic acid exerts are unclear. The present study systematically reviewed the biosynthesis and metabolism of adrenic acid, focusing on intrinsic mechanisms that influence the progression of metabolic, cardiovascular and neurological disease. These mechanisms regulate several key processes, including immuno‑inflammatory response, oxidative stress, vascular function and cell death. In addition, the present study explored the potential clinical translational value of adrenic acid as a biomarker and therapeutic target. To the best of our knowledge, the present study is first systematic summary of the mechanisms of action of adrenic acid across a range of diseases. The present study provides understanding of the wide range of metabolic activities of adrenic acid and a basis for further exploring the pathogenesis and therapeutic targets of various diseases.
Collapse
Affiliation(s)
- Ze Wang
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haoyang Gao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaotong Ma
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Danlin Zhu
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Linlin Zhao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
- School of Physical Education, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Weihua Xiao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
7
|
Taylor SA, Harpavat S, Gromer KD, Andreev V, Loomes KM, Bezerra JA, Jarasvaraparn C, Wang K, Horslen S, Rosenthal P, Teckman J, Valentino PL, Ng VL, Karpen SJ, Sokol RJ, Alonso EM, Mack CL. Increased serum GM-CSF at diagnosis of biliary atresia is associated with improved biliary drainage. Pediatr Res 2025:10.1038/s41390-025-03804-9. [PMID: 39881181 DOI: 10.1038/s41390-025-03804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND The immune heterogeneity of biliary atresia (BA) presents a challenge for development of prognostic biomarkers. This study aimed to identify early immune signatures associated with biliary drainage after Kasai Portoenterostomy (KPE). METHODS Serum samples, liver slides, and clinical data were obtained from patients enrolled in the NIDDK-supported Childhood Liver Disease Research Network. Serum cytokines and hepatic immune cell subsets were measured at diagnosis and compared among 3 groups: 38 infants with BA (20 with evidence of bile flow after KPE; 18 without) and 17 non-BA cholestatic infants. RESULTS BA participants had lower numbers of lipid associated macrophages (LAM), and increased serum levels of Eotaxin-3, interleukin (IL) 12p70, and IL-8 versus non-BA groups (p < 0.05 for all). Among BA participants, monocyte like macrophages and serum levels of granulocyte-macrophage colony stimulating factor (GM-CSF) were increased in BA participants with good biliary drainage (p = 0.004 and p < 0.001 respectively). Levels of GM-CSF, IL-16, c-reactive protein, TNF-β predicted successful biliary drainage with an area under the receiver operating curve of 0.84 (p < 0.001). CONCLUSION These findings suggest that distinct macrophage-associated immune networks at diagnosis may impact biliary drainage after KPE. Identification of early prognostic immune-modulatory markers has potential to improve patient stratification for medical and surgical therapies. IMPACT STATEMENT We identify serum cytokines, particularly GM-CSF, that are associated with future biliary drainage in patients with biliary atresia. Characterization of macrophage-associated immune networks provides novel insight into early disease mechanism that may impact patient outcomes. Early prognostic biomarkers markers in biliary atresia can help in patient stratification for medical and surgical therapies.
Collapse
Affiliation(s)
- Sarah A Taylor
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA.
| | - Sanjiv Harpavat
- Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - Kyle D Gromer
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Victor Andreev
- Arbor Research Collaborative for Health, Ann Arbor, MI, USA
| | - Kathleen M Loomes
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jorge A Bezerra
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Kasper Wang
- Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
- The Hospital for Sick Children, Toronto, Ontario, CA, USA
| | - Simon Horslen
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Rosenthal
- Department of Pediatrics and Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Teckman
- Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, St. Louis, MO, USA
| | | | - Vicky L Ng
- The Hospital for Sick Children, Toronto, Ontario, CA, USA
| | - Saul J Karpen
- Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, USA
| | - Ronald J Sokol
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| | - Estella M Alonso
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Cara L Mack
- Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
8
|
Nov P, Zhang Y, Wang D, Sou S, Touch S, Kouy S, Vicheth V, Li L, Liu X, Wang C, Ni P, Kou Q, Li Y, Zheng C, Prasai A, Fu W, Li W, Du K, Li J. The causal relationship between immune cells and hepatocellular carcinoma: a Mendelian randomization (MR). Ecancermedicalscience 2024; 18:1794. [PMID: 39816386 PMCID: PMC11735144 DOI: 10.3332/ecancer.2024.1794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 01/18/2025] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is a complex and multifaceted disease that is increasingly prevalent globally. The involvement of immune cells in the tumour microenvironment has been linked to the progression of HCC, but the exact cause-and-effect relationship is not yet clear. In this study, we utilise Mendelian randomization (MR) to investigate the potential causal links between immune factors and the development of HCC. Method We executed a comprehensive MR study, leveraging publicly accessible genetic datasets to explore the potential causal links between 731 types of immune cells and HCC. Our analysis primarily applied inverse variance weighting and weighted median methods. To evaluate the robustness of our findings and probe for the presence of heterogeneity and pleiotropy, we also conducted thorough sensitivity analyses. Results We found 36 immune cells were associated with HCC, CD64 on CD14- CD16+ monocytes (OR = 1.328, 95% CI = 1.116- 1.581, p = 0.001), CD3- lymphocyte %lymphocytes (OR = 1.341, 95% CI = 1.027- 1.750, p = 0.031), HLA DR on CD14+ monocytes (OR = 1.256, 95% CI = 1.089- 1.448, p = 0.002), CD19 on CD19 on Plasma Blast-Plasma Cell (OR = 1.224, 95% CI = 1.073- 1.396, p = 0.003), CCR2 on monocytes (OR = 1.204, 95% CI = 1.073- 1.351, p = 0.002) and Naive CD4+ T cell Absolute Count (OR = 0.797, 95% CI = 0.655- 0.969, p = 0.023) were the most strongly associated with HCC. Among them, CD64 on CD14- CD16+ monocytes, CD3 - lymphocyte %lymphocytes, HLA DR on CD14+ monocytes and CD19 on Plasma Blast-Plasma Cells are the risk factors, while Naive CD4+ T cell Absolute Count are protective factors for HCC. Conclusion Our MR analysis of the role of immune cells and HCC provides a framework for knowledge of circulating immune status. Systematic assays of infiltrating immune cells in HCC can help dissect the immune status of HCC, assess the current use of checkpoint blockers, and most importantly, aid in the development of innovative immunotherapies. Further research is necessary to validate these findings and explore the underlying mechanisms that influence the immune response to HCC.
Collapse
Affiliation(s)
- Pengkhun Nov
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
- These authors contributed equally to this work
| | - Yangfeng Zhang
- Department of Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
- These authors contributed equally to this work
| | - Duanyu Wang
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Syphanna Sou
- Department of Medical Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
| | - Socheat Touch
- Department of Medical Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
| | - Samnang Kouy
- Department of Medical Oncology, The People's Hospital of Hezhou, No. 150 Xiyue Street, Babu District, Hezhou City 542800, Guangxi, China
| | - Virak Vicheth
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Lilin Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Xiang Liu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Changqian Wang
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Peizan Ni
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Qianzi Kou
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Ying Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Chongyang Zheng
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Arzoo Prasai
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Wen Fu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Wandan Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Kunpeng Du
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| | - Jiqiang Li
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital of Southern Medical University, No 253 Mid Gongye Ave, Haizhu District, Guangzhou 510282, Guangdong Province, China
| |
Collapse
|
9
|
Yang W, Chen L, Zhang J, Qiu C, Hou W, Zhang X, Fu B, Zhao D, Wang H, Liu D, Yan F, Ying W, Tang L. In-Depth Proteomic Analysis Reveals Phenotypic Diversity of Macrophages in Liver Fibrosis. J Proteome Res 2024; 23:5166-5176. [PMID: 39385457 DOI: 10.1021/acs.jproteome.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Macrophages make up a heterogeneous population of immune cells that exhibit diverse phenotypes and functions in health and disease. Although macrophage epigenomic and transcriptomic profiles have been reported, the proteomes of distinct macrophage populations under various pathological conditions remain largely elusive. Here, we employed a label-free proteomic approach to characterize the diversity of the hepatic macrophage pool in an experimental model of CCl4-induced liver fibrosis. We found a decrease in the proportion of liver resident embryo-derived KCs (EmKCs), and a drastic increase in the proportion of monocyte-derived KCs (MoKCs) and CLEC2-Macs. Proteomic profiling revealed that MoKCs largely resembled EmKCs, whereas CLEC2-Macs exhibited greater proteomic alternations compared with EmKCs, suggesting two distinct destinations for monocyte differentiation during liver fibrosis. Furthermore, CLEC2-Macs were characterized by increased expression of proteins associated with inflammatory response, antigen processing and presentation processes, which may be involved in the pathogenesis of liver fibrosis. Collectively, our study provides insights into the considerable heterogeneity within the hepatic macrophage pool during liver fibrosis.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Liling Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chenyi Qiu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenhao Hou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiangye Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dianyuan Zhao
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huan Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Di Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fang Yan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wantao Ying
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Li Tang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
10
|
Shi S, Zhou Y, Zhang H, Zhu Y, Jiang P, Xie C, Feng T, Zeng Y, He H, Luo Y, Chen J. The Causal Relationship between Inflammatory Cytokines and Liver Cirrhosis in European Descent: A Bidirectional Two-Sample Mendelian Randomization Study and the First Conclusions. Biomedicines 2024; 12:2264. [PMID: 39457577 DOI: 10.3390/biomedicines12102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Observational studies have highlighted the pivotal role of inflammatory cytokines in cirrhosis progression. However, the existence of a causal link between inflammatory cytokines and cirrhosis remains uncertain. In this study, we conducted a bidirectional Mendelian randomization (MR) analysis at a summarized level to illuminate the potential causal relationship between the two variables. METHODS This study utilized genetic variance in cirrhosis and inflammatory cytokines from a genome-wide association study (GWAS) of European descent. The MR-PRESSO outlier test, Cochran's Q test, and MR-Egger regression were applied to assess outliers, heterogeneity, and pleiotropy. The inverse variance weighted method and multiple sensitivity analyses were used to evaluate causalities. Furthermore, the validation set was used for simultaneous data validation. RESULTS The inflammatory cytokine monocyte chemoattractant protein 3 (MCP-3) was supposedly associated with a greater risk of cirrhosis. And cirrhosis was significantly correlated with increased levels of hepatocyte growth factor (HGF). CONCLUSIONS This study suggests that MCP-3 might be associated with the etiology of cirrhosis, while several inflammatory cytokines could potentially play a role in its downstream development. Additionally, the progression of cirrhosis was associated with elevated levels of HGF, suggesting a possible role for liver repair functions.
