1
|
Maharshi S, Sharma BC. Prophylaxis of hepatic encephalopathy: current and future drug targets. Hepatol Int 2024; 18:1096-1109. [PMID: 38492132 DOI: 10.1007/s12072-024-10647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/18/2024] [Indexed: 03/18/2024]
Abstract
Hepatic encephalopathy is described by a broad spectrum of neurological and psychiatric aberrations resulting due to advanced liver dysfunction. It is a neurological disorder due to hepatic insufficiency and/or portosystemic shunts. Its clinical presentation includes neuropsychiatric dysfunction ranging from subclinical changes to comatose state. It is a sign of poor prognosis in cirrhotics with a high 1-year mortality. Each episode of hepatic encephalopathy leads to high hospitalization rate, poor prognosis and raised burden of healthcare. Primary prophylaxis is prevention of initial occurrence and secondary prophylaxis is prevention of reappearance of hepatic encephalopathy in subjects who had prior history. Early detection and management of triggers is very important in the treatment of hepatic encephalopathy. The initial choice of treatment is still lactulose, as it is effective in minimal, overt, and recurrent hepatic encephalopathy. Rifaximin is equally effective as lactulose in managing hepatic encephalopathy and is better tolerated. Branch chain amino acids are beneficial in subjects who are protein intolerant. L-ornithine L-aspartate and probiotics are also useful in the management of hepatic encephalopathy. Rifaximin along with lactulose is effective in managing overt and recurrent hepatic encephalopathy. Large portosystemic shunts embolization and liver transplant is efficacious in certain group of patients. Nutritional therapy and fecal microbiota transplantation are newer therapies for hepatic encephalopathy but the evidences are limited, more research is required to prove their efficacy. Involvement of hospital pharmacists, telemedicine, and providing education are also beneficial in managing hepatic encephalopathy.
Collapse
Affiliation(s)
- Sudhir Maharshi
- Department of Gastroenterology, SMS Medical College and Hospitals, Jaipur, India
| | - Barjesh Chander Sharma
- Department of Gastroenterology, G.B. Pant Hospital, Room No. 201, Academic Block, New Delhi, 110002, India.
| |
Collapse
|
2
|
Tong XY, Hussain H, Shamaladevi N, Norenberg MD, Fadel A, El Hiba O, Abdeljalil EG, Bilal EM, Kempuraj D, Natarajan S, Schally AV, Jaszberenyi M, Salgueiro L, Paidas MJ, Jayakumar AR. Age and Sex in the Development of Hepatic Encephalopathy: Role of Alcohol. BIOLOGY 2024; 13:228. [PMID: 38666840 PMCID: PMC11048384 DOI: 10.3390/biology13040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Hepatic encephalopathy (HE) is a neurological condition linked to liver failure. Acute HE (Type A) occurs with acute liver failure, while chronic HE (Type C) is tied to cirrhosis and portal hypertension. HE treatments lag due to gaps in understanding its development by gender and age. We studied how sex and age impact HE and its severity with combined liver toxins. Our findings indicate that drug-induced (thioacetamide, TAA) brain edema was more severe in aged males than in young males or young/aged female rats. However, adding alcohol (ethanol, EtOH) worsens TAA's brain edema in both young and aged females, with females experiencing a more severe effect than males. These patterns also apply to Type A HE induced by azoxymethane (AZO) in mice. Similarly, TAA-induced behavioral deficits in Type C HE were milder in young and aged females than in males. Conversely, EtOH and TAA in young/aged males led to severe brain edema and fatality without noticeable behavioral changes. TAA metabolism was slower in aged males than in young or middle-aged rats. When TAA-treated aged male rats received EtOH, there was a slow and sustained plasma level of thioacetamide sulfoxide (TASO). This suggests that with EtOH, TAA-induced HE is more severe in aged males. TAA metabolism was similar in young, middle-aged, and aged female rats. However, with EtOH, young and aged females experience more severe drug-induced HE as compared to middle-aged adult rats. These findings strongly suggest that gender and age play a role in the severity of HE development and that the presence of one or more liver toxins may aggravate the severity of the disease progression.
Collapse
Affiliation(s)
- Xiao Y. Tong
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (X.Y.T.); (M.D.N.)
| | - Hussain Hussain
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA;
| | | | - Michael D. Norenberg
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (X.Y.T.); (M.D.N.)
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, USA; (A.V.S.); (M.J.); (L.S.)
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Aya Fadel
- Department of Internal Medicine, Ocean Medical Center-Hackensack Meridian Health, Brick, NJ 08724, USA;
| | - Omar El Hiba
- Laboratory of Anthropogenic, Biotechnology, Health, and Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (O.E.H.); (E.-M.B.)
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Epidemiology and Biomedical Unit, Settat 26000, Morocco;
| | - El got Abdeljalil
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Epidemiology and Biomedical Unit, Settat 26000, Morocco;
| | - El-Mansoury Bilal
- Laboratory of Anthropogenic, Biotechnology, Health, and Nutritional Physiopathologies, Neuroscience and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (O.E.H.); (E.-M.B.)
