1
|
Borkham-Kamphorst E, Meurer SK, Weiskirchen R. Expression and biological function of the cellular communication network factor 5 (CCN5) in primary liver cells. J Cell Commun Signal 2023:10.1007/s12079-023-00757-8. [PMID: 37166689 DOI: 10.1007/s12079-023-00757-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
The cellular (centralized) communication network (CCN) factor protein family contains six small secreted cysteine-rich proteins sharing high structural similarity. These matricellular proteins have vital biological functions in cell adhesion, migration, cell cycle progression, and control of production and degradation of extracellular matrix. However, in liver the biological functions of CCN proteins become most visible during hepatic injury, disease, and remodeling. In particular, most of the hepatic functions of CCN proteins were derived from CCN2/CTGF, which becomes highly expressed in damaged hepatocytes and acts as a profibrogenic molecule. On the contrary, CCN1/CYR61 seems to have opposite effects, while the biological activity during hepatic fibrosis is somewhat controversially discussed for other CCN family members. In the present study, we analyzed the expression of CCN5/WISP2 in cultures of different types of primary liver cells and in an experimental model of hepatic fibrosis. We found that CCN5 is expressed in hepatic stellate cells, myofibroblasts and portal myofibroblasts, while CCN5 expression is virtually absent in hepatocytes. During hepatic fibrogenesis, CCN5 is significantly upregulated. Overexpression of CCN5 in portal myofibroblasts reduced expression of transforming growth factor-β receptor I (ALK5) and concomitant Smad2 activation, whereas JunB expression is upregulated. Moreover, elevated expression of CCN5 induces endoplasmic reticulum stress, unfolded protein response and apoptosis in portal myofibroblasts. We suggest that upregulated expression of CCN5 might be an intrinsic control mechanism that counteracts overshooting fibrotic responses in profibrogenic liver cells.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Zheng GH, Liu J, Yan Guo F, Zhang ZH, Jiang YJ, Lin YC, Lan XQ, Ren J, Wu YL, Nan JX, Hua Jin C, Lian LH. The in vitro and in vivo study of a pyrazole derivative, J-1063, as a novel anti-liver fibrosis agent: Synthesis, biological evaluation, and mechanistic analysis. Bioorg Chem 2022; 122:105715. [DOI: 10.1016/j.bioorg.2022.105715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
|
3
|
Pottie L, Adamo CS, Beyens A, Lütke S, Tapaneeyaphan P, De Clercq A, Salmon PL, De Rycke R, Gezdirici A, Gulec EY, Khan N, Urquhart JE, Newman WG, Metcalfe K, Efthymiou S, Maroofian R, Anwar N, Maqbool S, Rahman F, Altweijri I, Alsaleh M, Abdullah SM, Al-Owain M, Hashem M, Houlden H, Alkuraya FS, Sips P, Sengle G, Callewaert B. Bi-allelic premature truncating variants in LTBP1 cause cutis laxa syndrome. Am J Hum Genet 2021; 108:1095-1114. [PMID: 33991472 PMCID: PMC8206382 DOI: 10.1016/j.ajhg.2021.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023] Open
Abstract
Latent transforming growth factor β (TGFβ)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFβ in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFβ growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFβ levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.
Collapse
Affiliation(s)
- Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Christin S Adamo
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Aude Beyens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium; Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Piyanoot Tapaneeyaphan
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | | | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium; VIB Center for Inflammation Research, Ghent 9052, Belgium; Ghent University Expertise Centre for Transmission Electron Microscopy and VIB Bioimaging Core, Ghent 9052, Belgium
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Health Sciences University, Istanbul 34303, Turkey
| | - Naz Khan
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Jill E Urquhart
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Najwa Anwar
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Shazia Maqbool
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Fatima Rahman
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Ikhlass Altweijri
- Department of Neurosurgery, King Khalid University Hospital, Riyadh 11211, Saudi Arabia
| | - Monerah Alsaleh
- Heart Centre, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sawsan Mohamed Abdullah
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Street 21, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Cologne 50931, Germany
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
4
|
Wang Y, Chang T, Wu T, Ye W, Wang Y, Dou G, Du H, Hui Y, Guo C. Connective tissue growth factor promotes retinal pigment epithelium mesenchymal transition via the PI3K/AKT signaling pathway. Mol Med Rep 2021; 23:389. [PMID: 33760200 PMCID: PMC8008218 DOI: 10.3892/mmr.2021.12028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a disease leading to the formation of contractile preretinal membranes (PRMs) and is one of the leading causes of blindness. Connective tissue growth factor (CTGF) has been identified as a possible key determinant of progressive tissue fibrosis and excessive scarring. Therefore, the present study investigated the role and mechanism of action of CTGF in PVR. Immunohistochemical staining was performed to detect the expression of CTGF, fibronectin and collagen type III in PRMs from patients with PVR. The effects and mechanisms of recombinant human CTGF and its upstream regulator, TGF‑β1, on epithelial‑mesenchymal transition (EMT) and the synthesis of extracellular matrix (ECM) by retinal pigment epithelium (RPE) cells were investigated using reverse transcription‑quantitative PCR, western blotting and a [3H]proline incorporation assay. The data indicated that CTGF, fibronectin and collagen type III were highly expressed in PRMs. In vitro, CTGF significantly decreased the expression of the epithelial markers ZO‑1 and E‑cadherin and increased that of the mesenchymal markers fibronectin, N‑cadherin and α‑smooth muscle actin in a concentration‑dependent manner. Furthermore, the expression of the ECM protein collagen type III was upregulated by CTGF. However, the trends in expression for the above‑mentioned markers were reversed after knocking down CTGF. The incorporation of [3H]proline into RPE cells was also increased by CTGF. In addition, 8‑Bromoadenosine cAMP inhibited CTGF‑stimulated collagen synthesis and transient transfection of RPE cells with a CTGF antisense oligonucleotide inhibited TGF‑β1‑induced collagen synthesis. The phosphorylation of PI3K and AKT in RPE cells was promoted by CTGF and TGF‑β1 and the latter promoted the expression of CTGF. The results of the present study indicated that CTGF may promote EMT and ECM synthesis in PVR via the PI3K/AKT signaling pathway and suggested that targeting CTGF signaling may have a therapeutic or preventative effect on PVR.
Collapse
Affiliation(s)
- Yafen Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianfang Chang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tong Wu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ye
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yusheng Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guorui Dou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongjun Du
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yannian Hui
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Changmei Guo
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
5
|
Dillinger AE, Kuespert S, Froemel F, Tamm ER, Fuchshofer R. CCN2/CTGF promotor activity in the developing and adult mouse eye. Cell Tissue Res 2021; 384:625-641. [PMID: 33512643 PMCID: PMC8211604 DOI: 10.1007/s00441-020-03332-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022]
Abstract
CCN2/CTGF is a matricellular protein that is known to enhance transforming growth factor-β signaling and to induce a myofibroblast-like phenotype in a variety of cell types. Here, we investigated Ccn2/Ctgf promotor activity during development and in the adult mouse eye, using CTGFLacZ/+ mice in which the β-galactosidase reporter gene LacZ had been inserted into the open reading frame of Ccn2/Ctgf. Promotor activity was assessed by staining for β-galactosidase activity and by immunolabeling using antibodies against β-galactosidase. Co-immunostaining using antibodies against glutamine synthetase, glial fibrillary acidic protein, choline acetyltransferase, and CD31 was applied to identify specific cell types. Ccn2/Ctgf promotor activity was intense in neural crest-derived cells differentiating to corneal stroma and endothelium, and to the stroma of choroid, iris, ciliary body, and the trabecular meshwork during development. In the adult eye, a persistent and very strong promotor activity was present in the trabecular meshwork outflow pathways. In addition, endothelial cells of Schlemm’s canal, and of retinal and choroidal vessels, retinal astrocytes, Müller glia, and starburst amacrine cells were stained. Very strong promoter activity was seen in the astrocytes of the glial lamina at the optic nerve head. We conclude that CCN2/CTGF signaling is involved in the processes that govern neural crest morphogenesis during ocular development. In the adult eye, CCN2/CTGF likely plays an important role for the trabecular meshwork outflow pathways and the glial lamina of the optic nerve head.