Collapse
Affiliation(s)
- Shiya Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanjie Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yalan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pengjun Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengxia Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianyu Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuping Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - He He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Li X, Ruan T, Wang S, Sun X, Liu C, Peng Y, Tao Y. Mitochondria at the Crossroads of Cholestatic Liver Injury: Targeting Novel Therapeutic Avenues. J Clin Transl Hepatol 2024; 12:792-801. [PMID: 39280065 PMCID: PMC11393838 DOI: 10.14218/jcth.2024.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 09/18/2024] Open
Abstract
Bile acids are byproducts of cholesterol metabolism in the liver and constitute the primary components of bile. Disruption of bile flow leads to cholestasis, characterized by the accumulation of hydrophobic bile acids in the liver and bloodstream. Such accumulation can exacerbate liver impairment. This review discussed recent developments in understanding how bile acids contribute to liver damage, including disturbances in mitochondrial function, endoplasmic reticulum stress, inflammation, and autophagy dysfunction. Mitochondria play a pivotal role in cholestatic liver injury by influencing hepatocyte apoptosis and inflammation. Recent findings linking bile acids to liver damage highlight new potential treatment targets for cholestatic liver injury.
Collapse
Affiliation(s)
- Xutao Li
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyin Ruan
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| |
Collapse
|
12
|
Geervliet E, Karkdijk E, Bansal R. Inhibition of intrahepatic monocyte recruitment by Cenicriviroc and extracellular matrix degradation by MMP1 synergistically attenuate liver inflammation and fibrogenesis in vivo. Sci Rep 2024; 14:16897. [PMID: 39043893 PMCID: PMC11266417 DOI: 10.1038/s41598-024-67926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
The chemokine (CCL)-chemokine receptor (CCR2) interaction, importantly CCL2-CCR2, involved in the intrahepatic recruitment of monocytes upon liver injury promotes liver fibrosis. CCL2-CCR2 antagonism using Cenicriviroc (CVC) showed promising results in several preclinical studies. Unfortunately, CVC failed in phase III clinical trials due to lack of efficacy to treat liver fibrosis. Lack of efficacy could be attributed to the fact that macrophages are also involved in disease resolution by secreting matrix metalloproteinases (MMPs) to degrade extracellular matrix (ECM), thereby inhibiting hepatic stellate cells (HSCs) activation. HSCs are the key pathogenic cell types in liver fibrosis that secrete excessive amounts of ECM causing liver stiffening and liver dysfunction. Knowing the detrimental role of intrahepatic monocyte recruitment, ECM, and HSCs activation during liver injury, we hypothesize that combining CVC and MMP (MMP1) could reverse liver fibrosis. We evaluated the effects of CVC, MMP1 and CVC + MMP1 in vitro and in vivo in CCl4-induced liver injury mouse model. We observed that CVC + MMP1 inhibited macrophage migration, and TGF-β induced collagen-I expression in fibroblasts in vitro. In vivo, MMP1 + CVC significantly inhibited normalized liver weights, and improved liver function without any adverse effects. Moreover, MMP1 + CVC inhibited monocyte infiltration and liver inflammation as confirmed by F4/80 and CD11b staining, and TNFα gene expression. MMP1 + CVC also ameliorated liver fibrogenesis via inhibiting HSCs activation as assessed by collagen-I staining and collagen-I and α-SMA mRNA expression. In conclusion, we demonstrated that a combination therapeutic approach by combining CVC and MMP1 to inhibit intrahepatic monocyte recruitment and increasing collagen degradation respectively ameliorate liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Eline Geervliet
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Carre 4419, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Esmee Karkdijk
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Carre 4419, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Carre 4419, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
13
|
Xue Y, Zhu W, Qiao F, Yang Y, Qiu J, Zou C, Gao Y, Zhang X, Li M, Shang Z, Gao Y, Huang L. Ba-Qi-Rougan formula alleviates hepatic fibrosis by suppressing hepatic stellate cell activation via the MSMP/CCR2/PI3K pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118169. [PMID: 38621463 DOI: 10.1016/j.jep.2024.118169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Ba-Qi-Rougan formula (BQRGF) is a traditional and effective compound prescription from Traditional Chinese Medicine (TCM) utilized in treating hepatic fibrosis (HF). AIM OF THE STUDY We aimed to evaluate the therapeutic efficacy of BQRGF on HF and explore the underlying mechanisms of action. MATERIALS AND METHODS UPLC-Q-TOF-MS technology was employed to identify the material basis of BQRGF. Mice with carbon tetrachloride (CCl4)-induced HF received BQRGF at three doses (3.87, 7.74, and 15.48 g/kg per day). We examined serum and liver biochemical indicators and liver histology to assess the therapeutic impact. Primary mouse cells were isolated and utilized for experimental analysis. MSMP expression levels were examined in vitro and in vivo experimental models, including human and mouse tissue. Furthermore, lentivirus and small interfering RNA (siRNA) transfections were employed to manipulate microseminoprotein (MSMP) expression in LO2 cells (human normal liver cells). These manipulated LO2 cells were then co-cultured with LX2 human hepatic stellate cells (HSCs). Through the modulation of MSMP expression in co-cultured cells, administering recombinant MSMP (rMSMP) with or without BQRGF-medicated serum, and using specific pathway inhibitors or agonists in LX2 cells, we elucidated the underlying mechanisms. RESULTS A total of 48 compounds were identified from BQRGF, with 12 compounds being absorbed into the bloodstream and 9 compounds being absorbed into the liver. Four weeks of BQRGF treatment in the HF mouse model led to significant improvements in biochemical and molecular assays and histopathology, particularly in the medium and high-dose groups. These improvements included a reduction in the level of liver injury and fibrosis-related factors. MSMP levels were elevated in human and mouse fibrotic liver tissues, and this increase was mitigated in HF mice treated with BQRGF. Moreover, primary cells and co-culture studies revealed that BQRGF reduced MSMP expression, decreased the expression of the hepatic stellate cell (HSC) activation markers, and suppressed critical phosphorylated protein levels in the CCR2/PI3K/AKT pathway. These findings were further validated using CCR2/PI3K/AKT signaling inhibitors and agonists in MSMP-activated LX2 cells. CONCLUSIONS Collectively, our results suggest that BQRGF combats HF by diminishing MSMP levels and inhibiting MSMP-induced HSC activation through the CCR2/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yan Xue
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wanchun Zhu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Fengjie Qiao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yilan Yang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiaohao Qiu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chen Zou
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yating Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhi Shang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lingying Huang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
14
|
Yu Q, Song L. Unveiling the role of ferroptosis in the progression from NAFLD to NASH: recent advances in mechanistic understanding. Front Endocrinol (Lausanne) 2024; 15:1431652. [PMID: 39036052 PMCID: PMC11260176 DOI: 10.3389/fendo.2024.1431652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent and significant global public health issue. Nonalcoholic steatohepatitis (NASH) represents an advanced stage of NAFLD in terms of pathology. However, the intricate mechanisms underlying the progression from NAFLD to NASH remain elusive. Ferroptosis, characterized by iron-dependent cell death and distinguished from other forms of cell death based on morphological, biochemical, and genetic criteria, has emerged as a potential participant with a pivotal role in driving NAFLD progression. Nevertheless, its precise mechanism remains poorly elucidated. In this review article, we comprehensively summarize the pathogenesis of NAFLD/NASH and ferroptosis while highlighting recent advances in understanding the mechanistic involvement of ferroptosis in NAFLD/NASH.
Collapse
Affiliation(s)
- Qian Yu
- Laboratory Medical Department, Zigong Fourth People’s Hospital, Zigong, China
| | | |
Collapse
|
15
|
Hu X, Hu C, Liao L, Zhang H, Xu X, Xiang J, Lu G, Jia X, Xu H, Gong W. Isoliquiritigenin limits inflammasome activation of macrophage via docking into Syk to alleviate murine non-alcoholic fatty liver disease. Scand J Immunol 2024; 100:e13371. [PMID: 38671579 DOI: 10.1111/sji.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Isoliquiritigenin (ISL) is a chalcone-type flavonoid derived from the root of licorice with antioxidant, anti-inflammatory, anti-tumour and neuroprotective properties. ISL has been proven to downregulate the productions of IL-1β, TNF-α and IL-6 by macrophages. However, detailed molecular mechanisms of this modulation remain elusive. Here, ISL suppressed Syk phosphorylation and CD80, CD86, IL-1β, TNF-α and IL-6 expressions in lipopolysaccharide-stimulated macrophages ex vivo. ApoC3-transgenic (ApoC3TG) mice had more activated macrophages. ISL was also able to downregulate the inflammatory activities of macrophages from ApoC3TG mice. Administration of ISL inhibited Syk activation and inflammatory activities of macrophages in ApoC3TG mice in vivo. The treatment of ISL further alleviated MCD-induced non-alcoholic fatty liver disease (NAFLD) in wild-type and ApoC3TG mice, accompanied by less recruitment and activation of liver macrophages. Due to the inhibition of Syk phosphorylation, ISL-treated macrophages displayed less production of cytoplasmic ROS, NLRP3, cleaved-GSDMD and cleaved-IL-1β, suggesting less inflammasome activation. Finally, the molecular docking study demonstrated that ISL bound to Syk directly with the Kd of 1.273 × 10-8 M. When the Syk expression was knocked down by its shRNA, the inhibitory effects of ISL on activated macrophages disappeared, indicating that Syk was at least one of key docking-molecules of ISL. Collectively, ISL could alleviate MCD-induced NAFLD in mice involved with the inhibition of macrophage inflammatory activity by the blockade of Syk-induced inflammasome activation.
Collapse
Affiliation(s)
- Xiangyu Hu
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Chunmiao Hu
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Liting Liao
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Huimin Zhang
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Xingmeng Xu
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jie Xiang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoqin Jia
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Hongwei Xu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Weijuan Gong
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, China
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| |
Collapse
|
16
|
Chui ZSW, Shen Q, Xu A. Current status and future perspectives of FGF21 analogues in clinical trials. Trends Endocrinol Metab 2024; 35:371-384. [PMID: 38423900 DOI: 10.1016/j.tem.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Recent advances in fibroblast growth factor 21 (FGF21) biology and pharmacology have led to the development of several long-acting FGF21 analogues and antibody-based mimetics now in various phases of clinical trials for the treatment of obesity-related metabolic comorbidities. The efficacy of these FGF21 analogues/mimetics on glycaemic control and weight loss is rather mild and inconsistent; nevertheless, several promising therapeutic benefits have been reproducibly observed in most clinical studies, including amelioration of dyslipidaemia (particularly hypertriglyceridaemia) and hepatic steatosis, reduction of biomarkers of liver fibrosis and injury, and resolution of metabolic dysfunction-associated steatohepatitis (MASH). Evidence is emerging that combination therapy with FGF21 analogues and other hormones (such as glucagon-like peptide 1; GLP-1) can synergise their pharmacological benefits, thus maximising the therapeutic efficacy for obesity and its comorbidities.