- Hassan First University of Settat, Higher Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Epidemiology and Biomedical Unit, Settat 26000, Morocco;
| | - Deepak Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
| | - Sampath Natarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Andrew V. Schally
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, USA; (A.V.S.); (M.J.); (L.S.)
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, USA
- Pathology, Laboratory Medicine, Endocrine, Polypeptide and Cancer Institute, Department of Veterans Affairs, Miami, FL 33125, USA
| | - Miklos Jaszberenyi
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, USA; (A.V.S.); (M.J.); (L.S.)
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, USA
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Luis Salgueiro
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, USA; (A.V.S.); (M.J.); (L.S.)
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Arumugam R. Jayakumar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, USA; (A.V.S.); (M.J.); (L.S.)
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| |
Collapse
|
3
|
Shurubor YI, Krasnikov AB, Isakova EP, Deryabina YI, Yudin VS, Keskinov AA, Krasnikov BF. Energy Metabolites and Indicative Significance of α-Ketoglutarate and α-Ketoglutaramate in Assessing the Progression of Chronic Hepatoencephalopathy. Biomolecules 2024; 14:217. [PMID: 38397454 PMCID: PMC10887089 DOI: 10.3390/biom14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In the example of a rat model with chronic hepatoencephalopathy (HE), changes in the organ morphology of rats affect the balance of metabolites of the tricarboxylic acid (TCA) cycle and metabolites of the glutamine-glutamate (Gln-Glu) cycle, namely α-ketoglutarate (αKG) and α-ketoglutaramate (αKGM), as well as the enzymes associated with them, ω-amidase (ωA) and glutamine transaminase (GTK). This model of rats was obtained as a result of 2-22 weeks of consumption by animals of hepatotoxin thioacetamide (TAA) added to drinking water at a concentration of 0.4 g/L. The control (n = 26) and TAA-induced (n = 55) groups of rats consisted of 11 cohorts each. The control cohorts consisted of 2-4 rats, and the TAA-induced cohorts consisted of 4-7 individuals. Every two weeks, samples of blood plasma, liver, kidney, and brain tissues were taken from the next cohort of rats (a total of 320 samples). By the end of the experiment, irreversible morphological changes were observed in the organs of rats: the weight of the animals was reduced up to ~45%, the weight of the kidneys up to 5%, the brain up to ~20%, and the weight of the liver increased up to ~20%. The analysis revealed: (i) a decrease in the activity of ωA and GTK in the tissues of the brain, kidneys, and liver of rats with chronic HE (by ~3, 40, and 65% and ~10, 60, and 70%, respectively); and (ii) the appearance of a significant imbalance in the content of metabolites of the Gln-Glu cycle, αKG, and αKGM. It is indicative that a ~1.5-12-fold increase in the level of αKG in the blood plasma and tissues of the organs of rats with chronic HE was accompanied by a synchronous, ~1.2-2.5-fold decrease in the level of αKGM. The data obtained indicate an essential involvement of the Gln-Glu cycle in the regulation of energy metabolism in rats under conditions of chronic HE. Attention is focused on the significance of the αKG/αKGM ratio, which can act as a potential marker for diagnosing the degree of HE development.
Collapse
Affiliation(s)
- Yevgeniya I. Shurubor
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
| | | | - Elena P. Isakova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.P.I.); (Y.I.D.)
| | - Yulia I. Deryabina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.P.I.); (Y.I.D.)
| | - Vladimir S. Yudin
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
| | - Anton A. Keskinov
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
| | - Boris F. Krasnikov
- Centre for Strategic Planning of FMBA of Russia, Pogodinskaya St., Bld. 10, 119121 Moscow, Russia; (Y.I.S.); (V.S.Y.); (A.A.K.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, N.I. Pirogov Russian National Research Medical University, 1 Ostrovitianova Str., 117997 Moscow, Russia
| |
Collapse
|
4
|
Shurubor YI, Rogozhin AE, Isakova EP, Deryabina YI, Krasnikov BF. Residual Amino Acid Imbalance in Rats during Recovery from Acute Thioacetamide-Induced Hepatic Encephalopathy Indicates Incomplete Healing. Int J Mol Sci 2023; 24:ijms24043647. [PMID: 36835059 PMCID: PMC9967446 DOI: 10.3390/ijms24043647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The delayed consequences of the influence of hepatic encephalopathy (HE) on the metabolism of animals have not been studied enough. We have previously shown that the development of acute HE under the influence of the thioacetamide (TAA) toxin is accompanied by pathological changes in the liver, an imbalance in CoA and acetyl CoA, as well as a number of metabolites of the TCA cycle. This paper discusses the change in the balance of amino acids (AAs) and related metabolites, as well as the activity of glutamine transaminase (GTK) and ω-amidase enzymes in the vital organs of animals 6 days after a single exposure to TAA. The balance of the main AAs in blood plasma, liver, kidney, and brain samples of control (n = 3) and TAA-induced groups (n = 13) of rats that received the toxin at doses of 200, 400, and 600 mg/kg was considered. Despite the apparent physiological recovery of the rats at the time of sampling, a residual imbalance in AA and associated enzymes persisted. The data obtained give an idea of the metabolic trends in the body of rats after their physiological recovery from TAA exposure and may be useful for prognostic purposes when choosing the necessary therapeutic agents.