Collapse
Affiliation(s)
- Andrea E Dillinger
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Sabrina Kuespert
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Franziska Froemel
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
6
|
Sun X, Cui X, Chen X, Jiang X. Baicalein alleviated TGF β1-induced type I collagen production in lung fibroblasts via downregulation of connective tissue growth factor. Biomed Pharmacother 2020; 131:110744. [PMID: 32932046 DOI: 10.1016/j.biopha.2020.110744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023] Open
Abstract
Although we have reported that baicalein ameliorated bleomycin-induced pulmonary fibrosis in rats and inhibited fibroblast-to-myofibroblast differentiation, the mechanisms of the capability of baicalein to suppress the production of type I collagen in fibroblasts remains unclear. Here, we showed that baicalein suppressed transforming growth factor β1 (TGF β1)-stimulated the production of type I collagen in lung fibroblast MRC-5 cells. By applying SILAC-based proteomic technology, 158 proteins were identified as baicalein-modulated proteins in TGF β1-stimulated the accumulation of type I collagen in MRC-5 cells. Our proteomic and biochemical analysis demonstrated that baicalein decreased the expression levels of connective tissue growth factor (CTGF) in TGF β1-stimulated MRC-5 cells. In addition, CTGF overexpression elevated the levels of type I collagen in baicalein-treated fibroblasts. Moreover, our results demonstrated that baicalein-downregulated CTGF expression might be related with the decrease of Smad2 phosphorylation, but not SP1. This work not only linked CTGF to TGF β1-stimulated the production of type I collagen in its attribution to the effects of baicalein, but also might provide valuable information for enhancing the knowledge of the pharmacological inhibition of collagen production, which might represent a promising strategy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xionghua Sun
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xinjian Cui
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xihua Chen
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xiaogang Jiang
- College of Pharmaceutical Sciences, Soochow University, China.
| |
Collapse
|
7
|
Gah A, Adil MS, Sabbineni H, Verma A, Somanath PR. Differential regulation of TGFβ type-I receptor expressions in TGFβ1-induced myofibroblast differentiation. Can J Physiol Pharmacol 2020; 98:841-848. [PMID: 32702244 DOI: 10.1139/cjpp-2020-0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblast-to-myofibroblast (FibroMF) differentiation is crucial for embryogenesis and organ fibrosis. Although transforming growth factor-β (TGFβ) is the primary mediator of FibroMF differentiation, the type-I receptor (TGFβRI) responsible for this has not yet been confirmed. In the current study, we investigated the ALK1 and ALK5 expressions in TGFβ1-stimulated NIH 3T3 fibroblasts to compare with the data from the Gene Expression Omnibus (GEO) repository. In our results, whereas TGFβ1 treatment promoted FibroMF differentiation accompanied by increased ALK5 expression and reduced ALK1 expression, TGFβ1-induced FibroMF differentiation and increased α-smooth muscle actin (αSMA) and ALK5 expression were inhibited by co-treatment with ALK5 inhibitor SB431542. GEO database analysis indicated increased ALK5 expression and reduced ALK1 expression in fibrotic compared to normal mouse or human tissues correlating with organ fibrosis progression. Finally, the inhibitors of Akt, mTOR, and β-catenin suppressed TGFβ1-induced ALK5 expression, indicating that the Akt pathway promotes FibroMF differentiation via ALK5 expression and fibrosis.
Collapse
Affiliation(s)
- Asma Gah
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S Adil
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Arti Verma
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.,Department of Medicine, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Huang R, Ding X, Fu H, Cai Q. Potential mechanisms of sleeve gastrectomy for reducing weight and improving metabolism in patients with obesity. Surg Obes Relat Dis 2019; 15:1861-1871. [DOI: 10.1016/j.soard.2019.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
|
9
|
Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer. Nat Rev Gastroenterol Hepatol 2018; 15:606-624. [PMID: 30181611 DOI: 10.1038/s41575-018-0057-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic surgery is the best treatment for long-term weight loss maintenance and comorbidity control. Metabolic operations were originally intended to change anatomy to alter behaviour, but we now understand that the anatomical changes can modulate physiology to change behaviour. They are no longer considered only mechanically restrictive and/or malabsorptive procedures; rather, they are considered metabolic procedures involving complex physiological changes, whereby gut adaptation influences signalling pathways in several other organs, including the liver and the brain, regulating hunger, satiation, satiety, body weight, glucose metabolism and immune functions. The integrative physiology of gut adaptation after these operations consists of a complex mechanistic web of communication between gut hormones, bile acids, gut microbiota, the brain and both enteric and central nervous systems. The understanding of nutrient sensing via enteroendocrine cells, the enteric nervous system, hypothalamic peptides and adipose tissue and of the role of inflammation has advanced our knowledge of this integrative physiology. In this Review, we focus on the adaptation of gut physiology to the anatomical alterations from Roux-en-Y gastric bypass and vertical sleeve gastrectomy and the influence of these procedures on food intake, weight loss, nonalcoholic fatty liver disease (NAFLD) and cancer. We also aim to demonstrate the underlying mechanisms that could explain how metabolic surgery could be used as a therapeutic option in NAFLD and certain obesity-related cancers.
Collapse
|
10
|
Wu Y, Wang W, Peng XM, He Y, Xiong YX, Liang HF, Chu L, Zhang BX, Ding ZY, Chen XP. Rapamycin Upregulates Connective Tissue Growth Factor Expression in Hepatic Progenitor Cells Through TGF-β-Smad2 Dependent Signaling. Front Pharmacol 2018; 9:877. [PMID: 30135653 PMCID: PMC6092675 DOI: 10.3389/fphar.2018.00877] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Rapamycin (sirolimus) is a mTOR kinase inhibitor and is widely used as an immunosuppressive drug to prevent graft rejection in organ transplantation currently. However, some recent investigations have reported that it had profibrotic effect in the progression of organ fibrosis, and its precise role in the liver fibrosis is still poorly understood. Here we showed that rapamycin upregulated connective tissue growth factor (CTGF) expression at the transcriptional level in hepatic progenitor cells (HPCs). Using lentivirus-mediated small hairpin RNA (shRNA) we demonstrated that knockdown of mTOR, Raptor, or Rictor mimicked the effect of rapamycin treatment. Mechanistically, inhibition of mTOR activity with rapamycin resulted in a hyperactive PI3K-Akt pathway, whereas this activation inhibited the expression of CTGF in HPCs. Besides, rapamycin activated the TGF-β-Smad signaling, and TGF-β receptor type I (TGFβRI) serine/threonine kinase inhibitors completely blocked the effects of rapamycin on HPCs. Moreover, Smad2 was involved in the induction of CTGF through rapamycin-activated TGF-β-Smad signaling as knockdown completely blocked CTGF induction, while knockdown of Smad4 expression partially inhibited induction, whereas Smad3 knockdown had no effect. Rapamycin also induced ROS generation and latent TGF-β activation which contributed to TGF-β-Smad signaling. In conclusion, this study demonstrates that rapamycin upregulates CTGF in HPCs and suggests that rapamycin has potential fibrotic effect in liver.
Collapse
Affiliation(s)
- Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-mei Peng
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-xiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-yang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Wu Y, Ding ZY, Jin GN, Xiong YX, Yu B, Sun YM, Wang W, Liang HF, Zhang B, Chen XP. Autocrine transforming growth factor-β/activin A-Smad signaling induces hepatic progenitor cells undergoing partial epithelial-mesenchymal transition states. Biochimie 2018; 148:87-98. [PMID: 29544731 DOI: 10.1016/j.biochi.2018.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Abstract
Hepatic progenitor cells (HPCs) are a subpopulation of cells which was usually expanded in chronic liver injury and are contributed to liver regeneration through differentiating into hepatocytes and cholangiocytes. Epithelial-mesenchymal transition is a dynamic process which is important for the progression of liver fibrosis and cancer initiation. This study demonstrated that LE/6 and WB-F344 cells, both of which were HPC derived cell lines, were undergoing partial epithelial-mesenchymal transition states, which was indicated by the co-expression of epithelial markers (E-cadherin and zona occludin 1), and mesenchymal markers (vimentin, fibronectin, collagen 1and α-SMA). Furthermore, autocrine TGF-β and activin A signaling contributed to the maintenance of partial EMT in HPCs. In addition, Smad signaling, a classic downstream signaling cascade of both TGF-β and activin A, also participated in the partial EMT. These findings revealed the existence of partial EMT states in HPCs and confirmed some partial EMT related autocrine signaling cascades, and may help to further the understanding and explore the functional role of HPCs in the process of hepatic fibrosis and liver cancer initiation.
Collapse
Affiliation(s)
- Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Guan-Nan Jin
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi-Xiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Bin Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi-Min Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
12
|
Herrera B, Addante A, Sánchez A. BMP Signalling at the Crossroad of Liver Fibrosis and Regeneration. Int J Mol Sci 2017; 19:ijms19010039. [PMID: 29295498 PMCID: PMC5795989 DOI: 10.3390/ijms19010039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) belong to the Transforming Growth Factor-β (TGF-β) family. Initially identified due to their ability to induce bone formation, they are now known to have multiple functions in a variety of tissues, being critical not only during development for tissue morphogenesis and organogenesis but also during adult tissue homeostasis. This review focus on the liver as a target tissue for BMPs actions, devoting most efforts to summarize our knowledge on their recently recognized and/or emerging roles on regulation of the liver regenerative response to various insults, either acute or chronic and their effects on development and progression of liver fibrosis in different pathological conditions. In an attempt to provide the basis for guiding research efforts in this field both the more solid and more controversial areas of research were highlighted.