Collapse
Affiliation(s)
- Zara Siu Wa Chui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China; School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Qing Shen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
17
|
Qiu S, Liu J, Chen J, Li Y, Bu T, Li Z, Zhang L, Sun W, Zhou T, Hu W, Yang G, Yuan L, Duan Y, Xing C. Targeted delivery of MerTK protein via cell membrane engineered nanoparticle enhances efferocytosis and attenuates atherosclerosis in diabetic ApoE -/- Mice. J Nanobiotechnology 2024; 22:178. [PMID: 38614985 PMCID: PMC11015613 DOI: 10.1186/s12951-024-02463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Clearance of apoptotic cells by efferocytosis is crucial for prevention of atherosclerosis progress, and impaired efferocytosis contributes to the aggravated atherosclerosis. RESULTS In this study, we found that diabetic ApoE-/- mice showed aggravated atherosclerosis as hyperglycemia damaged the efferocytosis capacity at least partially due to decreased expression of Mer tyrosine kinase (MerTK) on macrophages. To locally restore MerTK in the macrophages in the plaque, hybrid membrane nanovesicles (HMNVs) were thus developed. Briefly, cell membrane from MerTK overexpressing RAW264.7 cell and transferrin receptor (TfR) overexpressing HEK293T cell were mixed with DOPE polymers to produce nanovesicles designated as HMNVs. HMNVs could fuse with the recipient cell membrane and thus increased MerTK in diabetic macrophages, which in turn restored the efferocytosis capacity. Upon intravenous administration into diabetic ApoE-/- mice, superparamagnetic iron oxide nanoparticles (SMN) decorated HMNVs accumulated at the aorta site significantly under magnetic navigation, where the recipient macrophages cleared the apoptotic cells efficiently and thus decreased the inflammation. CONCLUSIONS Our study indicates that MerTK decrease in macrophages contributes to the aggravated atherosclerosis in diabetic ApoE-/- mice and regional restoration of MerTK in macrophages of the plaque via HMNVs could be a promising therapeutic approach.
Collapse
Affiliation(s)
- Shuo Qiu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Jiahan Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Jianmei Chen
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yangni Li
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Te Bu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Zhelong Li
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Liang Zhang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Wenqi Sun
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Tian Zhou
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Wei Hu
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China
| | - Guodong Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China.
| | - Yunyou Duan
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China.
| | - Changyang Xing
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, No.569, Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
18
|
Lan T, Chen B, Hu X, Cao J, Chen S, Ding X, Li S, Fu Y, Liu H, Luo D, Rong X, Guo J. Tianhuang formula ameliorates liver fibrosis by inhibiting CCL2-CCR2 axis and MAPK/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117516. [PMID: 38042390 DOI: 10.1016/j.jep.2023.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the progression of chronic liver diseases, liver fibrosis is a reversible pathophysiologic event for liver diseases prognosis and risk of cirrhosis. Liver injury factors of different etiologies mediate this process. There is still a lack of effective medications for treating liver fibrosis. Additionally, the ameliorative effects of traditional herbs on liver fibrosis have been commonly reported. Tianhuang formula (THF) is a drug combination consisting of 2 traditional Chinese herbs, which has been showing significant improvement in metabolic liver diseases. However, the hepatoprotective effect and mechanism of THF in ameliorating liver fibrosis are still unclear. AIM OF THE STUDY This study aimed to investigate the effects of THF on carbon tetrachloride (CCl4)-induced and methionine-choline-deficient (MCD) diet-induced liver fibrosis model and to reveal the potential mechanisms. It can provide experimental evidence for THF as a therapeutic candidate for liver fibrosis. MATERIALS AND METHODS In this study, CCl4-induced mice were treated with THF (80 mg/kg, 160 mg/kg) or Fuzheng Huayu (FZHY) capsules (4.8 g/kg) for 6 weeks. MCD-induced mice received the same doses of THF or FZHY for 4 weeks. FZHY is used as a comparative study in these two models. Following that, using kit reagents detected changes in relevant serum and liver biochemical indicators. Histological changes in mouse liver were measured by staining of H&E and Sirius Red. The markers expression of liver fibrosis and inflammation were detected using qRT-PCR, western blotting and immunohistochemical staining analysis. The potential regulatory mechanism of THF to ameliorate liver fibrosis was performed by RNA-sequencing analysis. Finally, the analysis results were verified by immunofluorescence co-staining, qRT-PCR and western blotting. RESULTS Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic triglyceride (TG) levels in CCl4 and MCD-induced liver fibrosis mice were significantly improved after THF treatment. Meanwhile, the expression of fibrosis and inflammation markers were significantly suppressed. Furthermore, THF downregulated the expression of the macrophage marker CD68. According to RNA-sequencing analysis, we found the CCL2-CCR2 axis and MAPK/NF-κB as the potential signaling pathway for THF against liver fibrosis. CONCLUSION This study revealed that THF ameliorated liver injury, inflammation and fibrotic process by inhibiting CCL2-CCR2 axis and its downstream MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tian Lan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Bo Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Xianzhe Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Jiafan Cao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Shiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xin Ding
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Shengwen Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Yanfang Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Huanle Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Zhang L, Liu M, Sun Q, Cheng S, Chi Y, Zhang J, Wang B, Zhou L, Zhao J. Engineering M2 type macrophage-derived exosomes for autoimmune hepatitis immunotherapy via loading siRIPK3. Biomed Pharmacother 2024; 171:116161. [PMID: 38244330 DOI: 10.1016/j.biopha.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive liver disease mediated by the immune system that involves an imbalance in pro-inflammatory and regulatory mechanisms including regulatory T cells (Tregs), T helper 17 (Th17) cells, Th1, macrophages, and many other immune cells. Current steroid therapy for AIH has significant systemic side effects and is poorly tolerated by some individuals. Therefore, there is an urgent need for alternative treatments. Maintaining homeostasis in macrophage differentiation and activation is crucial for regulating immune responses in hepatitis. In this study, we loaded small interfering RNA (siRNA) targeting receptor-interacting protein kinase 3 (RIPK3) into M2-type macrophage-derived exosomes (M2 Exos) to create functionalized exosomes called M2 Exos/siRIPK3. These exosomes demonstrated a natural ability to target the liver in mice, as they were efficiently taken up by hepatic macrophages and showed significant and stable accumulation. M2 Exos/siRIPK3 effectively mitigated immune-mediated hepatitis by suppressing the expression of RIPK3, resulting in a reduced release of pro-inflammatory cytokines and chemokines in both liver tissues and serum. Additionally, M2 Exos/siRIPK3 exhibited immunomodulatory effects, as its administration resulted in a decreased proportion of hepatic and splenic Th17 cells, along with an increased ratio of Tregs. Overall, this study suggests that loading small molecule drugs onto M2 Exos could be a promising approach for developing immunomodulators that specifically target liver macrophages to treat AIH. This strategy has the potential to provide a safer and more effective alternative to current therapy for AIH patients.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Qiu Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Shuqin Cheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Yirong Chi
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China.
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China.
| |
Collapse
|
20
|
Saldarriaga OA, Wanninger TG, Arroyave E, Gosnell J, Krishnan S, Oneka M, Bao D, Millian DE, Kueht ML, Moghe A, Jiao J, Sanchez JI, Spratt H, Beretta L, Rao A, Burks JK, Stevenson HL. Heterogeneity in intrahepatic macrophage populations and druggable target expression in patients with steatotic liver disease-related fibrosis. JHEP Rep 2024; 6:100958. [PMID: 38162144 PMCID: PMC10757256 DOI: 10.1016/j.jhepr.2023.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/18/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2024] Open
Abstract
Background & Aims Clinical trials for reducing fibrosis in steatotic liver disease (SLD) have targeted macrophages with variable results. We evaluated intrahepatic macrophages in patients with SLD to determine if activity scores or fibrosis stages influenced phenotypes and expression of druggable targets, such as CCR2 and galectin-3. Methods Liver biopsies from controls or patients with minimal or advanced fibrosis were subject to gene expression analysis using nCounter to determine differences in macrophage-related genes (n = 30). To investigate variability among individual patients, we compared additional biopsies by staining them with multiplex antibody panels (CD68/CD14/CD16/CD163/Mac387 or CD163/CCR2/galectin-3/Mac387) followed by spectral imaging and spatial analysis. Algorithms that utilize deep learning/artificial intelligence were applied to create cell cluster plots, phenotype profile maps, and to determine levels of protein expression (n = 34). Results Several genes known to be pro-fibrotic (e.g. CD206, TREM2, CD163, and ARG1) showed either no significant differences or significantly decreased with advanced fibrosis. Although marked variability in gene expression was observed in individual patients with cirrhosis, several druggable targets and their ligands (e.g. CCR2, CCR5, CCL2, CCL5, and LGALS3) were significantly increased when compared to patients with minimal fibrosis. Antibody panels identified populations that were significantly increased (e.g. Mac387+), decreased (e.g. CD14+), or enriched (e.g. interactions of Mac387) in patients that had progression of disease or advanced fibrosis. Despite heterogeneity in patients with SLD, several macrophage phenotypes and druggable targets showed a positive correlation with increasing NAFLD activity scores and fibrosis stages. Conclusions Patients with SLD have markedly varied macrophage- and druggable target-related gene and protein expression in their livers. Several patients had relatively high expression, while others were like controls. Overall, patients with more advanced disease had significantly higher expression of CCR2 and galectin-3 at both the gene and protein levels. Impact and implications Appreciating individual differences within the hepatic microenvironment of patients with SLD may be paramount to developing effective treatments. These results may explain why such a small percentage of patients have responded to macrophage-targeting therapies and provide additional support for precision medicine-guided treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Omar A. Saldarriaga
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Timothy G. Wanninger
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Joseph Gosnell
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Santhoshi Krishnan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Morgan Oneka
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Bao
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel E. Millian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael L. Kueht
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Akshata Moghe
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jingjing Jiao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heidi Spratt
- Department of Biostatistics and Data Science, University of Texas Medical Branch, Galveston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Departmen of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Rice University, Ann Arbor, MI, USA
| | - Jared K. Burks
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
21
|
Boran T, Zengin OS, Seker Z, Gunaydin Akyildiz A, Oztas E, Özhan G. The cyclin-dependent kinase inhibitor abemaciclib-induced hepatotoxicity: Insight on the molecular mechanisms in HepG2/THP-1 co-culture model. Toxicol Lett 2024; 391:1-12. [PMID: 37992977 DOI: 10.1016/j.toxlet.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Drug-induced liver injury (DILI) is one of the widespread causes of liver injury and immune system plays important role. Abemaciclib (ABE) is a cyclin-dependent kinase inhibitor used as monotherapy or combination therapy in the treatment of breast cancer. Like other kinase inhibitors, the underlying mechanisms of ABE-induced hepatotoxicity are not completely known yet. In the current study, hepatotoxicity of ABE was evaluated with HepG2/THP-1 co-culture model which has been developed in recent years for the evaluation of DILI potential. Following ABE treatment, oxidative stress, mitochondrial damage, cytokine secretion levels, apoptotic/necrotic cell death were determined. According to our results, ROS production along with GSH depletion was observed in HepG2 cells after ABE treatment. ABE promoted secretion of pro-inflammatory mediators (TNF-α and MCP-1) and declined anti-inflammatory cytokine IL-10 release. Besides, NFKβ and JNK1 protein expression levels increased following ABE treatment. ABE enhanced intracellular calcium levels, induced early apoptotic and necrotic cell deaths in HepG2 cells. Furthermore, the changes in some mitochondrial parameters including a reducement in intracellular ATP levels and complex V activity; hyperpolarized mitochondrial membrane potential and enhanced mitochondrial ROS levels were observed, whereas mitochondrial mass did not show any differences after ABE treatments. Therefore, ABE-induced hepatotoxic effects is probably via oxidative stress, inflammatory response and necrotic cell death rather than direct mitochondrial toxicity. In conclusion; the study makes a significant contribution to strengthening the infrastructure we have on in vitro toxicity mechanism evaluations, which are the basis of preclinical toxicity studies.