Collapse
Affiliation(s)
| | - Alexander E. Rogozhin
- Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Moscow 117218, Russia
| | - Elena P. Isakova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Yulia I. Deryabina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Boris F. Krasnikov
- Centre for Strategic Planning of FMBA of Russia, Moscow 119121, Russia
- Correspondence: ; Tel.: +7-(985)-095-5445
| |
Collapse
|
5
|
Rajpurohit S, Musunuri B, Shailesh, Basthi Mohan P, Shetty S. Novel Drugs for the Management of Hepatic Encephalopathy: Still a Long Journey to Travel. J Clin Exp Hepatol 2022; 12:1200-1214. [PMID: 35814520 PMCID: PMC9257922 DOI: 10.1016/j.jceh.2022.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is one of the reversible complications of chronic liver disease, associated with a higher mortality rate. In current clinical practice, treatment with rifaximin and lactulose/lactitol is the first line of treatment in HE. With the advance in pathophysiology, a new class of ammonia lowering drugs has been revealed to overcome the hurdle and disease burden. The mechanism of the novel agents differs significantly and includes the alteration in intestinal microbiota, intestinal endothelial integrity, oxidative stress, inflammatory markers, and modulation of neurotoxins. Most of the trials have reported promising results in the treatment and prevention of HE with fecal microbiota transplantation, albumin, probiotics, flumazenil, polyethylene glycol, AST-120, glycerol phenylbutyrate, nitazoxanide, branched-chain amino acid, naloxone, and acetyl-l-carnitine. However, their clinical use is limited due to the presence of major drawbacks in their study design, sample size, safety profile, bias, and heterogenicity. This study will discuss the novel therapeutic targets for HE in liver cirrhosis patients with supporting clinical trial data.
Collapse
Key Words
- ALC, acetyl-L-carnitine
- BCAA, branched-chain amino acid
- BD, twice a day
- BDI, Beck Depression Inventory
- BUN, blood urea nitrogen
- CHESS, Clinical Hepatic Encephalopathy Staging Scale
- CLDQ, Chronic Liver Disease Questionnaire
- ECT, estimated completion time
- EEG, electroencephalogram
- FMT, fecal microbiota transplantation
- GPB, glycerol phenylbutyrate
- HESA, Hepatic Encephalopathy Scoring Algorithm
- HRQOL, health-related quality of life
- IV, intravenous
- MED, Modified Encephalopathy Scale
- MELD, Model for End-stage Liver Disease
- MMSE, Mini-Mental State Examination
- NTZ, nitazoxanide
- Nal, naloxone
- OD, once a day
- ORT, object recognition test
- PEG, polyethylene glycol
- QID, four times a day
- QOL, quality of life
- RBNS, Repeatable Battery for the Assessment of Neuropsychological Status
- RCT, randomized control trial
- RT-qPCR, real-time quantitative polymerase chain reaction
- TID, three times a day
- VSL#3, high concentration probiotic preparations
- hepatic encephalopathy
- liver cirrhosis
- novel drugs
- treatment outcome
Collapse
Affiliation(s)
- Siddheesh Rajpurohit
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Balaji Musunuri
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shailesh
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
6
|
The Effect of TGF-β1 Reduced Functionality on the Expression of Selected Synaptic Proteins and Electrophysiological Parameters: Implications of Changes Observed in Acute Hepatic Encephalopathy. Int J Mol Sci 2022; 23:ijms23031081. [PMID: 35163004 PMCID: PMC8835518 DOI: 10.3390/ijms23031081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Decreased platelet count represents a feature of acute liver failure (ALF) pathogenesis. Platelets are the reservoir of transforming growth factor 1 (TGF-β1), a multipotent cytokine involved in the maintenance of, i.a., central nervous system homeostasis. Here, we analyzed the effect of a decrease in TGF-β1 active form on synaptic proteins levels, and brain electrophysiology, in mice after intraperitoneal (ip) administration of TGF-β1 antibody (anti-TGF-β1; 1 mg/mL). Next, we correlated it with a thrombocytopenia-induced TGF-β1 decrease, documented in an azoxymethane-induced (AOM; 100 mM ip) model of ALF, and clarified the impact of TGF-β1 decrease on blood–brain barrier functionality. The increase of both synaptophysin and synaptotagmin in the cytosolic fraction, and its reduction in a membrane fraction, were confirmed in the AOM mice brains. Both proteins’ decrease in analyzed fractions occurred in anti-TGF-β1 mice. In turn, an increase in postsynaptic (NR1 subunit of N-methyl-D-aspartate receptor, postsynaptic density protein 95, gephyrin) proteins in the AOM brain cortex, but a selective compensatory increase of NR1 subunit in anti-TGF-β mice, was observed. The alterations of synaptic proteins levels were not translated on electrophysiological parameters in the anti-TGF-β1 model. The results suggest the impairment of synaptic vesicles docking to the postsynaptic membrane in the AOM model. Nevertheless, changes in synaptic protein level in the anti-TGF-β1 mice do not affect neurotransmission and may not contribute to neurologic deficits in AOM mice.