Collapse
Affiliation(s)
- Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
13
|
Calreticulin regulates TGF-β1-induced epithelial mesenchymal transition through modulating Smad signaling and calcium signaling. Int J Biochem Cell Biol 2017; 90:103-113. [PMID: 28778674 DOI: 10.1016/j.biocel.2017.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/22/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
As a Ca2+ binding protein, calreticulin (CRT) has many functions and plays an important role in a variety of tumors. The role of CRT in TGF-β1-induced EMT is unknown. In this study, we demonstrated in vitro that TGF-β1-induced EMT elevated the expression of CRT in A549 lung cancer cells. Subsequently, we confirmed that overexpression CRT had no capacity to induce A549 cells EMT alone, but successfully enhanced TGF-β1-induced-EMT. Furthermore, knockdown of CRT in A549 cells significantly suppressed changes of EMT marks expression induced by TGF-β1. On treatment with TGF-β1, overexpression of CRT could enhance the phosphorylation of both Smad2 and Smad3. Consistently, the knockdown of CRT by siRNA-CRT could inhibit Smad signaling pathway activated by TGF-β1. These results indicated that CRT regulates EMT induced by TGF-β1 through Smad signaling pathway. Finally, TGF-β1-induced-EMT enhanced store-operated Ca2+ influx in A549 cells. CRT knockdown was able to abolish the effect of TGF-β1 on thapsigargin (TG) -induced Ca2+ release, but had failed to reduce store-operated Ca2+ influx. The alteration of intracellular Ca2+ concentration by TG or BAPTA-AM was able to regulate EMT induced by TGF-β1 through Smad signaling pathway. Together, these data identify that CRT regulates TGF-β1-induced-EMT through modulating Smad signaling. Furthermore, TGF-β1-induced-EMT is highly calcium-dependent, CRT was partly involved in it.
Collapse
|
14
|
Kanamori Y, Sugiyama M, Hashimoto O, Murakami M, Matsui T, Funaba M. Regulation of hepcidin expression by inflammation-induced activin B. Sci Rep 2016; 6:38702. [PMID: 27922109 PMCID: PMC5138601 DOI: 10.1038/srep38702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023] Open
Abstract
Activin B is induced in response to inflammation in the liver and enhances hepcidin expression, but the source of activin B and the molecular mechanism underlying hepcidin induction are not clear yet. Lipopolysaccharide (LPS)-induced inflammation induced inhibin βB but not inhibin α or inhibin βA expression in the liver, implicating activin B induction. Immunoreactive inhibin βB was detected in endothelial cells and Kupffer cells in LPS-treated liver. Activin B, but not activin A or activin AB, directly increased hepcidin expression. Activin B induced phosphorylation and activation of Smad1/5/8, the BMP-regulated (BR)-Smads. The stimulation of hepcidin transcription by activin B was mediated by ALK2 and ActRIIA, receptors for the TGF-β family. Unexpectedly, activin B-induced hepcidin expression and BR-Smad phosphorylation were resistant to the effects of LDN-193189, an ALK2/3/6 inhibitor. ALK2 and ActRIIA complex formation in response to activin B may prevent the approach of LDN-193189 to ALK2 to inhibit its activity. Activin B also induced phosphorylation of Smad2/3, the TGF-β/activin-regulated (AR)-Smad, and increased expression of connective tissue growth factor, a gene related to liver fibrogenesis, through ALK4 and ActRIIA/B. Activin B-induced activation of the BR-Smad pathway was also detected in non-liver-derived cells. The present study reveals the broad signaling of activin B, which is induced in non-parenchymal cells in response to hepatic inflammation, in hepatocytes.
Collapse
Affiliation(s)
- Yohei Kanamori
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan
| | - Osamu Hashimoto
- Laboratory of Experimental Animal Science, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara 252-5201, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
A virus-like particle-based connective tissue growth factor vaccine suppresses carbon tetrachloride-induced hepatic fibrosis in mice. Sci Rep 2016; 6:32155. [PMID: 27562139 PMCID: PMC4999884 DOI: 10.1038/srep32155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2016] [Indexed: 12/30/2022] Open
Abstract
Connective tissue growth factor (CTGF) has been recognized as a central mediator and promising therapeutic target in hepatic fibrosis. In this study, we generated a novel virus-like particle (VLP) CTGF vaccine by inserting the 138–159 amino acid (aa) fragment of CTGF into the central c/e1 epitope of C-terminus truncated hepatitis B virus core antigen (HBc, aa 1–149) using a prokaryotic expression system. Immunization of BALB/c mice with the VLP vaccine efficiently elicited the production of anti-CTGF neutralizing antibodies. Vaccination with this CTGF vaccine significantly protected BALB/c mice from carbon tetrachloride (CCl4)-induced hepatic fibrosis, as indicated by decreased hepatic hydroxyproline content and lower fibrotic score. CCl4 intoxication-induced hepatic stellate cell activation was inhibited by the vaccination, as indicated by decreased α-smooth muscle actin expression and Smad2 phosphorylation. Vaccination against CTGF also attenuated the over-expression of some profibrogenic factors, such as CTGF, transforming growth factor-β1, platelet-derived growth factor-B and tissue inhibitor of metalloproteinase-1 in the fibrotic mouse livers, decreased hepatocyte apoptosis and accelerated hepatocyte proliferation in the fibrotic mouse livers. Our results clearly indicate that vaccination against CTGF inhibits fibrogenesis, alleviates hepatocyte apoptosis and facilitate hepatic regeneration. We suggest that the vaccine should be developed into an effective therapeutic measure for hepatic fibrosis.
Collapse
|
16
|
Ding ZY, Jin GN, Wang W, Sun YM, Chen WX, Chen L, Liang HF, Datta PK, Zhang MZ, Zhang B, Chen XP. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells. Int J Mol Sci 2016; 17:408. [PMID: 27011166 PMCID: PMC4813263 DOI: 10.3390/ijms17030408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 01/19/2023] Open
Abstract
Liver progenitor cells (LPCs) are activated in chronic liver damage and may contribute to liver fibrosis. Our previous investigation reported that LPCs produced connective tissue growth factor (CTGF/CCN2), an inducer of liver fibrosis, yet the regulatory mechanism of the production of CTGF/CCN2 in LPCs remains elusive. In this study, we report that Activin A is an inducer of CTGF/CCN2 in LPCs. Here we show that expression of both Activin A and CTGF/CCN2 were upregulated in the cirrhotic liver, and the expression of Activin A positively correlates with that of CTGF/CCN2 in liver tissues. We go on to show that Activin A induced de novo synthesis of CTGF/CCN2 in LPC cell lines LE/6 and WB-F344. Furthermore, Activin A contributed to autonomous production of CTGF/CCN2 in liver progenitor cells (LPCs) via activation of the Smad signaling pathway. Smad2, 3 and 4 were all required for this induction. Collectively, these results provide evidence for the fibrotic role of LPCs in the liver and suggest that the Activin A-Smad-CTGF/CCN2 signaling in LPCs may be a therapeutic target of liver fibrosis.
Collapse
Affiliation(s)
- Ze-Yang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guan-Nan Jin
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yi-Min Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei-Xun Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
Rosenbloom J, Ren S, Macarak E. New frontiers in fibrotic disease therapies: The focus of the Joan and Joel Rosenbloom Center for Fibrotic Diseases at Thomas Jefferson University. Matrix Biol 2016; 51:14-25. [PMID: 26807756 DOI: 10.1016/j.matbio.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fibrotic diseases constitute a world-wide major health problem, but research support remains inadequate in comparison to the need. Although considerable understanding of the pathogenesis of fibrotic reactions has been attained, no completely effective therapies exist. Although fibrotic disorders are diverse, it is universally appreciated that a particular cell type with unique characteristics, the myofibroblast, is responsible for replacement of functioning tissue with non-functional scar tissue. Understanding the cellular and molecular mechanisms responsible for the creation of myofibroblasts and their activities is central to the development of therapies. Critical signaling cascades, initiated primarily by TGF-β, but also involving other cytokines which stimulate pro-fibrotic reactions in the myofibroblast, offer potential therapeutic targets. However, because of the multiplicity and complex interactions of these signaling pathways, it is very unlikely that any single drug will be successful in modifying a major fibrotic disease. Therefore, we have chosen to examine the effectiveness of administration of several drug combinations in a mouse pneumoconiosis model. Such treatment proved to be effective. Because fibrotic diseases that tend to be chronic, are difficult to monitor, and are patient variable, implementation of clinical trials is difficult and expensive. Therefore, we have made efforts to identify and validate non-invasive biomarkers found in urine and blood. We describe the potential utility of five such markers: (i) the EDA form of fibronectin (Fn(EDA)), (ii) lysyl oxidase (LOX), (iii) lysyl oxidase-like protein 2 (LoxL2), (iv) connective tissue growth factor (CTGF, CCNII), and (v) the N-terminal propeptide of type III procollagen (PIIINP).