Collapse
Affiliation(s)
- Tugce Boran
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey; Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34500 Istanbul, Turkey
| | - Ozge Sultan Zengin
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey
| | - Zehra Seker
- Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34093 Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34093 Istanbul, Turkey
| | - Ezgi Oztas
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey.
| |
Collapse
|
22
|
Cates WT, Denbeigh JM, Salvagno RT, Kakar S, van Wijnen AJ, Eaton C. Inflammatory Markers Involved in the Pathogenesis of Dupuytren's Contracture. Crit Rev Eukaryot Gene Expr 2024; 34:1-35. [PMID: 38912961 DOI: 10.1615/critreveukaryotgeneexpr.2024052889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dupuytren's disease is a common fibroproliferative disease that can result in debilitating hand deformities. Partial correction and return of deformity are common with surgical or clinical treatments at present. While current treatments are limited to local procedures for relatively late effects of the disease, the pathophysiology of this connective tissue disorder is associated with both local and systemic processes (e.g., fibrosis, inflammation). Hence, a better understanding of the systemic circulation of Dupuytren related cytokines and growth factors may provide important insights into disease progression. In addition, systemic biomarker analysis could yield new concepts for treatments of Dupuytren that attenuate circulatory factors (e.g., anti-inflammatory agents, neutralizing antibodies). Progress in the development of any disease modifying biologic treatment for Dupuytren has been hampered by the lack of clinically useful biomarkers. The characterization of nonsurgical Dupuytren biomarkers will permit disease staging from diagnostic and prognostic perspectives, as well as allows evaluation of biologic responses to treatment. Identification of such markers may transcend their use in Dupuytren treatment, because fibrotic biological processes fundamental to Dupuytren are relevant to fibrosis in many other connective tissues and organs with collagen-based tissue compartments. There is a wide range of potential Dupuytren biomarker categories that could be informative, including disease determinants linked to genetics, collagen metabolism, as well as immunity and inflammation (e.g., cytokines, chemokines). This narrative review provides a broad overview of previous studies and emphasizes the importance of inflammatory mediators as candidate circulating biomarkers for monitoring Dupuytren's disease.
Collapse
Affiliation(s)
- William T Cates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
23
|
Babu S, Ranajit SK, Pattnaik G, Ghosh G, Rath G, Kar B. An Insight into Different Experimental Models used for Hepatoprotective Studies: A Review. Curr Drug Discov Technol 2024; 21:e191223224660. [PMID: 39206705 DOI: 10.2174/0115701638278844231214115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/04/2024]
Abstract
Numerous factors, including exposure to harmful substances, drinking too much alcohol, contracting certain hepatitis serotypes, and using specific medicines, contribute to the development of liver illnesses. Lipid peroxidation and other forms of oxidative stress are the main mechanisms by which hepatotoxic substances harm liver cells. Pathological changes in the liver include a rise in the levels of blood serum, a decrease in antioxidant enzymes, as well as the formation of free radical radicals. It is necessary to find pharmaceutical alternatives to treat liver diseases to increase their efficacy and decrease their toxicity. For the development of new therapeutic medications, a greater knowledge of primary mechanisms is required. In order to mimic human liver diseases, animal models are developed. Animal models have been used for several decades to study the pathogenesis of liver disorders and related toxicities. For many years, animal models have been utilized to investigate the pathophysiology of liver illness and associated toxicity. The animal models are created to imitate human hepatic disorders. This review enlisted numerous hepatic damage in vitro and in vivo models using various toxicants, their probable biochemical pathways and numerous metabolic pathways via oxidative stressors, different serum biomarkers enzymes are discussed, which will help to identify the most accurate and suitable model to test any plant preparations to check and evaluate their hepatoprotective properties.
Collapse
Affiliation(s)
- Sucharita Babu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Santosh K Ranajit
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| |
Collapse
|
24
|
Di X, Chen J, Li Y, Wang M, Wei J, Li T, Liao B, Luo D. Crosstalk between fibroblasts and immunocytes in fibrosis: From molecular mechanisms to clinical trials. Clin Transl Med 2024; 14:e1545. [PMID: 38264932 PMCID: PMC10807359 DOI: 10.1002/ctm2.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The impact of fibroblasts on the immune system provides insight into the function of fibroblasts. In various tissue microenvironments, multiple fibroblast subtypes interact with immunocytes by secreting growth factors, cytokines, and chemokines, leading to wound healing, fibrosis, and escape of cancer immune surveillance. However, the specific mechanisms involved in the fibroblast-immunocyte interaction network have not yet been fully elucidated. MAIN BODY AND CONCLUSION Therefore, we systematically reviewed the molecular mechanisms of fibroblast-immunocyte interactions in fibrosis, from the history of cellular evolution and cell subtype divisions to the regulatory networks between fibroblasts and immunocytes. We also discuss how these communications function in different tissue and organ statuses, as well as potential therapies targeting the reciprocal fibroblast-immunocyte interplay in fibrosis. A comprehensive understanding of these functional cells under pathophysiological conditions and the mechanisms by which they communicate may lead to the development of effective and specific therapies targeting fibrosis.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jiawei Chen
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Menghua Wang
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Deyi Luo
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
25
|
Wakamatsu S, Jojima T, Hashiguchi M, Kishi H, Niitani T, Sakurai S, Iijima T, Kogai T, Tomaru T, Usui I, Aso Y. Inhibition of IL-33 signaling ameliorate hepatic fibrosis with decreasing MCP-1 in a mouse model of diabetes and non-alcoholic steatohepatitis; comparison for luseogliflozin, an SGLT2 inhibitor. J Diabetes Complications 2024; 38:108650. [PMID: 38035640 DOI: 10.1016/j.jdiacomp.2023.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasing globally, and seeking therapeutic molecule targets is urgent. Several studies have demonstrated that IL-33 plays an important role in the progression of Non-alcoholic steatohepatitis (NASH) with fibrosis and the proliferation of hepatocellular carcinoma (HCC). However, whether the inhibition of IL-33 signaling prevents NAFLD from progressing to NASH and HCC has not been clarified. We investigated the effects of a novel antibody, IL-33RAb, and luseogliflozin, a SGLT2 inhibitor, when administered to a model mouse for NASH and HCC, and their effects were compared to investigate the mechanisms of how IL-33 is involved in the pathogenesis of NASH progression. Compared with the positive control of luseogliflozin, inhibition of IL-33 signaling ameliorated decreasing hepatic fibrosis via decreasingαSMA and MCP-1, and also partially suppressed the progression of the HCC cell line in in vitro experiments. These findings suggest that inhibition of IL-33 possibly prevents progression from NASH to HCC, and their effect may be a newly arrived therapeutic agent.
Collapse
Affiliation(s)
- Sho Wakamatsu
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Teruo Jojima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Masaaki Hashiguchi
- Department of Cell Biology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5, Tokyo 113-8602, Japan
| | - Haruka Kishi
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takafumi Niitani
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Shintaro Sakurai
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Toshie Iijima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takahiko Kogai
- Department of Infection Control and Clinical Laboratory Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takuya Tomaru
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
26
|
Ruck L, Wiegand S, Kühnen P. Relevance and consequence of chronic inflammation for obesity development. Mol Cell Pediatr 2023; 10:16. [PMID: 37957462 PMCID: PMC10643747 DOI: 10.1186/s40348-023-00170-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Increasing prevalence of morbid obesity accompanied by comorbidities like type 2 diabetes mellitus (T2DM) led to a demand for improving therapeutic strategies and pharmacological intervention options. Apart from genetics, inflammation processes have been hypothesized to be of importance for the development of obesity and related aspects like insulin resistance. MAIN TEXT Within this review, we provide an overview of the intricate interplay between chronic inflammation of the adipose tissue and the hypothalamus and the development of obesity. Further understanding of this relationship might improve the understanding of the underlying mechanism and may be of relevance for the establishment of new treatment strategies.