Collapse
|
7
|
El Khiat A, El Hiba O, Tamegart L, Rais H, Fdil N, Sellami S, El Mokhtar MA, Gamrani H. Time dependent alteration of locomotor behavior in rat with acute liver failure induced cerebellar neuroinflammation and neuro-astroglial damage. J Chem Neuroanat 2021; 119:102055. [PMID: 34863855 DOI: 10.1016/j.jchemneu.2021.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Hepatic encephalopathy (HE) is a neurophysiological syndrome secondary to acute or chronic liver failure. Studies showed that HE patients exhibit a deficit in motor coordination, which may result from cerebellar functional impairment. The aim of this study is to assess the time-dependent alteration of locomotor behavior and the glial and neuronal alteration in rat with acute HE induced chemically. The study was carried out in male Sprague-Dawley rats with thioacetamide (TAA) induced acute liver failure at different stages 12 h, 24 h and 36 h. Hepatic and renal functions were assessed via various biochemical and histopathological examinations, while the cerebellum and the midbrain were examined using histology and immunohistochemistry for tyrosine hydroxylase (TH), cyclooxygenase-2 (COX-2) and glial fibrillary acidic protein (GFAP). We used as well, the open field test and the Rotarod test for assessing the locomotor activity and coordination. Our data showed a progressive loss of liver function and a progressive alteration in locomotor behavior and motor coordination in acute HE rats. In the cerebellum, we noted an increase in the degeneration of cerebellar Purkinje neurons parallel to increased COX-2 immunoreactivity together with astrocytic morphology and density changes. Likewise, in substantia nigra pars compacta, TH levels were reduced. We showed through the current study, a progressive deterioration in locomotor behavior in acute HE rats, as a result of Purkinje neurons death and a deficient dopaminergic neurotransmission, together with the morpho-functional astroglial modifications involving the oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Abdelaati El Khiat
- Laboratory of Clinical and Experimental Neurosciences and Environment, faculty of Medicine and Pharmacy, Cadi Ayyad University, 4000 Marrakech, Morocco; Higher Institute of Nursing Professions and Health Techniques, Ouarzazate, Morocco.
| | - Omar El Hiba
- Nutritional Physiopathologies and Toxicology Team, faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco.
| | - Lahcen Tamegart
- Laboratory of Clinical and Experimental Neurosciences and Environment, faculty of Medicine and Pharmacy, Cadi Ayyad University, 4000 Marrakech, Morocco; Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Hanane Rais
- Laboratory of Morphosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Morocco; Mohammed VI University Hospital, Marrakech, Morocco
| | - Naima Fdil
- Metabolics platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayyad University, Sidi Abbad, BP 40000 Marrakech, Morocco
| | | | - Mohamed Ait El Mokhtar
- Laboratory of Biochemistry, Environment &Agri-food URAC 36, Department of Biology, Faculty of Sciences and Techniques, Mohmmedia, Hassan II University of Casablanca, Morocco
| | - Halima Gamrani
- Laboratory of Clinical and Experimental Neurosciences and Environment, faculty of Medicine and Pharmacy, Cadi Ayyad University, 4000 Marrakech, Morocco.
| |
Collapse
|
8
|
Baraka SM, Saleh DO, Ghaly NS, Melek FR, Gamal El Din AA, Khalil WKB, Said MM, Medhat AM. Flavonoids from Barnebydendron riedelii leaf extract mitigate thioacetamide-induced hepatic encephalopathy in rats: The interplay of NF-κB/IL-6 and Nrf2/HO-1 signaling pathways. Bioorg Chem 2020; 105:104444. [PMID: 33197852 DOI: 10.1016/j.bioorg.2020.104444] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/19/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
Abstract
Phytochemical investigation of the butanol fraction (BUF) derived from the 70% aqueous methanolic leaf extract of Barnebydendron riedelii led to the isolation of three flavonoid glycosides; kaempferol-3-O-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside, quercetin-3-O-α-l-rhamnopyranosyl-(1 → 6)-β-d-galactopyranoside and quercetin-3-O-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside. Docking studies were fulfilled to validate the possible bio-properties of BUF toward nuclear factorkappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2). The protective role of BUF against behavioral, biochemical, molecular, histopathological and immunohistochemical alterations in thioacetamide (TAA)-induced hepatic encephalopathy in rats was investigated. The toxicological studies indicated that BUF was safe up to 2000 mg/kg bw. Prior to TAA intoxication, rats were orally treated with either BUF at multiple doses (70, 140 and 280 mg/kg bw) or lactulose (8 mL/kg bw) for 14 consecutive days. On the 13th and the 14th day, TAA (200 mg/kg bw/day) was intraperitoneally injected. The BUF significantly improved motor impairment, ameliorated cognitive deficits and attenuated TAA-induced hepatotoxicity. Moreover, BUF controlled the inflammatory processes by suppressing the hepatic inflammatory cytokine; interleukin-6 (IL-6) as well as its pro-inflammatory mediator; NF-κB supporting the molecular docking assessment. The brain neurotransmitters; dopamine, serotonin and noradrenaline, as well as ammonia levels were improved in BUF-treated TAA-intoxicated animals in a dose-dependent manner. Furthermore, BUF administration to TAA-intoxicated rats modulated the Nrf2 and heme oxygenase 1 (HO-1) genes expression in liver and brain tissues. The histological evaluation showed that pretreatment of TAA-intoxicated rats with BUF ameliorated the degenerative effects of TAA on liver and brain tissues as well as reduced the activation of cellular apoptotic marker; caspase-3 and glial fibrillary acidic protein (GFAP+) astrocytes. In conclusion, the observed hepato-neuroprotective effect of BUF is attributed to its flavonoidal content through its modulatory effects on of NF-κB/IL-6 and Nrf2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Sara M Baraka
- Chemistry of Natural Compounds Department, National Research Centre, Giza 12622, Egypt
| | - Dalia O Saleh
- Pharmacology Department, National Research Centre, Giza 12622, Egypt.