Collapse
Affiliation(s)
- Joel Rosenbloom
- Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Shumei Ren
- Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Edward Macarak
- Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
18
|
Tu X, Zheng X, Li H, Cao Z, Chang H, Luan S, Zhu J, Chen J, Zang Y, Zhang J. MicroRNA-30 Protects Against Carbon Tetrachloride-induced Liver Fibrosis by Attenuating Transforming Growth Factor Beta Signaling in Hepatic Stellate Cells. Toxicol Sci 2015; 146:157-69. [PMID: 25912033 DOI: 10.1093/toxsci/kfv081] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transforming growth factor beta (TGF-β) is crucial for transdifferentiation of hepatic stellate cells (HSCs) and the blunting of TGF-β signaling in HSCs can effectively prevent liver fibrosis. Krüppel-like factor 11 (KLF11) is an early response transcription factor that potentiates TGF-β/Smad signaling by suppressing the transcription of inhibitory Smad7. Using a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis, we observed significant upregulation of KLF11 in the activated HSCs during liver fibrogenesis. Meanwhile, the downregulation of miR-30 was observed in the HSCs isolated from fibrotic liver. Adenovirus-mediated ectopic expression of miR-30 was under the control of smooth muscle α-actin promoter, showing that the increase in miR-30 in HSC greatly reduced CCl4-induced liver fibrosis. Subsequent investigations showed that miR-30 suppressed KLF11 expression in HSC and led to a significant upregulation of Smad7 in vivo. Mechanistic studies further confirmed that KLF11 was the direct target of miR-30, and revealed that miR-30 blunted the profibrogenic TGF-β signaling in HSC by suppressing KLF11 expression and thus enhanced the negative feedback loop of TGF-β signaling imposed by Smad7. Finally, we demonstrated that miR-30 facilitated the reversal of activated HSC to a quiescent state as indicated by the inhibition of proliferation and migration, the loss of activation markers, and the gain of quiescent HSC markers. In conclusion, our results define miR-30 as a crucial suppressor of TGF-β signaling in HSCs activation and provide useful insights into the mechanisms underlying liver fibrosis.
Collapse
Affiliation(s)
- Xiaolong Tu
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiuxiu Zheng
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Huanan Li
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhipeng Cao
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Hanwen Chang
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shaoyuan Luan
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jie Zhu
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jiangning Chen
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yuhui Zang
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Junfeng Zhang
- *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China *State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University and Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
19
|
He J, Gong J, Ding Q, Tan Q, Han P, Liu J, Zhou Z, Tu W, Xia Y, Yan W, Tian D. Suppressive effect of SATB1 on hepatic stellate cell activation and liver fibrosis in rats. FEBS Lett 2015; 589:1359-68. [PMID: 25896016 DOI: 10.1016/j.febslet.2015.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is a worldwide clinical issue. Activation of hepatic stellate cells (HSCs) is the central event during liver fibrosis. We investigated the role of SATB1 in HSC activation and liver fibrogenesis. The results show that SATB1 expression is reduced during HSC activation. Additionally, SATB1 inhibits HSC activation, proliferation, migration, and collagen synthesis. Furthermore, CTGF, a pro-fibrotic agent, is also significantly inhibited by SATB1 through the Ras/Raf-1/MEK/ERK/Ets-1 pathway. In vivo, SATB1 deactivates HSCs and attenuates fibrosis in TAA-induced fibrotic rat livers. These data indicate that SATB1 plays an important role in HSC activation and liver fibrosis.
Collapse
Affiliation(s)
- Jiayi He
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Gong
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Ding
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghai Tan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Zhou
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Tu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujia Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor β Signaling and Cardiac Remodeling. Mol Cell Biol 2015; 35:2154-64. [PMID: 25870108 DOI: 10.1128/mcb.00199-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
The matricellular secreted protein connective tissue growth factor (CTGF) is upregulated in response to cardiac injury or with transforming growth factor β (TGF-β) stimulation, where it has been suggested to function as a fibrotic effector. Here we generated transgenic mice with inducible heart-specific CTGF overexpression, mice with heart-specific expression of an activated TGF-β mutant protein, mice with heart-specific deletion of Ctgf, and mice in which Ctgf was also deleted from fibroblasts in the heart. Remarkably, neither gain nor loss of CTGF in the heart affected cardiac pathology and propensity toward early lethality due to TGF-β overactivation in the heart. Also, neither heart-specific Ctgf deletion nor CTGF overexpression altered cardiac remodeling and function with aging or after multiple acute stress stimuli. Cardiac fibrosis was also unchanged by modulation of CTGF levels in the heart with aging, pressure overload, agonist infusion, or TGF-β overexpression. However, CTGF mildly altered the overall cardiac response to TGF-β when pressure overload stimulation was applied. CTGF has been proposed to function as a critical TGF-β effector in underlying tissue remodeling and fibrosis throughout the body, although our results suggest that CTGF is of minimal importance and is an unlikely therapeutic vantage point for the heart.
Collapse
|
21
|
Xiu L, Chang N, Yang L, Liu X, Yang L, Ge J, Li L. Intracellular Sphingosine 1-Phosphate Contributes to Collagen Expression of Hepatic Myofibroblasts in Human Liver Fibrosis Independent of Its Receptors. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:387-98. [DOI: 10.1016/j.ajpath.2014.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/16/2014] [Accepted: 09/30/2014] [Indexed: 01/20/2023]
|
22
|
Chan ESL, Liu H, Fernandez P, Luna A, Perez-Aso M, Bujor AM, Trojanowska M, Cronstein BN. Adenosine A(2A) receptors promote collagen production by a Fli1- and CTGF-mediated mechanism. Arthritis Res Ther 2014; 15:R58. [PMID: 23663495 PMCID: PMC4060252 DOI: 10.1186/ar4229] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/25/2013] [Accepted: 05/11/2013] [Indexed: 12/13/2022] Open
Abstract
Introduction Adenosine, acting through the A2A receptor, promotes tissue matrix production in the skin and the liver and induces the development of dermal fibrosis and cirrhosis in murine models. Since expression of A2A receptors is increased in scleroderma fibroblasts, we examined the mechanisms by which the A2A receptor produces its fibrogenic effects. Methods The effects of A2A receptor ligation on the expression of the transcription factor, Fli1, a constitutive repressor for the synthesis of matrix proteins, such as collagen, is studied in dermal fibroblasts. Fli1 is also known to repress the transcription of CTGF/CCN2, and the effects of A2A receptor stimulation on CTGF and TGF-β1 expression are also examined. Results A2A receptor occupancy suppresses the expression of Fli1 by dermal fibroblasts. A2A receptor activation induces the secretion of CTGF by dermal fibroblasts, and neutralization of CTGF abrogates the A2A receptor-mediated enhancement of collagen type I production. A2AR activation, however, resulted in a decrease in TGF-β1 protein release. Conclusions Our results suggest that Fli1 and CTGF are important mediators of the fibrogenic actions of adenosine and the use of small molecules such as adenosine A2A receptor antagonists may be useful in the therapy of dermal fibrosis in diseases such as scleroderma.
Collapse
|
23
|
Zhang L, Liu C, Meng XM, Huang C, Xu F, Li J. Smad2 protects against TGF-β1/Smad3-mediated collagen synthesis in human hepatic stellate cells during hepatic fibrosis. Mol Cell Biochem 2014; 400:17-28. [PMID: 25351340 DOI: 10.1007/s11010-014-2258-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/17/2014] [Indexed: 12/11/2022]
Abstract
With structural similarity but functional diversity, Smad2 and Smad3 interact with each other to mediate transforming growth factor-β (TGF-β)-triggered signaling transduction. However, in the hepatic fibrosis, the detailed roles of R-Smads, and interaction between Smad2 and Smad3 are still undefined. In this setting, we established a rat model of CCl4-induced hepatic fibrosis in vivo and TGF-β1-treated hepatic stellate cell model in vitro to detect whether Smad2 and Smad3 play distinct roles in mediating liver fibrogenesis. Results indicated that both phosphorylation of Smad2 and Smad3 were detected in the hepatic stellate cells of liver fibrotic tissues and cells. Furthermore, In vitro data demonstrated that knockdown of Smad2 in human hepatic stellate cells increased expression of collagen I (Col.I), tissue inhibitor of metalloproteinase-1 (TIMP-1) whereas decreasing expression of the matrix metalloproteinases-2(MMP-2) in presence of TGF-β1 compared with control group. In contrast, knockdown of Smad3 significantly reduced TGF-β1-induced Col.I production. These findings were further evident by the results that overexpression of Smad2 attenuated the expression of Col.I and TIMP-1, but enhanced MMP-2 whereas overexpression of Smad3 showed the opposite effect. Furthermore, Smad2 suppressed the phosphorylation and nuclear translocation of Smad3, which may protect against Smad3-mediated fibrotic response. Collectively, Smad2 may be a potential therapeutic target for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | | | | | | | | | | |
Collapse
|
24
|
Zhao XK, Cheng ML, Wu RM, Yao YM, Mu M, Zhu JJ, Zhang BF, Zhou MY. Effect of Danshao Huaxian capsule on Gremlin and bone morphogenetic protein-7 expression in hepatic fibrosis in rats. World J Gastroenterol 2014; 20:14875-14883. [PMID: 25356047 PMCID: PMC4209550 DOI: 10.3748/wjg.v20.i40.14875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of Danshao Huaxian capsule (DHC) on the expression of Gremlin and bone morphogenetic protein-7 (BMP-7) in the liver of hepatic fibrosis rats.