Collapse
Affiliation(s)
- Lisa Ruck
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susanna Wiegand
- Abteilung Interdisziplinär, Sozial-Pädiatrisches Zentrum, Charité Universitätsmedizin, Berlin, Germany
| | - Peter Kühnen
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
27
|
Jiang S, Su H. Cellular crosstalk of mesangial cells and tubular epithelial cells in diabetic kidney disease. Cell Commun Signal 2023; 21:288. [PMID: 37845726 PMCID: PMC10577991 DOI: 10.1186/s12964-023-01323-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage renal disease and imposes a heavy global economic burden; however, little is known about its complicated pathophysiology. Investigating the cellular crosstalk involved in DKD is a promising avenue for gaining a better understanding of its pathogenesis. Nonetheless, the cellular crosstalk of podocytes and endothelial cells in DKD is better understood than that of mesangial cells (MCs) and renal tubular epithelial cells (TECs). As the significance of MCs and TECs in DKD pathophysiology has recently become more apparent, we reviewed the existing literature on the cellular crosstalk of MCs and TECs in the context of DKD to acquire a comprehensive understanding of their cellular communication. Insights into the complicated mechanisms underlying the pathophysiology of DKD would improve its early detection, care, and prognosis. Video Abstract.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
28
|
Kandhi R, Yeganeh M, Yoshimura A, Menendez A, Ramanathan S, Ilangumaran S. Hepatic stellate cell-intrinsic role of SOCS1 in controlling hepatic fibrogenic response and the pro-inflammatory macrophage compartment during liver fibrosis. Front Immunol 2023; 14:1259246. [PMID: 37860002 PMCID: PMC10582746 DOI: 10.3389/fimmu.2023.1259246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Hepatic stellate cells (HSC) become activated, differentiate to myofibroblasts and produce extracellular fibrillar matrix during liver fibrosis. The hepatic fibrogenic response is orchestrated by reciprocal interactions between HSCs and macrophages and their secreted products. SOCS1 can regulate several cytokines and growth factors implicated in liver fibrosis. Here we investigated the role of SOCS1 in regulating HSC activation. Methods Mice lacking SOCS1 in HSCs (Socs1ΔHSC) were generated by crossing Socs1fl/fl and LratCre mice. Liver fibrosis was induced by carbon tetrachloride and evaluated by Sirius red staining, hydroxyproline content and immunostaining of myofibroblasts. Gene expression of pro-fibrogenic factors, cytokines, growth factors and chemokines were quantified by RT-qPCR. The phenotype and the numbers of intrahepatic leukocyte subsets were studied by flow cytometry. The impact of fibrosis on the development of diethyl nitrosamine-induced hepatocellular carcinoma was evaluated. Results Socs1ΔHSC mice developed more severe liver fibrosis than control Socs1fl/fl mice that was characterized by increased collagen deposition and myofibroblast differentiation. Socs1ΔHSC mice showed a significant increase in the expression of smooth muscle actin, collagens, matrix metalloproteases, cytokines, growth factors and chemokines in the liver following fibrosis induction. The fibrotic livers of Socs1ΔHSC mice displayed heightened inflammatory cell infiltration with increased proportion and numbers of Ly6ChiCCR2+ pro-inflammatory macrophages. This macrophage population contained elevated numbers of CCR2+CX3CR1+ cells, suggesting impaired transition towards restorative macrophages. Fibrosis induction following exposure to diethyl nitrosamine resulted in more numerous and larger liver tumor nodules in Socs1ΔHSC mice than in Socs1fl/fl mice. Discussion Our findings indicate that (i) SOCS1 expression in HSCs is a critical to control liver fibrosis and development of hepatocaellular carcinoma, and (ii) attenuation of HSC activation by SOCS1 regulates pro-inflammatory macrophage recruitment and differentiation during liver fibrosis.
Collapse
Affiliation(s)
- Rajani Kandhi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mehdi Yeganeh
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
29
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
30
|
Pozzi G, Carubbi C, Cerreto GM, Scacchi C, Cortellazzi S, Vitale M, Masselli E. Functionally Relevant Cytokine/Receptor Axes in Myelofibrosis. Biomedicines 2023; 11:2462. [PMID: 37760903 PMCID: PMC10525259 DOI: 10.3390/biomedicines11092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Giacomo Maria Cerreto
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Chiara Scacchi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Samuele Cortellazzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Elena Masselli
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| |
Collapse
|
31
|
Kotulkar M, Robarts DR, Lin-Rahardja K, McQuillan T, Surgnier J, Tague SE, Czerwinski M, Dennis KL, Pritchard MT. Hyaluronan synthesis inhibition normalizes ethanol-enhanced hepatic stellate cell activation. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1544-1559. [PMID: 37332093 DOI: 10.1111/acer.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Chronic ethanol overconsumption promotes alcohol-associated liver disease (ALD), characterized by hepatocyte injury, inflammation, hepatic stellate cell (HSC) activation, and fibrosis. Hyaluronan (HA) concentration is greater in livers and blood from advanced ALD patients than patients with advanced non-ALD. In the liver, HSCs are the major HA producers. The relationship between ethanol, HA, and HSC activation is incompletely understood. Thus, here, we tested the hypothesis that ethanol enhances HSC activation in a HA-dependent manner. METHODS Liver tissue microarrays (TMAs) containing steatotic livers from donors with or without a history of alcohol consumption were used to measure HA and collagen content. Mice were fed a moderate (2%, v/v) ethanol-containing diet or pair-fed control diet for 2 days, after which they were given a single carbon tetrachloride (CCl4 ) injection. To inhibit HA synthesis, we provided 4-methylumbelliferone (4MU) daily. We used LX2 cells, a human HSC cell line, to determine the impact ethanol had on LPS responses, with or without concurrent 4MU exposure. RESULTS CCl4 induced liver injury, but it did not differ between ethanol or control diet fed mice with or without 4MU treatment. Ethanol feeding enhanced CCl4 -induced hepatic HA content, which was paralleled by HA synthase (Has)2 transcript abundance; 4MU treatment normalized both. Consistently, HSC activation, assessed by measuring αSMA mRNA and protein, was induced by CCl4 exposure, enhanced by ethanol feeding, and normalized by 4MU. Hepatic transcripts, but not protein, for Ccl2 were enhanced by ethanol feeding and normalized by 4MU exposure. Finally, ethanol-exposed LX2 cells made more LPS-stimulated CCL2 mRNA and protein than cells not exposed to ethanol; 4MU prevented this. CONCLUSION These data show that ethanol augments HSC activation through HA synthesis and enhances hepatic profibrogenic features. Therefore, targeting HSC HA production could potentially attenuate liver disease in ALD patients.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kristi Lin-Rahardja
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tara McQuillan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jordan Surgnier
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sarah E Tague
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Katie L Dennis
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- The Liver Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
32
|
Niranjan S, Phillips BE, Giannoukakis N. Uncoupling hepatic insulin resistance - hepatic inflammation to improve insulin sensitivity and to prevent impaired metabolism-associated fatty liver disease in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1193373. [PMID: 37396181 PMCID: PMC10313404 DOI: 10.3389/fendo.2023.1193373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease clinically-characterized as acute and chronic hyperglycemia. It is emerging as one of the common conditions associated with incident liver disease in the US. The mechanism by which diabetes drives liver disease has become an intense topic of discussion and a highly sought-after therapeutic target. Insulin resistance (IR) appears early in the progression of type 2 diabetes (T2D), particularly in obese individuals. One of the co-morbid conditions of obesity-associated diabetes that is on the rise globally is referred to as non-alcoholic fatty liver disease (NAFLD). IR is one of a number of known and suspected mechanism that underlie the progression of NAFLD which concurrently exhibits hepatic inflammation, particularly enriched in cells of the innate arm of the immune system. In this review we focus on the known mechanisms that are suspected to play a role in the cause-effect relationship between hepatic IR and hepatic inflammation and its role in the progression of T2D-associated NAFLD. Uncoupling hepatic IR/hepatic inflammation may break an intra-hepatic vicious cycle, facilitating the attenuation or prevention of NAFLD with a concurrent restoration of physiologic glycemic control. As part of this review, we therefore also assess the potential of a number of existing and emerging therapeutic interventions that can target both conditions simultaneously as treatment options to break this cycle.
Collapse
Affiliation(s)
- Sitara Niranjan
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett E. Phillips
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Leung H, Xiong L, Ni Y, Busch A, Bauer M, Press AT, Panagiotou G. Impaired flux of bile acids from the liver to the gut reveals microbiome-immune interactions associated with liver damage. NPJ Biofilms Microbiomes 2023; 9:35. [PMID: 37286586 DOI: 10.1038/s41522-023-00398-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Currently, there is evidence that alteration in the gut ecosystem contributes to the development of liver diseases, however, the complex mechanisms involved are still unclear. We induced cholestasis in mice by bile duct ligation (BDL), mirroring the phenotype of a bile duct obstruction, to understand how gut microbiota alterations caused by an impaired flow of bile acid to the gut contribute to the pathogenesis and progression of liver disease. We performed longitudinal stool, heart, and liver sampling using mice receiving BDL and controls receiving sham operation (ShamOP). Shotgun metagenomics profiling using fecal samples taken before and on day 1, day 3, and day 7 after surgery was performed, and the cytokines and clinical chemistry profiles from heart blood, as well as the liver bile acids profile, were measured. The BDL surgery reshaped the microbiome of mice, resulting in highly distinct characteristics compared to the ShamOP. Our analysis of the microbiome pathways and ECs revealed that BDL reduces the production of hepatoprotective compounds in the gut, such as biotin, spermidine, arginine, and ornithine, which were negatively associated with inflammatory cytokines (IL-6, IL-23, MCP-1). The reduction of the functional potential of the gut microbiota in producing those hepatoprotective compounds is associated with the decrease of beneficial bacteria species from Anaerotruncus, Blautia, Eubacterium, and Lachnoclostridium genera, as well as the increase of disease-associated bacteria e.g., Escherichia coli and Entercoccus faecalis. Our findings advances our knowledge of the gut microbiome-bile acids-liver triangle, which may serve as a potential therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Howell Leung
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Ling Xiong
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
| | - Yueqiong Ni
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Anne Busch
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
- Friedrich Schiller University, Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany
| | - Michael Bauer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany
| | - Adrian T Press
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Jena, Germany.
- Friedrich Schiller University, Medical Faculty, Jena, Germany.
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.
- Friedrich Schiller University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany.
| |
Collapse
|
34
|
Claeys W, Van Hoecke L, Lernout H, De Nolf C, Van Imschoot G, Van Wonterghem E, Verhaege D, Castelein J, Geerts A, Van Steenkiste C, Vandenbroucke RE. Experimental hepatic encephalopathy causes early but sustained glial transcriptional changes. J Neuroinflammation 2023; 20:130. [PMID: 37248507 DOI: 10.1186/s12974-023-02814-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of liver cirrhosis, associated with high morbidity and mortality, for which no brain-targeted therapies exist at present. The interplay between hyperammonemia and inflammation is thought to drive HE development. As such, astrocytes, the most important ammonia-metabolizing cells in the brain, and microglia, the main immunomodulatory cells in the brain, have been heavily implicated in HE development. As insight into cellular perturbations driving brain pathology remains largely elusive, we aimed to investigate cell-type specific transcriptomic changes in the HE brain. In the recently established mouse bile duct ligation (BDL) model of HE, we performed RNA-Seq of sorted astrocytes and microglia at 14 and 28 days after induction. This revealed a marked transcriptional response in both cell types which was most pronounced in microglia. In both cell types, pathways related to inflammation and hypoxia, mechanisms commonly implicated in HE, were enriched. Additionally, astrocytes exhibited increased corticoid receptor and oxidative stress signaling, whereas microglial transcriptome changes were linked to immune cell attraction. Accordingly, both monocytes and neutrophils accumulated in the BDL mouse brain. Time-dependent changes were limited in both cell types, suggesting early establishment of a pathological phenotype. While HE is often considered a unique form of encephalopathy, astrocytic and microglial transcriptomes showed significant overlap with previously established gene expression signatures in other neuroinflammatory diseases like septic encephalopathy and stroke, suggesting common pathophysiological mechanisms. Our dataset identifies key molecular mechanisms involved in preclinical HE and provides a valuable resource for development of novel glial-directed therapeutic strategies.