| | - Neveen S Ghaly
- Chemistry of Natural Compounds Department, National Research Centre, Giza 12622, Egypt
| | - Farouk R Melek
- Chemistry of Natural Compounds Department, National Research Centre, Giza 12622, Egypt
| | | | - Wagdy K B Khalil
- Cell Biology Department, National Research Centre, Giza 12622, Egypt
| | - Mahmoud M Said
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Amina M Medhat
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
9
|
El Khiat A, Tamegart L, Draoui A, El Fari R, Sellami S, Rais H, El Hiba O, Gamrani H. Kinetic deterioration of short memory in rat with acute hepatic encephalopathy: Involvement of astroglial and neuronal dysfunctions. Behav Brain Res 2019; 367:201-209. [DOI: 10.1016/j.bbr.2019.03.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
10
|
Glutamine triggers long-lasting increase in striatal network activity in vitro. Exp Neurol 2017; 290:41-52. [DOI: 10.1016/j.expneurol.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
|
11
|
|
12
|
Jayakumar AR, Tong XY, Curtis KM, Ruiz-Cordero R, Abreu MT, Norenberg MD. Increased toll-like receptor 4 in cerebral endothelial cells contributes to the astrocyte swelling and brain edema in acute hepatic encephalopathy. J Neurochem 2014; 128:890-903. [PMID: 24261962 PMCID: PMC3951576 DOI: 10.1111/jnc.12516] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/10/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022]
Abstract
Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll-like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4-silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up-regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide-treated TLR4 knock-out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood-borne noxious agents.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, Florida, USA; Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
13
|
Jayakumar AR, Valdes V, Tong XY, Shamaladevi N, Gonzalez W, Norenberg MD. Sulfonylurea receptor 1 contributes to the astrocyte swelling and brain edema in acute liver failure. Transl Stroke Res 2014; 5:28-37. [PMID: 24443056 DOI: 10.1007/s12975-014-0328-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/03/2014] [Accepted: 01/05/2014] [Indexed: 01/21/2023]
Abstract
Astrocyte swelling (cytotoxic brain edema) is the major neurological complication of acute liver failure (ALF), a condition in which ammonia has been strongly implicated in its etiology. Ion channels and transporters are known to be involved in cell volume regulation, and a disturbance in these systems may result in cell swelling. One ion channel known to contribute to astrocyte swelling/brain edema in other neurological disorders is the ATP-dependent, nonselective cation (NCCa-ATP) channel. We therefore examined its potential role in the astrocyte swelling/brain edema associated with ALF. Cultured astrocytes treated with 5 mM ammonia showed a threefold increase in the sulfonylurea receptor type 1 (SUR1) protein expression, a marker of NCCa-ATP channel activity. Blocking SUR1 with glibenclamide significantly reduced the ammonia-induced cell swelling in cultured astrocytes. Additionally, overexpression of SUR1 in ammonia-treated cultured astrocytes was significantly reduced by cotreatment of cells with BAY 11-7082, an inhibitor of NF-κB, indicating the involvement of an NF-κB-mediated SUR1 upregulation in the mechanism of ammonia-induced astrocyte swelling. Brain SUR1 mRNA level was also found to be increased in the thioacetamide (TAA) rat model of ALF. Additionally, we found a significant increase in SUR1 protein expression in rat brain cortical astrocytes in TAA-treated rats. Treatment with glibenclamide significantly reduced the brain edema in this model of ALF. These findings strongly suggest the involvement of NCCa-ATP channel in the astrocyte swelling/brain edema in ALF and that targeting this channel may represent a useful approach for the treatment of the brain edema associated with ALF.