METHODS: A total of 75 male Wistar rats were randomly divided into a normal control group (A), a CCl4-induced hepatic fibrosis model group (B), a natural recovery group (C), a low-dose DHC-treated group (D), and a high-dose DHC-treated group (E), with 15 rats in each group. Liver fibrosis was induced by subcutaneous injections of carbon tetrachloride (CCl4) and a high-lipid/low-protein diet for 8 wk, except for the rats in group A. Then, the rats in the two DHC-treated groups were administered 0.5 and 1.0 g/kg DHC by gastrogavage once per day for 8 successive weeks, respectively. By the end of the experiment, the level of transforming growth factor β1 (TGF-β1) in the liver homogenate was determined by an enzyme-linked immunosorbent assay. The mRNA and protein expression of Gremlin and BMP-7 in the liver tissue was determined by reverse-transcription polymerase chain reaction, an immunohistochemical assay, and Western blot analysis.
RESULTS: Compared with group A, the level of TGF-β1 and the mRNA and protein expression of Gremlin were significantly higher in group B (TGF-β1: 736.30 ± 24.40 μg/g vs 284.20 ± 18.32 μg/g, P < 0.01; mRNA of Gremlin: 80.40 ± 5.46 vs 49.83 ± 4.20, P < 0.01; positive protein expression rate of Gremlin: 38.46% ± 1.70% vs 3.83% ± 0.88%, P < 0.01; relative protein expression of Gremlin: 2.81 ± 0.24 vs 0.24 ± 0.06, P < 0.01), and the mRNA and protein expression of BMP-7 was significantly lower in group B (mRNA: 54.00 ± 4.34 vs 93.99 ± 7.03, P < 0.01; positive protein expression rate: 28.97% ± 3.14% vs 58.29% ± 6.02, P < 0.01; relative protein expression: 0.48 ± 0.31 vs 1.05 ± 0.12, P < 0.01). Compared with groups B and C, the degree of hepatic fibrosis was significantly improved, and the level of TGF-β1 and the mRNA and protein expression of Gremlin were significantly lowered in the two DHC-treated groups (TGF-β1: 523.14 ± 21.29 μg/g, 441.86 ± 23.18 μg/g vs 736.30 ± 24.40 μg/g, 651.13 ± 15.75 μg/g, P < 0.01; mRNA of Gremlin: 64.86 ± 2.83, 55.82 ± 5.39 vs 80.40 ± 5.46, 70.37 ± 4.01, P < 0.01; positive protein expression rate of Gremlin: 20.78% ± 1.60%, 17.43% ± 2.02% vs 38.46% ± 1.70%, 29.50% ± 2.64%, P < 0.01; relative protein expression of Gremlin: 1.95 ± 0.26, 1.65 ± 0.20 vs 2.81 ± 0.24, 2.22 ± 0.63, P < 0.01), and the mRNA and protein expression of BMP-7 was higher in the two DHC-treated groups (mRNA: 73.52 ± 4.56, 81.78 ± 5.38 vs 54.00 ± 4.34, 62.28 ± 4.51, P < 0.01; positive protein expression rate: 41.44% ± 4.77%, 47.49% ± 4.59% vs 28.97% ± 3.14%, 35.85% ± 3.50%, P < 0.01; relative protein expression: 0.71 ± 0.06, 0.81 ± 0.07 vs 0.48 ± 0.31, 0.60 ± 0.37, P < 0.01).
CONCLUSION: The therapeutic mechanism of DHC for hepatic fibrosis in rats may be associated with inhibition of the expression of Gremlin and up-regulation of the expression of BMP-7.
Collapse
|
25
|
ALK1 heterozygosity increases extracellular matrix protein expression, proliferation and migration in fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1111-22. [DOI: 10.1016/j.bbamcr.2014.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 11/16/2022]
|
26
|
Ding ZY, Jin GN, Liang HF, Wang W, Chen WX, Datta PK, Zhang MZ, Zhang B, Chen XP. Transforming growth factor β induces expression of connective tissue growth factor in hepatic progenitor cells through Smad independent signaling. Cell Signal 2013; 25:1981-1992. [PMID: 23727026 DOI: 10.1016/j.cellsig.2013.05.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/27/2022]
Abstract
Hepatic progenitor cells (HPCs) are activated in the chronic liver injury and are found to participate in the progression of liver fibrosis, while the precise role of HPCs in liver fibrosis remains largely elusive. In this study, by immunostaining of human liver sections, we confirmed that HPCs were activated in the cirrhotic liver and secreted transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF), both of which were important inducers of liver fibrosis. Besides, we used HPC cell lines LE/6 and WB-F344 as in vitro models and found that TGF-β induced secretion of CTGF in HPCs. Moreover, TGF-β signaling was intracrine activated and contributed to autonomous secretion of CTGF in HPCs. Furthermore, we found that TGF-β induced expression of CTGF was not mediated by TGF-β activated Smad signaling but mediated by TGF-β activated Erk, JNK and p38 MAPK signaling. Taken together, our results provide evidence for the role of HPCs in liver fibrosis and suggest that the production of CTGF by TGF-β activated MAPK signaling in HPCs may be a therapeutic target of liver fibrosis.
Collapse
Affiliation(s)
- Ze-yang Ding
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
ALK1-Smad1/5 signaling pathway in fibrosis development: friend or foe? Cytokine Growth Factor Rev 2013; 24:523-37. [PMID: 24055043 DOI: 10.1016/j.cytogfr.2013.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 12/29/2022]
Abstract
Fibrosis is a common phenomenon associated with several pathologies, characterized by an excessive extracellular matrix deposition that leads to a progressive organ dysfunction. Thus fibrosis has a relevant role in chronic diseases affecting the kidney, the liver, lung, skin (scleroderma) and joints (arthritis), among others. The pathogenesis of fibrosis in different organs share numerous similarities, being one of them the presence of activated fibroblasts, denominated myofibroblast, which act as the main source of extracellular matrix proteins. Transforming growth factor beta-1 (TGF-β1) is a profibrotic cytokine that plays a pivotal role in fibrosis. The TGF-β1/ALK5/Smad3 signaling pathway has been studied in fibrosis extensively. However, an increasing number of studies involving the ALK1/Smad1 pathway in the fibrotic process exist. In this review we offer a perspective of the function of ALK1/Smad1 pathway in renal fibrosis, liver fibrosis, scleroderma and osteoarthritis, suggesting this pathway as a powerful therapeutical target. We also propose several strategies to modulate the activity of this pathway and its consequences in the fibrotic process.
Collapse
|
28
|
Coffee consumption delays the hepatitis and suppresses the inflammation related gene expression in the Long-Evans Cinnamon rat. Clin Nutr 2013; 33:302-10. [PMID: 23755843 DOI: 10.1016/j.clnu.2013.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/13/2013] [Accepted: 05/13/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Large-scale epidemiological studies have shown that drinking more than two cups of coffee per day reduces the risks of hepatitis and liver cancer. However, the heterogeneity of the human genome requires studies of experimental animal models with defined genetic backgrounds to evaluate the coffee effects on liver diseases. We evaluated the efficacy of coffee consumption with one of experimental animal models for human disease. METHOD We used the Long Evans Cinnamon (LEC) rat, which onsets severe hepatitis and high incidence of liver cancer, due to the accumulation of copper and iron in livers caused by the genetic mutation in Atp7B gene, and leading to the continuous oxidative stress. We determined the expression of inflammation related genes, and amounts of copper and iron in livers, and incidence of the pre-neoplastic foci in the liver tissue of LEC rats. RESULTS Coffee administration for 25 weeks delayed the occurrence of hepatitis by two weeks, significantly improved survival, reduced the expression of inflammatory cytokines, and reduced the incidence of small pre-neoplastic liver foci in LEC rats. There was no significant difference in the accumulation of copper and iron in livers, indicating that coffee administration does not affect to the metabolism of these metals. These findings indicate that drinking coffee potentially prevents hepatitis and liver carcinogenesis through its anti-inflammatory effects. CONCLUSION This study showed the efficacy of coffee in the prevention of hepatitis and liver carcinogenesis in the LEC model.