Collapse
Affiliation(s)
- Wouter Claeys
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
- Liver Research Center Ghent, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Hannah Lernout
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- IBD Research Unit, Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
| | - Clint De Nolf
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
| | - Griet Van Imschoot
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Elien Van Wonterghem
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Daan Verhaege
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Jonas Castelein
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
- Liver Research Center Ghent, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, Antwerp University, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation, VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
35
|
Wang Z, Du K, Jin N, Tang B, Zhang W. Macrophage in liver Fibrosis: Identities and mechanisms. Int Immunopharmacol 2023; 120:110357. [PMID: 37224653 DOI: 10.1016/j.intimp.2023.110357] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Liver fibrosis is a chronic disease characterized by the deposition of extracellular matrix and continuous loss of tissues that perform liver functions. Macrophages are crucial modulators of innate immunity and play important roles in liver fibrogenesis. Macrophages comprise heterogeneous subpopulations that exhibit different cellular functions. Understanding the identity and function of these cells is essential for understanding the mechanisms of liver fibrogenesis. According to different definitions, liver macrophages are divided into M1/M2 macrophages or monocyte-derived macrophages/Kupffer cells. Classic M1/M2 phenotyping corresponds to pro- or anti-inflammatory effects, and, therefore, influences the degree of fibrosis in later phases. In contrast, the origin of the macrophages is closely associated with their replenishment and activation during liver fibrosis. These two classifications of macrophages depict the function and dynamics of liver-infiltrating macrophages. However, neither description properly elucidates the positive or negative role of macrophages in liver fibrosis. Critical tissue cells mediating liver fibrosis include hepatic stellate cells and hepatic fibroblasts, with hepatic stellate cells being of particular interest because of their close association with macrophages in liver fibrosis. However, the molecular biological descriptions of macrophages are inconsistent between mice and humans, warranting further investigations. In liver fibrosis, macrophages can secrete various pro-fibrotic cytokines, such as TGF-β, Galectin-3 and interleukins (ILs), and fibrosis-inhibiting cytokines, such as IL10. These different secretions may be associated with the specific identity and spatiotemporal characteristics of macrophages. Furthermore, during fibrosis dissipation, macrophages may degrade extracellular matrix by secreting matrix metalloproteinases (MMPs). Notably, using macrophages as therapeutic targets in liver fibrosis has been explored. The current therapeutic approaches for liver fibrosis can by categorized as follows: treatment with macrophage-related molecules and macrophage infusion therapy. Although there have been limited studies, macrophages have shown reliable potential for liver fibrosis treatment. In this review, we focu on the identity and function of macrophages and their relationship to the progression and regression of liver fibrosis.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Emergency Medicine Center, Jinhua Municipal Central Hospital, Zhejiang, China.
| | - Kailei Du
- Dongyang Peoples hospital, Zhejiang, China
| | - Nake Jin
- Ningbo Hangzhou Bay Hospital, Zhejiang, China
| | - Biao Tang
- Jinhua Municipal Central Hospital, Zhejiang, China
| | - Wenwu Zhang
- Department of Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
36
|
Guo Y, Zhao C, Dai W, Wang B, Lai E, Xiao Y, Tang C, Huang Z, Gao J. C-C motif chemokine receptor 2 inhibition reduces liver fibrosis by restoring the immune cell landscape. Int J Biol Sci 2023; 19:2572-2587. [PMID: 37215993 PMCID: PMC10197881 DOI: 10.7150/ijbs.83530] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
The accumulation of extracellular matrix (ECM) proteins in the liver leads to liver fibrosis and end-stage liver cirrhosis. C-C motif chemokine receptor 2 (CCR2) is an attractive target for treating liver fibrosis. However, limited investigations have been conducted to explore the mechanism by which CCR2 inhibition reduces ECM accumulation and liver fibrosis, which is the focus of this study. Liver injury and liver fibrosis were induced by carbon tetrachloride (CCl4) in wild-type mice and Ccr2 knockout (Ccr2-/-) mice. CCR2 was upregulated in murine and human fibrotic livers. Pharmacological CCR2 inhibition with cenicriviroc (CVC) reduced ECM accumulation and liver fibrosis in prevention and treatment administration. In single-cell RNA sequencing (scRNA-seq), CVC was demonstrated to alleviate liver fibrosis by restoring the macrophage and neutrophil landscape. CVC administration and CCR2 deletion can also inhibit the hepatic accumulation of inflammatory FSCN1+ macrophages and HERC6+ neutrophils. Pathway analysis indicated that the STAT1, NFκB, and ERK signaling pathways might be involved in the antifibrotic effects of CVC. Consistently, Ccr2 knockout decreased phosphorylated STAT1, NFκB, and ERK in the liver. In vitro, CVC could transcriptionally suppress crucial profibrotic genes (Xaf1, Slfn4, Slfn8, Ifi213, and Il1β) in macrophages by inactivating the STAT1/NFκB/ERK signaling pathways. In conclusion, this study depicts a novel mechanism by which CVC alleviates ECM accumulation in liver fibrosis by restoring the immune cell landscape. CVC can inhibit profibrotic gene transcription via inactivating the CCR2-STAT1/NFκB/ERK signaling pathways.
Collapse
Affiliation(s)
- Yangkun Guo
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology; West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology; West China Hospital, Sichuan University, Chengdu, China
| | - Wenting Dai
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology; West China Hospital, Sichuan University, Chengdu, China
| | - Bowen Wang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology; West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology; General Hospital of Tibet Military Command, Lhasa, China
| | - Enjiang Lai
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology; West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology; West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology; West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyin Huang
- Department of Gastroenterology; West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology; West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Hong YK, Chang YH, Lin YC, Chen B, Guevara BEK, Hsu CK. Inflammation in Wound Healing and Pathological Scarring. Adv Wound Care (New Rochelle) 2023; 12:288-300. [PMID: 36541356 DOI: 10.1089/wound.2021.0161] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance: The aberrant inflammation during wound healing results in pathological scarring, such as hypertrophic scars and keloids. This adversely affects the quality of life of patients due to the disfiguring appearance as well as the symptoms of itch and pain. This review summarizes the up-to-date knowledge of the immunopathogenesis and treatment options for pathological scars. Recent Advances: With the advent of new technologies, combined with in vitro and in vivo wound models, several inflammatory cells have been shown to have both direct and indirect effects on both wound healing and pathological scarring. Critical Issues: Expansion of pro-fibrotic immune cells such as M2 macrophages, dendritic cells, mast cells, and Th2 cells leads to fibroblast transition to myofibroblasts via transforming growth factor-β1 signaling pathway. Appropriate management of such inflammatory responses during wound healing remains a critical issue during clinical practice. Future Directions: Regulating inflammation response during wound healing may be a potential therapeutic option for avoiding or reducing pathological scars.
Collapse
Affiliation(s)
- Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Yi-Han Chang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Brandon Chen
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bryan Edgar K Guevara
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Department of Dermatology, Southern Philippines Medical Center, Davao, Philippines
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
38
|
Efremova NA, Greshnyakova VA, Goryacheva LG. Modern concepts on pathogenetic mechanisms of liver fibrosis. JOURNAL INFECTOLOGY 2023; 15:16-24. [DOI: 10.22625/2072-6732-2023-15-1-16-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- N. A. Efremova
- Pediatric Research and Clinical Center for Infectious Diseases
| | | | | |
Collapse
|
39
|
Mabire M, Hegde P, Hammoutene A, Wan J, Caër C, Sayegh RA, Cadoux M, Allaire M, Weiss E, Thibault-Sogorb T, Lantz O, Goodhardt M, Paradis V, de la Grange P, Gilgenkrantz H, Lotersztajn S. MAIT cell inhibition promotes liver fibrosis regression via macrophage phenotype reprogramming. Nat Commun 2023; 14:1830. [PMID: 37005415 PMCID: PMC10067815 DOI: 10.1038/s41467-023-37453-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Recent data have shown that liver fibrosis can regress even at later stages of cirrhosis and shifting the immune response from pro-inflammatory towards a resolutive profile is considered as a promising option. The immune regulatory networks that govern the shift of the inflammatory phenotype and thus potential reversal of liver fibrosis are lesser known. Here we show that in precision-cut human liver slices obtained from patients with end-stage fibrosis and in mouse models, inhibiting Mucosal-Associated Invariant T (MAIT) cells using pharmacological or antibody-driven approaches, limits fibrosis progression and even regresses fibrosis, following chronic toxic- or non-alcoholic steatohepatitis (NASH)-induced liver injury. Mechanistic studies, combining RNA sequencing, in vivo functional studies (performed in male mice) and co-culture experiments indicate that disruption of the MAIT cell-monocyte/macrophage interaction results in resolution of fibrosis both by increasing the frequency of restorative Ly6Clo at the expenses of pro-fibrogenic Ly6Chi monocyte-derived macrophages and promoting an autophagic phenotype in both subsets. Thus, our data show that MAIT cell activation and the consequential phenotype shift of liver macrophages are important pathogenic features of liver fibrosis and could be targeted by anti-fibrogenic therapy.