Collapse
Affiliation(s)
- A R Jayakumar
- Department of Pathology, University of Miami Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sergeeva OA. GABAergic transmission in hepatic encephalopathy. Arch Biochem Biophys 2013; 536:122-30. [PMID: 23624382 DOI: 10.1016/j.abb.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/05/2023]
Abstract
Hepatic encephalopathy (HE)(1) is a neuropsychiatric disorder caused by chronic or acute liver failure. Nearly thirty years ago a hypothesis was formulated explaining the neuropathology of HE by increased GABAergic tone. Recent progress in the GABAA-receptor (GABAAR) molecular pharmacology and biochemistry as well as the physiology of GABAergic transmission provided better understanding of GABA's role in health and disease. A detailed analysis of neuronal populations and their GABAergic afferents affected in HE is still missing. The slow progress in understanding the pathology of GABAergic transmission in HE is due to the high complexity of brain circuitries controlled by multiple types of GABAergic interneurons and the large variety of GABAAR, which are differently affected by pathological conditions and not yet fully identified. The mechanisms of action of the GABAAR agonist taurine, allosteric positive modulators (inhibitory neurosteroids, anaesthetics, benzodiazepines and histamine) and inhibitors of the GABAAR (excitatory neurosteroids, Ro15-4513) are discussed with respect to HE pathophysiology. Perspectives for GABAergic drugs in the symptomatic treatment of HE are suggested.
Collapse
Affiliation(s)
- Olga A Sergeeva
- Department of Neurophysiology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| |
Collapse
|
15
|
Palomero-Gallagher N, Zilles K. Neurotransmitter receptor alterations in hepatic encephalopathy: a review. Arch Biochem Biophys 2013; 536:109-21. [PMID: 23466244 DOI: 10.1016/j.abb.2013.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 01/07/2023]
Abstract
Hepatic encephalopathy (HE), a complex neuropsychiatric syndrome with symptoms ranging from subtle neuropsychiatric and motor disturbances to deep coma and death, is thought to be a clinical manifestation of a low-grade cerebral oedema associated with an altered neuron-astrocyte crosstalk and exacerbated by hyperammonemia and oxidative stress. These events are tightly coupled with alterations in neurotransmission, either in a causal or a causative manner, resulting in a net increase of inhibitory neurotransmission. Therefore, research focussed mainly on the potential role of γ-aminobutyric acid-(GABA) or glutamate-mediated neurotransmission in the pathophysiology of HE, though roles for other neurotransmitters (e.g. serotonin, dopamine, adenosine and histamine) or for neurosteroids or endogenous benzodiazepines have also been suggested. Therefore, we here review HE-related alterations in neurotransmission, focussing on changes in the levels of classical neurotransmitters and the neuromodulator adenosine, variations in the activity and/or concentrations of key enzymes involved in their metabolism, as well as in the densities of their receptors.
Collapse
|
16
|
Jayakumar AR, Tong XY, Ospel J, Norenberg MD. Role of cerebral endothelial cells in the astrocyte swelling and brain edema associated with acute hepatic encephalopathy. Neuroscience 2012; 218:305-16. [PMID: 22609932 PMCID: PMC4714767 DOI: 10.1016/j.neuroscience.2012.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/25/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022]
Abstract
Brain edema is an important complication of acute hepatic encephalopathy (AHE), and astrocyte swelling is largely responsible for its development. Elevated blood and brain ammonia levels have been considered as major etiological factors in this edema. In addition to ammonia, recent studies have suggested that systemic infection, inflammation (and associated cytokines (CKs)), as well as endotoxin (lipopolysaccharide (LPS)) are also involved in AHE-associated brain edema. As endothelial cells (ECs) are the first resident brain cells exposed to blood-borne "noxious agents" (i.e., ammonia, CKs, LPS) that are present in AHE, these cells may be in a critical position to react to these agents and trigger a process resulting in astrocyte swelling/brain edema. We therefore examined the effect of conditioned media (CM) from ammonia, LPS and cytokine-treated cultured brain ECs on cell swelling in cultured astrocytes. CM from ammonia-treated ECs when added to astrocytes caused significant cell swelling, and such swelling was potentiated when astrocytes were exposed to CM from ECs treated with a combination of ammonia, LPS and CKs. We also found an additive effect when astrocytes were exposed to ammonia along with CM from ammonia-treated ECs. Additionally, ECs treated with ammonia showed a significant increase in the production of oxy-radicals, nitric oxide (NO), as well as evidence of oxidative/nitrative stress and activation of the transcription factor nuclear factor kappa B (NF-κB). CM derived from ECs treated with ammonia, along with antioxidants (AOs) or the NF-κB inhibitor BAY 11-7082, when added to astrocytes resulted in a significant reduction in cell swelling, as compared to the effect of CM from ECs-treated only with ammonia. We also identified increased nuclear NF-κB expression in rat brain cortical ECs in the thioacetamide (TAA) model of AHE. These studies suggest that ECs significantly contribute to the astrocyte swelling/brain edema in AHE, likely as a consequence of oxidative/nitrative stress and activation of NF-κB.
Collapse
Affiliation(s)
- A R Jayakumar
- South Florida Foundation for Research & Education Inc., Veterans Affairs Medical Center, Miami, FL, USA
| | | | | | | |
Collapse
|
17
|
Abstract
The earliest hypothesis of the pathogenesis of HE implicated ammonia, although effects of appreciable concentrations of this neurotoxin did not resemble HE. Altered eurotransmission in the brain was suggested by similarities between increased GABA-mediated inhibitory neurotransmission and HE, specifically decreased consciousness and impaired motor function. Evidence of increased GABAergic tone in models of HE has accumulated; potential mechanisms include increased synaptic availability of GABA and accumulation of natural benzodiazepine receptor ligands with agonist properties. Pathophysiological concentrations of ammonia associated with HE, have the potential of enhancing GABAergic tone by mechanisms that involve its interactions with the GABAa receptor complex.