Collapse
|
29
|
Gressner OA, Fang M, Li H, Lu LG, Gressner AM, Gao CF. Connective tissue growth factor (CTGF/CCN2) in serum is an indicator of fibrogenic progression and malignant transformation in patients with chronic hepatitis B infection. Clin Chim Acta 2013; 421:126-31. [PMID: 23501329 DOI: 10.1016/j.cca.2013.02.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 01/06/2023]
Abstract
Still a challenging medical problem is the non-invasive monitoring of patients with a variety of chronic liver diseases being on risk to develop fibrosis, cirrhosis, and, finally, primary liver cell carcinoma. Previously, we have shown that CTGF/CCN2, a down-stream mediator of TGF-β, in serum might be a promising non-invasive biomarker of fibrosis, which is extended in the following study to cirrhosis and liver cell carcinoma. Healthy individuals (n=56), as well as fibrotic (n=77), cirrhotic (n=17), and HCC-patients (n=72) with chronic hepatitis B (HBV) infection, clinically, biochemically and histopathologically well characterized and classified, were included for the measurements of CTGF-concentrations in serum using a newly developed CTGF-enzyme immunoassay. A statistical significant increase of the mean serum CTGF-concentrations was associated with different stages of fibrosis, ranging from 15.9 μg/L (S0), 20.3 μg/L (S1/2) to 36.9 μg/L (S3/4). The highest CTGF-concentrations were measured in cirrhotic patients (43.6 μg/L), compared to healthy subjects (17.7 μg/L), followed by a decrease in cirrhotic HCC-patients (38.5 μg/L; p=0.001). Of note, HCC patients without underlying cirrhosis (n=8) had CTGF levels (13.5±13.2 μg/L) comparable to those in healthy controls. No statistical relation between CTGF levels and parameters of liver injury (e.g. AST, ALT) was noticed, but CTGF levels are correlated negatively with serum albumin levels (p=0.007) and platelet counts (p=0.0032), respectively. The latter was negatively correlated with the stage of fibrosis (p=0.025). In HCC patients, CTGF concentrations decreased with tumor progression and size, with lower levels in TNM stage II (30.5 μg/L) and stage III (33.6 μg/L) compared to TNM stage I (41.6 μg/L). Our data suggest a valuable diagnostic impact of CTGF in serum for the follow-up of patients suffering from chronic liver diseases developing fibrosis, cirrhosis and finally HCC. CTGF serum levels in HCC are most likely due to underlying fibrosis/cirrhosis but not due to malignancy per se.
Collapse
|
30
|
Toma I, McCaffrey TA. Transforming growth factor-β and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res 2012; 347:155-75. [PMID: 21626289 PMCID: PMC4915479 DOI: 10.1007/s00441-011-1189-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/06/2011] [Indexed: 12/15/2022]
Abstract
Age-related progression of cardiovascular disease is by far the largest health problem in the US and involves vascular damage, progressive vascular fibrosis and the accumulation of lipid-rich atherosclerotic lesions. Advanced lesions can restrict flow to key organs and can trigger occlusive thrombosis resulting in a stroke or myocardial infarction. Transforming growth factor-beta (TGF-β) is a major orchestrator of the fibroproliferative response to tissue damage. In the early stages of repair, TGF-β is released from platelets and activated from matrix reservoirs; it then stimulates the chemotaxis of repair cells, modulates immunity and inflammation and induces matrix production. At later stages, it negatively regulates fibrosis through its strong antiproliferative and apoptotic effects on fibrotic cells. In advanced lesions, TGF-β might be important in arterial calcification, commonly referred to as "hardening of the arteries". Because TGF-β can signal through multiple pathways, namely the SMADs, a MAPK pathway and the Rho/ROCK pathways, selective defects in TGF-β signaling can disrupt otherwise coordinated pathways of tissue regeneration. TGF-β is known to control cell proliferation, cell migration, matrix synthesis, wound contraction, calcification and the immune response, all being major components of the atherosclerotic process. However, many of the effects of TGF-β are essential to normal tissue repair and thus, TGF-β is often thought to be "atheroprotective". The present review attempts to parse systematically the known effects of TGF-β on both the major risk factors for atherosclerosis and to isolate the role of TGF-β in the many component pathways involved in atherogenesis.
Collapse
Affiliation(s)
- Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, 2300 I Street NW. Ross Hall 443, Washington DC 20037, USA
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, 2300 I Street NW. Ross Hall 443, Washington DC 20037, USA
| |
Collapse
|
31
|
Urtasun R, Latasa MU, Demartis MI, Balzani S, Goñi S, Garcia-Irigoyen O, Elizalde M, Azcona M, Pascale RM, Feo F, Bioulac-Sage P, Balabaud C, Muntané J, Prieto J, Berasain C, Avila MA. Connective tissue growth factor autocriny in human hepatocellular carcinoma: oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation. Hepatology 2011; 54:2149-58. [PMID: 21800344 DOI: 10.1002/hep.24587] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
UNLABELLED The identification of molecular mechanisms involved in the maintenance of the transformed phenotype of hepatocellular carcinoma (HCC) cells is essential for the elucidation of therapeutic strategies. Here, we show that human HCC cells display an autocrine loop mediated by connective tissue growth factor (CTGF) that promotes DNA synthesis and cell survival. Expression of CTGF was stimulated by epidermal growth factor receptor (EGFR) ligands and was dependent on the expression of the transcriptional coactivator, Yes-associated protein (YAP). We identified elements in the CTGF gene proximal promoter that bound YAP-enclosing complexes and were responsible for basal and EGFR-stimulated CTGF expression. We also demonstrate that YAP expression can be up-regulated through EGFR activation not only in HCC cells, but also in primary human hepatocytes. CTGF contributed to HCC cell dedifferentiation, expression of inflammation-related genes involved in carcinogenesis, resistance toward doxorubicin, and in vivo HCC cell growth. Importantly, CTGF down-regulated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 2 expression and was involved in the reduced sensitivity of these cells toward TRAIL-mediated apoptosis. CONCLUSION We have identified autocrine CTGF as a novel determinant of HCC cells' neoplastic behavior. Expression of CTGF can be stimulated through the EGFR-signaling system in HCC cells in a novel cross-talk with the oncoprotein YAP. Moreover, to our knowledge, this is the first study that identifies a signaling mechanism triggering YAP gene expression in healthy and transformed liver parenchymal cells.
Collapse
Affiliation(s)
- Raquel Urtasun
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang G, Li W, Lu X, Zhao X. Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy. Heart Int 2011; 6:e21. [PMID: 22355488 PMCID: PMC3282438 DOI: 10.4081/hi.2011.e21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 12/17/2022] Open
Abstract
Heart failure (HF) is a common and serious comorbidity of diabetes. Oxidative stress has been associated with the pathogenesis of chronic diabetic complications including cardiomyopathy. The ability of antioxidants to inhibit injury has raised the possibility of new therapeutic treatment for diabetic heart diseases. Riboflavin constitutes an essential nutrient for humans and animals and it is an important food additive. Riboflavin, a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), enhances the oxidative folding and subsequent secretion of proteins. The objective of this study was to investigate the cardioprotective effect of riboflavin in diabetic rats. Diabetes was induced in 30 rats by a single injection of streptozotocin (STZ) (70 mg /kg). Riboflavin (20 mg/kg) was orally administered to animals immediately after induction of diabetes and was continued for eight weeks. Rats were examined for diabetic cardiomyopathy by left ventricular (LV) remadynamic function. Myocardial oxidative stress was assessed by measuring the activity of superoxide dismutase (SOD), the level of malondialdehyde (MDA) as well as heme oxygenase-1 (HO-1) protein level. Myocardial connective tissue growth factor (CTGF) level was measured by Western blot in all rats at the end of the study. In the untreated diabetic rats, left ventricular systolic pressure (LVSP) rate of pressure rose (+dp/dt), and rate of pressure decay (−dp/dt) were depressed while left ventricular end-diastolic pressure (LVEDP) was increased, which indicated the reduced left ventricular contractility and slowing of left ventricular relaxation. The level of SOD decreased, CTGF and HO-1 protein expression and MDA content rose. Riboflavin treatment significantly improved left ventricular systolic and diastolic function in diabetic rats, there were persistent increases in significant activation of SOD and the level of HO-1 protein, and a decrease in the level of CTGF. These results suggest that riboflavin treatment ameliorates myocardial function and improves heart oxidant status, whereas raising myocardial HO-1 and decreasing myocardial CTGF levels have beneficial effects on diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Guoguang Wang
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
| | | | | | | |
Collapse
|
33
|
Klemmer I, Yagi S, Gressner OA. Oral application of 1,7-dimethylxanthine (paraxanthine) attenuates the formation of experimental cholestatic liver fibrosis. Hepatol Res 2011; 41:1094-109. [PMID: 22032678 DOI: 10.1111/j.1872-034x.2011.00856.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM Several epidemiological studies suggest a beneficial effect of coffee consumption on the formation and progression of fibrogenic diseases, particularly of the liver. Recent data now point to a modulation of transforming growth factor-β (TGF-β) signaling by paraxanthine (1,7-dimethylxanthine [1,7-DMX]), the demethylated primary metabolite of caffeine METHODS Twenty adult Sprague-Dawley rats were bile duct ligated (BDL) or sham operated with or without concomitant oral 1,7-DMX (1 mM) application. Serum was investigated by standard biochemical analysis, in-house connective tissue growth factor (CTGF), enzyme linked immunosorbent assay (ELISA) or liquid chromatography-mass spectrometry analysis. Liver tissue was stained using hematoxylin-eosin (HE) and Sirius-red staining. Whole liver lysates, primary rat hepatocytes (PC) and hepatic stellate cells (HSC) were investigated by CTGF, and total Smad2/3 Western blot analysis, CTGF reporter gene assay or an in-house malondialdehyde ELISA. RESULTS The in vitro 50% inhibitory dose (ID50) of 1,7-DMX was 0.95 mM by for CTGF promoter activity and protein expression in PC and 1.25 mM for protein expression in HSC. Oral 1,7-DMX application (1 mM) attenuated cholestatic hepatocellular injury in vivo as determined by biochemical serum analysis and reduced intercellular collagen deposition in the cholestatic rat liver (HE- and Sirius-red staining). Western Blot analysis of whole liver lysates revealed a reduction of intrahepatic concentrations of Smad2/3 and CTGF following oral 1,7-DMX intake. However, serum CTGF concentrations were not reduced in 1,7-DMX treated BDL rats. Oral 1,7-DMX furthermore led to a reduction of intrahepatic lipid peroxidation (malondialdehyde concentrations) as markers of oxidative stress in BDL rats. CONCLUSION Our pilot study warrants further studies of 1,7-DMX as a potential new drug to fight fibrotic processes, not just of the liver.