Collapse
Affiliation(s)
- Morgane Mabire
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Pushpa Hegde
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Adel Hammoutene
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Jinghong Wan
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Charles Caër
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Rola Al Sayegh
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Mathilde Cadoux
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Manon Allaire
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Emmanuel Weiss
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
- Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, 92110, Clichy, France
| | - Tristan Thibault-Sogorb
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
- Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, 92110, Clichy, France
| | | | - Michèle Goodhardt
- Université Paris Cité, INSERM UMRS 976, Institut de Recherche Saint Louis, F-75010, Paris, France
| | - Valérie Paradis
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
- Département de Pathologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, 92110, Clichy, France
| | | | - Hélène Gilgenkrantz
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Sophie Lotersztajn
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France.
| |
Collapse
|
40
|
Vonderlin J, Chavakis T, Sieweke M, Tacke F. The Multifaceted Roles of Macrophages in NAFLD Pathogenesis. Cell Mol Gastroenterol Hepatol 2023; 15:1311-1324. [PMID: 36907380 PMCID: PMC10148157 DOI: 10.1016/j.jcmgh.2023.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of the metabolic syndrome. NAFLD constitutes a spectrum of pathologies ranging from simple hepatic steatosis (nonalcoholic fatty liver) to the more progressive form of steatohepatitis and fibrosis, which can culminate in liver cirrhosis and hepatocellular carcinoma. Macrophages play multiple roles in the context of NAFLD pathogenesis by regulating inflammatory responses and metabolic homeostasis in the liver and thereby may represent an attractive therapeutic target. Advances in high-resolution methods have highlighted the extraordinary heterogeneity and plasticity of hepatic macrophage populations and activation states thereof. Harmful/disease-promoting as well as beneficial/restorative macrophage phenotypes co-exist and are dynamically regulated, thus this complexity must be taken into consideration in strategies concerning therapeutic targeting. Macrophage heterogeneity in NAFLD includes their distinct ontogeny (embryonic Kupffer cells vs bone marrow-/monocyte-derived macrophages) as well as their functional phenotype, for example, inflammatory phagocytes, lipid- and scar-associated macrophages, or restorative macrophages. Here, we discuss the multifaceted role of macrophages in the pathogenesis of NAFLD in steatosis, steatohepatitis, and transition to fibrosis and hepatocellular carcinoma, focusing on both their beneficial and maladaptive functions at different disease stages. We also highlight the systemic aspect of metabolic dysregulation and illustrate the contribution of macrophages in the reciprocal crosstalk between organs and compartments (eg, the gut-liver axis, adipose tissue, and cardiohepatic metabolic interactions). Furthermore, we discuss the current state of development of pharmacologic treatment options targeting macrophage biology.
Collapse
Affiliation(s)
- Joscha Vonderlin
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Sieweke
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
41
|
Saldarriaga OA, Krishnan S, Wanninger TG, Oneka M, Rao A, Bao D, Arroyave E, Gosnell J, Kueht M, Moghe A, Millian D, Jiao J, Sanchez JI, Spratt H, Beretta L, Stevenson HL. Patients with fibrosis from non-alcoholic steatohepatitis have heterogeneous intrahepatic macrophages and therapeutic targets. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.16.23285924. [PMID: 36865099 PMCID: PMC9980226 DOI: 10.1101/2023.02.16.23285924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background and Aims In clinical trials for reducing fibrosis in NASH patients, therapeutics that target macrophages have had variable results. We evaluated intrahepatic macrophages in patients with non-alcoholic steatohepatitis to determine if fibrosis influenced phenotypes and expression of CCR2 and Galectin-3. Approach & Results We used nCounter to analyze liver biopsies from well-matched patients with minimal (n=12) or advanced (n=12) fibrosis to determine which macrophage-related genes would be significantly different. Known therapy targets (e.g., CCR2 and Galectin-3) were significantly increased in patients with cirrhosis.However, several genes (e.g., CD68, CD16, and CD14) did not show significant differences, and CD163, a marker of pro-fibrotic macrophages was significantly decreased with cirrhosis. Next, we analyzed patients with minimal (n=6) or advanced fibrosis (n=5) using approaches that preserved hepatic architecture by multiplex-staining with anti-CD68, Mac387, CD163, CD14, and CD16. Spectral data were analyzed using deep learning/artificial intelligence to determine percentages and spatial relationships. This approach showed patients with advanced fibrosis had increased CD68+, CD16+, Mac387+, CD163+, and CD16+CD163+ populations. Interaction of CD68+ and Mac387+ populations was significantly increased in patients with cirrhosis and enrichment of these same phenotypes in individuals with minimal fibrosis correlated with poor outcomes. Evaluation of a final set of patients (n=4) also showed heterogenous expression of CD163, CCR2, Galectin-3, and Mac387, and significant differences were not dependent on fibrosis stage or NAFLD activity. Conclusions Approaches that leave hepatic architecture intact, like multispectral imaging, may be paramount to developing effective treatments for NASH. In addition, understanding individual differences in patients may be required for optimal responses to macrophage-targeting therapies.
Collapse
|
42
|
Matz AJ, Qu L, Karlinsey K, Vella AT, Zhou B. Capturing the multifaceted function of adipose tissue macrophages. Front Immunol 2023; 14:1148188. [PMID: 36875144 PMCID: PMC9977801 DOI: 10.3389/fimmu.2023.1148188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Adipose tissue macrophages (ATMs) bolster obesity-induced metabolic dysfunction and represent a targetable population to lessen obesity-associated health risks. However, ATMs also facilitate adipose tissue function through multiple actions, including adipocyte clearance, lipid scavenging and metabolism, extracellular remodeling, and supporting angiogenesis and adipogenesis. Thus, high-resolution methods are needed to capture macrophages' dynamic and multifaceted functions in adipose tissue. Herein, we review current knowledge on regulatory networks critical to macrophage plasticity and their multifaceted response in the complex adipose tissue microenvironment.
Collapse
Affiliation(s)
- Alyssa J. Matz
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
43
|
Kang J, Postigo-Fernandez J, Kim K, Zhu C, Yu J, Meroni M, Mayfield B, Bartolomé A, Dapito DH, Ferrante AW, Dongiovanni P, Valenti L, Creusot RJ, Pajvani UB. Notch-mediated hepatocyte MCP-1 secretion causes liver fibrosis. JCI Insight 2023; 8:e165369. [PMID: 36752206 PMCID: PMC9977430 DOI: 10.1172/jci.insight.165369] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 02/09/2023] Open
Abstract
Patients with nonalcoholic steatohepatitis (NASH) have increased expression of liver monocyte chemoattractant protein-1 (MCP-1), but its cellular source and contribution to various aspects of NASH pathophysiology remain debated. We demonstrated increased liver CCL2 (which encodes MCP-1) expression in patients with NASH, and commensurately, a 100-fold increase in hepatocyte Ccl2 expression in a mouse model of NASH, accompanied by increased liver monocyte-derived macrophage (MoMF) infiltrate and liver fibrosis. To test repercussions of increased hepatocyte-derived MCP-1, we generated hepatocyte-specific Ccl2-knockout mice, which showed reduced liver MoMF infiltrate as well as decreased liver fibrosis. Forced hepatocyte MCP-1 expression provoked the opposite phenotype in chow-fed wild-type mice. Consistent with increased hepatocyte Notch signaling in NASH, we observed a close correlation between markers of Notch activation and CCL2 expression in patients with NASH. We found that an evolutionarily conserved Notch/recombination signal binding protein for immunoglobulin kappa J region binding site in the Ccl2 promoter mediated transactivation of the Ccl2 promoter in NASH diet-fed mice. Increased liver MoMF infiltrate and liver fibrosis seen in opposite gain-of-function mice was ameliorated with concomitant hepatocyte Ccl2 knockout or CCR2 inhibitor treatment. Hepatocyte Notch activation prompts MCP-1-dependent increase in liver MoMF infiltration and fibrosis.
Collapse
Affiliation(s)
- Jinku Kang
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Jorge Postigo-Fernandez
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - KyeongJin Kim
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science & Engineering, and Research Center for Controlling Intercellular Communication (RCIC), Inha University, Incheon, South Korea
| | - Changyu Zhu
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Junjie Yu
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Brent Mayfield
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Alberto Bartolomé
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | | | | | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Remi J. Creusot
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
44
|
Xiang L, Wang X, Shao Y, Jiao Q, Cheng J, Zheng X, Zhou S, Chen Y. Folate Decoration Supports the Targeting of Camptothecin Micelles against Activated Hepatic Stellate Cells and the Suppression of Fibrogenesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2030-2042. [PMID: 36571106 DOI: 10.1021/acsami.2c16616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As the central cellular player in fibrogenesis, activated hepatic stellate cells (aHSCs) are the major target of antifibrotic nanomedicines. Based on our finding that activated HSCs increase the expression of folate receptor alpha (FRα), we tried to apply folic acid (FA) decoration to generate an active drug-targeting at aHSCs and suppress hepato-fibrogenesis. FA-conjugated poly(ethylene glycol)-poly(ε-caprolactone) copolymers (PEG-PCL) were synthesized and self-assembled into the spherical micelles that owned a uniform size distribution averaging at 60 nm, excellent hemo- and cyto-compatibility, and pH-sensitive stability. These FA-modified micelles were preferentially ingested by aHSCs as expected and accumulated more in acutely CCl4 injured mouse livers compared to nondecorated counterparts. Such an aHSC targetability facilitated the loaded medicinal camptothecin (CPT) to achieve a greater therapeutic efficacy and inhibition of MF phenotypic genes in aHSCs. Encouragingly, though free CPT and nontargeting CPT micelles produced negligible curative outcomes, FA-decorated CPT micelles yielded effectively remedial effects in chronically CCl4-induced fibrotic mice, as represented by a significant shrinkage of aHSC population, suppression of fibrogenesis, and recovery of liver structure and function, clearly indicating the success of the folate decoration-supported aHSC-targeted strategy for antifibrotic nanomedicines in fibrosis resolution.
Collapse
Affiliation(s)
- Li Xiang
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yaru Shao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutic Sciences, University of South China, Hengyang, Hunan 421001, China
| | - Qiangqiang Jiao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutic Sciences, University of South China, Hengyang, Hunan 421001, China
| | - Jiang Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xiaotong Zheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutic Sciences, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
45
|
Zhou T, Kiran M, Lui KO, Ding Q. Decoding liver fibrogenesis with single-cell technologies. LIFE MEDICINE 2022; 1:333-344. [PMID: 39872749 PMCID: PMC11749458 DOI: 10.1093/lifemedi/lnac040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 01/30/2025]
Abstract
Liver fibrogenesis is a highly dynamic and complex process that drives the progression of chronic liver disease toward liver failure and end-stage liver diseases. Despite decades of intense studies, the cellular and molecular mechanisms underlying liver fibrogenesis remain elusive, and no approved therapies to treat liver fibrosis are currently available. The rapid development of single-cell RNA sequencing (scRNA-seq) technologies allows the characterization of cellular alterations under healthy and diseased conditions at an unprecedented resolution. In this Review, we discuss how the scRNA-seq studies are transforming our understanding of the regulatory mechanisms of liver fibrosis. We specifically emphasize discoveries on disease-relevant cell subpopulations, molecular events, and cell interactions on cell types including hepatocytes, liver sinusoidal endothelial cells, myofibroblasts, and macrophages. These discoveries have uncovered critical pathophysiological changes during liver fibrogenesis. Further efforts are urged to fully understand the functional contributions of these changes to liver fibrogenesis, and to translate the new knowledge into effective therapeutic approaches.