Collapse
Affiliation(s)
- E Anthony Jones
- Division of Gastroenterology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | | |
Collapse
|
18
|
Investigation of hepatoprotective activity of induced pluripotent stem cells in the mouse model of liver injury. J Biomed Biotechnol 2011; 2011:219060. [PMID: 21808596 PMCID: PMC3144694 DOI: 10.1155/2011/219060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/27/2011] [Indexed: 01/14/2023] Open
Abstract
To date liver transplantation is the only effective treatment for end-stage liver diseases. Considering the potential of pluripotency and differentiation into tridermal lineages, induced pluripotent stem cells (iPSCs) may serve as an alternative of cell-based therapy. Herein, we investigated the effect of iPSC transplantation on thioacetamide- (TAA-) induced acute/fulminant hepatic failure (AHF) in mice. Firstly, we demonstrated that iPSCs had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that expressed various hepatic markers, including albumin, α-fetoprotein, and hepatocyte nuclear factor-3β, and exhibited biological functions. Intravenous transplantation of iPSCs effectively reduced the hepatic necrotic area, improved liver functions and motor activity, and rescued TAA-treated mice from lethal AHF. 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate cell labeling revealed that iPSCs potentially mobilized to the damaged liver area. Taken together, iPSCs can effectively rescue experimental AHF and represent a potentially favorable cell source of cell-based therapy.
Collapse
|
19
|
Jayakumar AR, Valdes V, Norenberg MD. The Na-K-Cl cotransporter in the brain edema of acute liver failure. J Hepatol 2011; 54:272-8. [PMID: 21056502 DOI: 10.1016/j.jhep.2010.06.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/15/2010] [Accepted: 06/28/2010] [Indexed: 01/29/2023]
Abstract
BACKGROUND & AIMS Astrocyte swelling and brain edema associated with increased intracranial pressure are major complications of acute liver failure (ALF). The mechanism for such astrocyte swelling/brain edema, however, is not well understood. We recently found that ammonia, a key etiological factor in ALF, caused the activation of the Na-K-Cl cotransporter-1 (NKCC1) in cultured astrocytes, and that inhibition of such activation led to a reduction in astrocyte swelling, suggesting that NKCC1 activation may be an important factor in the mechanism of brain edema in ALF. To determine whether NKCC activation is also involved in brain edema in vivo, we examined whether NKCC activation occurs in the thioacetamide (TAA) rat model of ALF and determined whether treatment with the NKCC inhibitor bumetanide reduces the severity of brain edema in TAA-treated rats. METHODS Brain water content was measured using the gravimetric method. NKCC1 phosphorylation and protein expression were measured by Western blots. NKCC activity was measured in brain cortical slices. RESULTS NKCC activity was elevated in brain cortical slices of TAA-treated rats as compared to sham animals. Western blot analysis showed significant increases in total as well as phosphorylated (activated) NKCC1 protein expression in the cortical tissue. These findings were associated with a significant increase in brain water content which was attenuated by treatment with the NKCC inhibitor bumetanide. CONCLUSIONS Our studies suggest the involvement of NKCC in the development of brain edema in experimental ALF, and that targeting NKCC may represent a useful therapeutic strategy in humans with ALF.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Department of Pathology, University of Miami, School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
20
|
Oria M, Chatauret N, Chavarria L, Romero-Giménez J, Palenzuela L, Pardo-Yules B, Arranz JA, Bodega G, Raguer N, Córdoba J. Motor-evoked potentials in awake rats are a valid method of assessing hepatic encephalopathy and of studying its pathogenesis. Hepatology 2010; 52:2077-85. [PMID: 20890898 DOI: 10.1002/hep.23938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/17/2010] [Indexed: 12/07/2022]
Abstract
UNLABELLED Experimental models of hepatic encephalopathy (HE) are limited by difficulties in objectively monitoring neuronal function. There are few models that examine a well-defined neuronal pathway and lack the confounding effects of anesthetics. Motor-evoked potentials (MEPs) assess the function of the motor tract, which has been shown to be impaired in patients with cirrhosis. MEPs were elicited by cranial stimulation (central) and compound motor action potential by sciatic nerve stimulation (peripheral) in several models of HE in the rat. The experiments were performed using subcutaneous electrodes without anesthetics. Brain water content was assessed by gravimetry, brain metabolites were measured by magnetic resonance spectroscopy, and amino acids in microdialysates from the frontal cortex were analyzed by high-performance liquid chromatography. Abnormalities of MEP were observed in acute liver failure (ALF) induced by hepatic devascularization in relation to the progression of neurological manifestations. Similar disturbances were seen in rats with portocaval anastomosis after the administration of blood or lipopolysaccharide, but were absent in rats with biliary duct ligation. Hypothermia (≤35°C) and mannitol prevented the development of brain edema in acute liver failure, but only hypothermia avoided the decrease in the amplitude of MEP. Disturbances of MEP caused by the administration of blood into the gastrointestinal tract in rats with portocaval anastomosis were associated with an increase in ammonia, glutamine, and glutamate in brain microdialysate. CONCLUSION Assessment of MEP in awake rats is a valid method to monitor HE in models of ALF and precipitated HE. This method shows the lack of efficacy of mannitol, a therapy that decreases brain edema, and relates disturbances of the function of the motor tract to ammonia and its metabolites.