Collapse
Affiliation(s)
- Ildikó Klemmer
- Wisplinghoff Medical Laboratories, Cologne, Germany Department of Hepatobiliary, Pancreas and Transplant Surgery, Kyoto University Hospital, Kyoto, Japan Institute for Laboratory Animal Science and Experimental Surgery Institute of Clinical Chemistry and Pathobiochemistry - Central Laboratory, RWTH- University Hospital, Aachen, Germany
| | | | | |
Collapse
|
34
|
Walter R, Wanninger J, Bauer S, Eisinger K, Neumeier M, Weiss TS, Amann T, Hellerbrand C, Schäffler A, Schölmerich J, Buechler C. Adiponectin reduces connective tissue growth factor in human hepatocytes which is already induced in non-fibrotic non-alcoholic steatohepatitis. Exp Mol Pathol 2011; 91:740-4. [PMID: 21946149 DOI: 10.1016/j.yexmp.2011.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/04/2011] [Indexed: 12/16/2022]
Abstract
Connective tissue growth factor (CTGF) is induced in liver fibrosis and enhances the activity of transforming growth factor β (TGFβ). Recently we have shown that the hepatoprotective adipokine adiponectin downregulates CTGF in primary human hepatocytes (PHH). In the current study, the mechanisms mediating suppression of CTGF by adiponectin and the well described downstream effector of adiponectin receptor 2 (AdipoR2), peroxisome proliferator activated receptor α (PPARα), were analyzed in more detail. Adiponectin downregulated CTGF mRNA and protein in primary human hepatocytes (PHH) and suppression was blocked by a PPARα antagonist indicating that AdipoR2 is involved. The PPARα agonists fenofibrate and WY14643 also reduced CTGF protein in these cells. Adiponectin further impaired TGFβ-mediated upregulation of CTGF. Phosphorylation of the TGFβ downstream effectors SMAD2 and -3 was reduced in PHH incubated with adiponectin or PPARα agonists suggesting that early steps in TGFβ signal transduction are impaired. CTGF and TGFβ mRNA levels were increased in human non-fibrotic non-alcoholic steatohepatitis (NASH), and here AdipoR2 expression was significantly reduced. Current data show that CTGF and TGFβ are already induced in non-fibrotic NASH and this may be partly explained by low adiponectin bioactivity which interferes with TGFβ signaling by reducing phosphorylation of SMAD2/3 and by downregulating CTGF.
Collapse
Affiliation(s)
- Roland Walter
- Department of Internal Medicine I, University Hospital of Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Distinct role of endocytosis for Smad and non-Smad TGF-β signaling regulation in hepatocytes. J Hepatol 2011; 55:369-78. [PMID: 21184784 DOI: 10.1016/j.jhep.2010.11.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/10/2010] [Accepted: 11/02/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS In injured liver, TGF-β affects all hepatic cell types and participates in wound healing and fibrogenesis. TGF-β downstream signaling is highly complex and cell type dependent, involving Smad and non-Smad signaling cascades thus requiring tight regulation. Endocytosis has gained relevance as important mechanism to control signaling initiation and termination. In this study, we investigated endocytic mechanisms for TGF-β mediated Smad and non-Smad signaling in hepatocytes. METHODS Endocytosis in hepatocytes was elucidated using chemical inhibitors, RNAi, viral gene transfer and caveolin-1-/- mice. TGF-β signaling was monitored by Western blot, reporter assays and gene expression analysis. RESULTS In hepatocytes, Smad activation is to a large degree accomplished AP-2 complex dependent on the hepatocyte surface without the necessity of clathrin coated pit formation or an endocytic step. In contrast, non-Smad/AKT pathway activation required functional dynamin mediated endocytosis and the presence of caveolin-1, an essential protein for caveolae formation. Furthermore, these two TGF-β signaling initiation platforms discriminate distinct signaling routes that integrate at the transcriptional level as shown for TGF-β target genes, Id1, Smad7, and CTGF. Endocytosis inhibition increased canonical Smad signaling and culminated in a superinduction of Id1 and Smad7 expression, whereas caveolin-1 mediated AKT pathway activation was required for maximal CTGF induction. CONCLUSIONS Endocytosis is critical for TGF-β signaling regulation in hepatocytes and determines gene expression signature and (patho)physiological outcome.
Collapse
|
36
|
Liu Y, Meyer C, Müller A, Herweck F, Li Q, Müllenbach R, Mertens PR, Dooley S, Weng HL. IL-13 induces connective tissue growth factor in rat hepatic stellate cells via TGF-β-independent Smad signaling. THE JOURNAL OF IMMUNOLOGY 2011; 187:2814-23. [PMID: 21804025 DOI: 10.4049/jimmunol.1003260] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Connective tissue growth factor (CTGF) plays a central role in stimulating extracellular matrix deposition in the liver, and hence is considered a critical mediator of TGF-β-dependent fibrogenesis. Hepatic stellate cells (HSCs) are known as the major source of CTGF in damaged liver. However, previous studies revealed that IL-13, rather than TGF-β, represents the predominant inducer of CTGF expression in HSCs. We now dissected IL-13 downstream signaling that modulates CTGF expression in HSCs. IL-13 induces a time- and dosage-dependent increase of CTGF in a TGF-β-independent manner. This process requires participation of different Smad proteins and their upstream receptor kinases (activin receptor-like kinases). Smad1 and Smad2 were identified as the key mediators of IL-13-dependent CTGF expression. Furthermore, IL-13 induces Stat6 phosphorylation in HSCs, but Stat6 was not involved in CTGF induction. Instead, the Erk1/2-MAPK pathway was found to be responsible for IL-13-induced early Smad phosphorylation and CTGF synthesis. We demonstrate that IL-13 induces CTGF expression in HSCs by activating TGF-β-independent activin receptor-like kinase/Smad signaling via the Erk-MAPK pathway rather than via its canonical JAK/Stat6 pathway. These results provide an improved new insight into the molecular mechanisms of profibrotic IL-13 activities in the liver.
Collapse
Affiliation(s)
- Yan Liu
- Molecular Hepatology-Alcohol Associated Diseases, II. Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wanninger J, Neumeier M, Bauer S, Weiss TS, Eisinger K, Walter R, Dorn C, Hellerbrand C, Schäffler A, Buechler C. Adiponectin induces the transforming growth factor decoy receptor BAMBI in human hepatocytes. FEBS Lett 2011; 585:1338-44. [PMID: 21496456 DOI: 10.1016/j.febslet.2011.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF) β is the central cytokine in fibrotic liver diseases. We analyzed whether hepatoprotective adiponectin directly interferes with TGFβ1 signaling in primary human hepatocytes (PHH). Adiponectin induces the TGFβ decoy receptor BMP-and activin-membrane-bound inhibitor (BAMBI) in PHH. Overexpression of BAMBI in hepatoma cells impairs TGFβ-mediated phosphorylation of SMAD2 and induction of connective tissue growth factor. BAMBI is lower in human fatty liver with a higher susceptibility to liver fibrosis and negatively correlates with BMI of the donors. Hepatic BAMBI is reduced in rodent models of liver inflammation and fibrosis. In summary, the current data show that hepatoprotective effects of adiponectin include induction of BAMBI which is reduced in human fatty liver and rodent models of metabolic liver injury.