Collapse
Affiliation(s)
- Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Musunuru Kiran
- Department of Medicine, and Department of Genetics, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathy O Lui
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
46
|
Muscat S, Nichols AEC, Gira E, Loiselle AE. CCR2 is expressed by tendon resident macrophage and T cells, while CCR2 deficiency impairs tendon healing via blunted involvement of tendon-resident and circulating monocytes/macrophages. FASEB J 2022; 36:e22607. [PMID: 36250393 PMCID: PMC9593314 DOI: 10.1096/fj.202201162r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
During tendon healing, macrophages are thought to be a key mediator of scar tissue formation, which prevents successful functional restoration of the tendon. However, macrophages are critical for successful tendon healing as they aid in wound debridement, extracellular matrix deposition, and promote fibroblast proliferation. Recent work has sought to better define the multi-faceted functions of macrophages using depletion studies, while other studies have identified a tendon resident macrophage population. To begin to delineate the functions of tendon-resident versus circulation-derived macrophages, we examined the tendon healing phenotype in Chemokine Receptor 2 (CCR2) reporter (CCR2GFP/+ ), and knockout mice. CCR2 is a chemokine receptor primarily found on the surface of circulating bone marrow-derived monocytes, with CCR2 being an important mediator of macrophage recruitment to wound environments. Surprisingly, CCR2GFP/+ cells were present in the tendon during adult homeostasis, and single-cell RNA sequencing identified these cells as tendon-resident macrophages and T cells. During both homeostasis and healing, CCR2 knockout resulted in a substantial decrease in CCR2GFP+ cells and pan-macrophages. Additionally, loss of CCR2 resulted in reduced numbers of myofibroblasts and impeded functional recovery during late healing. This study highlights the heterogeneity of tendon-resident and recruited immune cells and their contributions following injury, and establishes an important role for CCR2 in modulating both the adult tendon cell environment and tendon healing process.
Collapse
Affiliation(s)
- Samantha Muscat
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Anne E C Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Emma Gira
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
47
|
Koda Y, Nakamoto N, Kanai T. Regulation of Progression and Resolution of Liver Fibrosis by Immune Cells. Semin Liver Dis 2022; 42:475-488. [PMID: 36208620 DOI: 10.1055/a-1957-6384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The excessive accumulation of extracellular matrix proteins results in fibrosis-a condition implicated in several diseased conditions, such as nonalcoholic steatohepatitis, viral hepatitis, and autoimmune hepatitis. Despite its prevalence, direct and effective treatments for fibrosis are lacking, warranting the development of better therapeutic strategies. Accumulating evidence has shown that liver fibrosis-a condition previously considered irreversible-is reversible in specific conditions. Immune cells residing in or infiltrating the liver (e.g., macrophages) are crucial in the pathogenesis of fibrosis. Given this background, the roles and action mechanisms of various immune cells and their subsets in the progression and recovery of liver fibrosis, particularly concerning nonalcoholic steatohepatitis, are discussed in this review. Furthermore, the development of better therapeutic strategies based on stage-specific properties and using advanced techniques as well as the mechanisms underlying recovery are elaborated. In conclusion, we consider the review comprehensively provides the present achievements and future possibilities revolving around fibrosis treatment.
Collapse
Affiliation(s)
- Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Agency for Medical Research and Development, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
48
|
Tada Y, Kasai K, Makiuchi N, Igarashi N, Kani K, Takano S, Honda H, Yanagibashi T, Watanabe Y, Usui-Kawanishi F, Furusawa Y, Ichimura-Shimizu M, Tabuchi Y, Takatsu K, Tsuneyama K, Nagai Y. Roles of Macrophages in Advanced Liver Fibrosis, Identified Using a Newly Established Mouse Model of Diet-Induced Non-Alcoholic Steatohepatitis. Int J Mol Sci 2022; 23:13251. [PMID: 36362037 PMCID: PMC9654696 DOI: 10.3390/ijms232113251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 10/29/2023] Open
Abstract
Macrophages play critical roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is unclear which macrophage subsets are critically involved in the development of inflammation and fibrosis in NASH. In TSNO mice fed a high-fat/cholesterol/cholate-based diet, which exhibit advanced liver fibrosis that mimics human NASH, we found that Kupffer cells (KCs) were less abundant and recruited macrophages were more abundant, forming hepatic crown-like structures (hCLS) in the liver. The recruited macrophages comprised two subsets: CD11c+/Ly6C- and CD11c-/Ly6C+ cells. CD11c+ cells were present in a mesh-like pattern around the lipid droplets, constituting the hCLS. In addition, CD11c+ cells colocalized with collagen fibers, suggesting that this subset of recruited macrophages might promote advanced liver fibrosis. In contrast, Ly6C+ cells were present in doughnut-like inflammatory lesions, with a lipid droplet in the center. Finally, RNA sequence analysis indicates that CD11c+/Ly6C- cells promote liver fibrosis and hepatic stellate cell (HSC) activation, whereas CD11c-/Ly6C+ cells are a macrophage subset that play an anti-inflammatory role and promote tissue repair in NASH. Taken together, our data revealed changes in liver macrophage subsets during the development of NASH and shed light on the roles of the recruited macrophages in the pathogenesis of advanced fibrosis in NASH.
Collapse
Affiliation(s)
- Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Nana Makiuchi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Hiroe Honda
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Tsutomu Yanagibashi
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Yasuharu Watanabe
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Fumitake Usui-Kawanishi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| |
Collapse
|
49
|
Choudhury A, Ratna A, Lim A, Sebastian RM, Moore CL, Filliol AA, Bledsoe J, Dai C, Schwabe RF, Shoulders MD, Mandrekar P. Loss of heat shock factor 1 promotes hepatic stellate cell activation and drives liver fibrosis. Hepatol Commun 2022; 6:2781-2797. [PMID: 35945902 PMCID: PMC9512451 DOI: 10.1002/hep4.2058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Liver fibrosis is an aberrant wound healing response that results from chronic injury and is mediated by hepatocellular death and activation of hepatic stellate cells (HSCs). While induction of oxidative stress is well established in fibrotic livers, there is limited information on stress-mediated mechanisms of HSC activation. Cellular stress triggers an adaptive defense mechanism via master protein homeostasis regulator, heat shock factor 1 (HSF1), which induces heat shock proteins to respond to proteotoxic stress. Although the importance of HSF1 in restoring cellular homeostasis is well-established, its potential role in liver fibrosis is unknown. Here, we show that HSF1 messenger RNA is induced in human cirrhotic and murine fibrotic livers. Hepatocytes exhibit nuclear HSF1, whereas stellate cells expressing alpha smooth muscle actin do not express nuclear HSF1 in human cirrhosis. Interestingly, despite nuclear HSF1, murine fibrotic livers did not show induction of HSF1 DNA binding activity compared with controls. HSF1-deficient mice exhibit augmented HSC activation and fibrosis despite limited pro-inflammatory cytokine response and display delayed fibrosis resolution. Stellate cell and hepatocyte-specific HSF1 knockout mice exhibit higher induction of profibrogenic response, suggesting an important role for HSF1 in HSC activation and fibrosis. Stable expression of dominant negative HSF1 promotes fibrogenic activation of HSCs. Overactivation of HSF1 decreased phosphorylation of JNK and prevented HSC activation, supporting a protective role for HSF1. Our findings identify an unconventional role for HSF1 in liver fibrosis. Conclusion: Our results show that deficiency of HSF1 is associated with exacerbated HSC activation promoting liver fibrosis, whereas activation of HSF1 prevents profibrogenic HSC activation.
Collapse
Affiliation(s)
- Asmita Choudhury
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Anuradha Ratna
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Arlene Lim
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Rebecca M. Sebastian
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Christopher L. Moore
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aveline A. Filliol
- Institute of Human NutritionColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Jacob Bledsoe
- Department of PathologyUniversity of Massachusetts Memorial Medical CenterWorcesterMassachusettsUSA
| | - Chengkai Dai
- Center for Cancer Research, National Cancer InstituteFrederickMarylandUSA
| | - Robert F. Schwabe
- Institute of Human NutritionColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Matthew D. Shoulders
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Pranoti Mandrekar
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
50
|
Xi Y, LaCanna R, Ma HY, N'Diaye EN, Gierke S, Caplazi P, Sagolla M, Huang Z, Lucio L, Arlantico A, Jeet S, Brightbill H, Emson C, Wong A, Morshead KB, DePianto DJ, Roose-Girma M, Yu C, Tam L, Jia G, Ramalingam TR, Marsters S, Ashkenazi A, Kim SH, Kelly R, Wu S, Wolters PJ, Feldstein AE, Vander Heiden JA, Ding N. A WISP1 antibody inhibits MRTF signaling to prevent the progression of established liver fibrosis. Cell Metab 2022; 34:1377-1393.e8. [PMID: 35987202 DOI: 10.1016/j.cmet.2022.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
Abstract
Fibrosis is the major risk factor associated with morbidity and mortality in patients with non-alcoholic steatohepatitis (NASH)-driven chronic liver disease. Although numerous efforts have been made to identify the mediators of the initiation of liver fibrosis, the molecular underpinnings of fibrosis progression remain poorly understood, and therapies to arrest liver fibrosis progression are elusive. Here, we identify a pathway involving WNT1-inducible signaling pathway protein 1 (WISP1) and myocardin-related transcription factor (MRTF) as a central mechanism driving liver fibrosis progression through the integrin-dependent transcriptional reprogramming of myofibroblast cytoskeleton and motility. In mice, WISP1 deficiency protects against fibrosis progression, but not fibrosis onset. Moreover, the therapeutic administration of a novel antibody blocking WISP1 halted the progression of existing liver fibrosis in NASH models. These findings implicate the WISP1-MRTF axis as a crucial determinant of liver fibrosis progression and support targeting this pathway by antibody-based therapy for the treatment of NASH fibrosis.
Collapse
Affiliation(s)
- Ying Xi
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Ryan LaCanna
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Hsiao-Yen Ma
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Elsa-Noah N'Diaye
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Sarah Gierke
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Meredith Sagolla
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Laura Lucio
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Hans Brightbill
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Claire Emson
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Katrina B Morshead
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Daryle J DePianto
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Charles Yu
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Guiquan Jia
- Department of Biomarker Discovery, Genentech, South San Francisco, CA, USA
| | | | - Scot Marsters
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Avi Ashkenazi
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Si Hyun Kim
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Ryan Kelly
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Shuang Wu
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | | | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|