Collapse
Affiliation(s)
- Josef Wanninger
- Department of Internal Medicine I, University Hospital of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Giannelli G, Mazzocca A, Fransvea E, Lahn M, Antonaci S. Inhibiting TGF-β signaling in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2011; 1815:214-23. [PMID: 21129443 DOI: 10.1016/j.bbcan.2010.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/18/2010] [Accepted: 11/20/2010] [Indexed: 12/17/2022]
|
39
|
Gressner OA, Peredniene I, Gressner AM. Connective tissue growth factor reacts as an IL-6/STAT3-regulated hepatic negative acute phase protein. World J Gastroenterol 2011; 17:151-63. [PMID: 21245987 PMCID: PMC3020368 DOI: 10.3748/wjg.v17.i2.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/19/2010] [Accepted: 10/26/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanisms involved in a possible modulator role of interleukin (IL)-6 signalling on CYR61-CTGF-NOV (CCN) 2/connective tissue growth factor (CTGF) expression in hepatocytes (PC) and to look for a relation between serum concentrations of these two parameters in patients with acute inflammation. METHODS Expression of CCN2/CTGF, p-STAT3, p-Smad3/1 and p-Smad2 was examined in primary freshly isolated rat or cryo-preserved human PC exposed to various stimuli by Western blotting, electrophoretic mobility shift assay (EMSA), reporter-gene-assays and reverse-transcriptase polymerase chain reaction. RESULTS IL-6 strongly down-regulated CCN2/CTGF protein and mRNA expression in PC, enhanceable by extracellular presence of the soluble IL-6 receptor gp80, and supported by an inverse relation between IL-6 and CCN2/CTGF concentrations in patients' sera. The inhibition of TGFβ1 driven CCN2/CTGF expression by IL-6 did not involve a modulation of Smad2 (and Smad1/3) signalling. However, the STAT3 SH2 domain binding peptide, a selective inhibitor of STAT3 DNA binding activity, counteracted the inhibitory effect of IL-6 on CCN2/CTGF expression much more pronounced than pyrrolidine-dithiocarbamate, an inhibitor primarily of STAT3 phosphorylation. An EMSA confirmed STAT3 binding to the proposed proximal STAT binding site in the CCN2/CTGF promoter. CONCLUSION CCN2/CTGF is identified as a hepatocellular negative acute phase protein which is down-regulated by IL-6 via the STAT3 pathway through interaction on the DNA binding level.
Collapse
|
40
|
|
41
|
Rodrigues Díez R, Rodrigues-Díez R, Lavoz C, Rayego-Mateos S, Civantos E, Rodríguez-Vita J, Mezzano S, Ortiz A, Egido J, Ruiz-Ortega M. Statins inhibit angiotensin II/Smad pathway and related vascular fibrosis, by a TGF-β-independent process. PLoS One 2010; 5:e14145. [PMID: 21152444 PMCID: PMC2994748 DOI: 10.1371/journal.pone.0014145] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 10/29/2010] [Indexed: 12/16/2022] Open
Abstract
We have recently described that in an experimental model of atherosclerosis and in vascular smooth muscle cells (VSMCs) statins increased the activation of the Smad pathway by transforming growth factor-β (TGF-β), leading to an increase in TGF-β-dependent matrix accumulation and plaque stabilization. Angiotensin II (AngII) activates the Smad pathway and contributes to vascular fibrosis, although the in vivo contribution of TGF-β has not been completely elucidated. Our aim was to further investigate the mechanisms involved in AngII-induced Smad activation in the vasculature, and to clarify the beneficial effects of statins on AngII-induced vascular fibrosis. Infusion of AngII into rats for 3 days activates the Smad pathway and increases fibrotic-related factors, independently of TGF-β, in rat aorta. Treatment with atorvastatin or simvastatin inhibited AngII-induced Smad activation and related-fibrosis. In cultured rat VSMCs, direct AngII/Smad pathway activation was mediated by p38 MAPK and ROCK activation. Preincubation of VSMCs with statins inhibited AngII-induced Smad activation at all time points studied (from 20 minutes to 24 hours). All these data show that statins inhibited several AngII-activated intracellular signaling systems, including p38-MAPK and ROCK, which regulates the AngII/Smad pathway and related profibrotic factors and matrix proteins, independently of TGF-β responses. The inhibitory effect of statins on the AngII/Smad pathway could explain, at least in part, their beneficial effects on hypertension-induced vascular damage.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Atorvastatin
- Blotting, Western
- Cells, Cultured
- Fibrosis/metabolism
- Heptanoic Acids/pharmacology
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation/drug effects
- Pyrroles/pharmacology
- Rats
- Rats, Wistar
- Signal Transduction/drug effects
- Simvastatin/pharmacology
- Smad Proteins/metabolism
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/pharmacology
- Vasoconstrictor Agents/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Raúl Rodrigues Díez
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Rodrigues-Díez
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carolina Lavoz
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Civantos
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Rodríguez-Vita
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Alberto Ortiz
- Dialysis Unit, Fundación Jiménez Díaz, Madrid, Spain
| | - Jesús Egido
- Renal Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
42
|
Gomez D, Coyet A, Ollivier V, Jeunemaitre X, Jondeau G, Michel JB, Vranckx R. Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms. Cardiovasc Res 2010; 89:446-56. [PMID: 20829218 PMCID: PMC3020128 DOI: 10.1093/cvr/cvq291] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aims Human thoracic aortic aneurysms (TAAs) are characterized by extracellular matrix breakdown associated with progressive smooth muscle cell (SMC) rarefaction. These features are present in all types of TAA: monogenic forms [mainly Marfan syndrome (MFS)], forms associated with bicuspid aortic valve (BAV), and degenerative forms. Initially described in a mouse model of MFS, the transforming growth factor-β1 (TGF-β1)/Smad2 signalling pathway is now assumed to play a role in TAA of various aetiologies. However, the relation between the aetiological diversity and the common cell phenotype with respect to TGF-β signalling remains unexplained. Methods and results This study was performed on human aortic samples, including TAA [MFS, n = 14; BAV, n = 15; and degenerative, n = 19] and normal aortas (n = 10) from which tissue extracts and human SMCs and fibroblasts were obtained. We show that all types of TAA share a complex dysregulation of Smad2 signalling, independent of TGF-β1 in TAA-derived SMCs (pharmacological study, qPCR). The Smad2 dysregulation is characterized by an SMC-specific, heritable activation and overexpression of Smad2, compared with normal aortas. The cell specificity and heritability of this overexpression strongly suggest the implication of epigenetic control of Smad2 expression. By chromatin immunoprecipitation, we demonstrate that the increases in H3K9/14 acetylation and H3K4 methylation are involved in Smad2 overexpression in TAA, in a cell-specific and transcription start site-specific manner. Conclusion Our results demonstrate the heritability, the cell specificity, and the independence with regard to TGF-β1 and genetic backgrounds of the Smad2 dysregulation in human thoracic aneurysms and the involvement of epigenetic mechanisms regulating histone marks in this process.
Collapse
Affiliation(s)
- Delphine Gomez
- INSERM, U698, Hôpital Xavier Bichat, 46 rue Henri Huchard, FR-75877 Paris Cedex 18, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Burke JP, Watson RWG, Mulsow JJ, Docherty NG, Coffey JC, O'Connell PR. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts. Br J Surg 2010; 97:892-901. [PMID: 20473999 DOI: 10.1002/bjs.6996] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Fibroblasts isolated from strictures in Crohn's disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS Crohn's stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.
Collapse
Affiliation(s)
- J P Burke
- Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
44
|
Gressner OA. About coffee, cappuccino and connective tissue growth factor-Or how to protect your liver!? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:1-10. [PMID: 21783975 DOI: 10.1016/j.etap.2009.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/05/2009] [Accepted: 02/11/2009] [Indexed: 05/31/2023]
Abstract
Several epidemiological studies suggest that coffee drinking is inversely correlated with the risk of development of liver fibrosis. However, a causal, mechanistic explanation has long been pending. New results indicate that the methylxanthine caffeine, major component of coffee and the most widely consumed pharmacologically active substance in the world, might be responsible for this phenomenon as it, and even more potently its derived primary metabolite paraxanthine, inhibits transforming growth factor (TGF)-β-dependent and -independent synthesis of connective tissue growth factor (CTGF/CCN2) in liver parenchymal cells in vitro and in vivo. CTGF plays a crucial role in the fibrotic remodeling of various organs which has therefore frequently been proposed as therapeutic target in the management of fibrotic disorders. This article summarizes the clinical-epidemiological observations as well as the pathophysiological background of the antifibrotic effects of coffee consumption and provides suggestions for the therapeutic use of caffeine and its derived metabolic methylxanthines as potentially powerful drugs in patients with chronic fibrogenic liver disease by their inhibitory effect on (hepatocellular) CTGF synthesis.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, Central Laboratory, RWTH-University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|