Collapse
Affiliation(s)
- Marc Oria
- Servei de Medicina Interna-Hepatologia, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
NF-κB in the mechanism of brain edema in acute liver failure: studies in transgenic mice. Neurobiol Dis 2010; 41:498-507. [PMID: 21087666 DOI: 10.1016/j.nbd.2010.10.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/12/2010] [Accepted: 10/27/2010] [Indexed: 12/26/2022] Open
Abstract
Astrocyte swelling and brain edema are major complications of the acute form of hepatic encephalopathy (acute liver failure, ALF). While elevated brain ammonia level is a well-known etiological factor in ALF, the mechanism by which ammonia brings about astrocyte swelling is not well understood. We recently found that astrocyte cultures exposed to ammonia activated nuclear factor-κB (NF-κB), and that pharmacological inhibition of such activation led to a reduction in astrocyte swelling. Although these findings suggest the involvement of NF-κB in astrocyte swelling in vitro, it is not known whether NF-κB contributes to the development of brain edema in ALF in vivo. Furthermore, pharmacological agents used to inhibit NF-κB may have non-specific effects. Accordingly, we used transgenic (Tg) mice that have a functional inactivation of astrocytic NF-κB and examined whether these mice are resistant to ALF-associated brain edema. ALF was induced in mice by treatment with the hepatotoxin thioacetamide (TAA). Wild type (WT) mice treated with TAA showed a significant increase in brain water content (1.65%) along with prominent astrocyte swelling and spongiosis of the neuropil, consistent with the presence of cytotoxic edema. These changes were not observed in Tg mice treated with TAA. Additionally, WT mice with ALF showed an increase in inducible nitric oxide synthase (iNOS) immunoreactivity in astrocytes from WT mice treated with TAA (iNOS is known to be activated by NF-κB and to contribute to cell swelling). By contrast, Tg mice treated with TAA did not exhibit brain edema, histological changes nor an increase in iNOS immunoreactivity. We also examined astrocytes cultures derived from Tg mice to determine whether these cells exhibit a lesser degree of swelling and cytopathological changes following exposure to ammonia. Astrocyte cultures derived from Tg mice showed no cell swelling nor morphological abnormalities when exposed to ammonia for 24h. By contrast, ammonia significantly increased cell swelling (31.7%) in cultured astrocytes from WT mice and displayed cytological abnormalities. Moreover, we observed a lesser increment in iNOS and NADPH oxidase activity (the latter is also known to be activated by NF-κB and to contribute to astrocyte swelling) in astrocyte cultures from Tg mice treated with ammonia, as compared to ammonia-treated WT mice astrocytes. These findings strongly suggest that activation of NF-κB is a critical factor in the development of astrocyte swelling/brain edema in ALF.
Collapse
|
22
|
Abstract
Intracranial hypertension caused by brain edema and associated astrocyte swelling is a potentially lethal complication of acute liver failure (ALF). Mechanisms of edema formation are not well understood, but elevated levels of blood and brain ammonia and its by-product glutamine have been implicated in this process. Since aquaporin-4 (AQP4) has been implicated in brain edema in other conditions, we examined its role in a rat model of ALF induced by the hepatotoxin thioacetamide. Rats with ALF showed increased AQP4 protein in the plasma membrane (PM). Total tissue levels of AQP4 protein and mRNA levels were not altered, indicating that increased AQP4 is not transcriptionally mediated but likely reflects a more stable anchoring of AQP4 to the PM and/or interference with its degradation. An increase inAQP4 immunoreactivity in thePM was observed in perivascular astrocytes in ALF. Rats with ALF also showed increased levels of α-syntrophin, a protein involved in anchoringAQP4 to perivascular astrocytic end-feet. Increased AQP4 andα-syntrophin levels were inhibited by L-histidine, an inhibitor of glutamine transport into mitochondria, suggesting a role for glutamine in the increase of PM levels of AQP4. These results indicate that increased AQP4 PM levels in perivascular astrocytic end-feet are likely critical to the development of brain edema in ALF.
Collapse
|
23
|
Rama Rao KV, Reddy PVB, Tong X, Norenberg MD. Brain edema in acute liver failure: inhibition by L-histidine. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1400-8. [PMID: 20075201 DOI: 10.2353/ajpath.2010.090756] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brain edema and the associated increase in intracranial pressure are potentially lethal complications of acute liver failure (ALF). Astrocyte swelling (cytotoxic edema) represents a significant component of the brain edema in ALF, and elevated blood and brain ammonia levels have been strongly implicated in its formation. We earlier showed in cultured astrocytes that oxidative stress (OS) and the mitochondrial permeability transition (mPT) play major roles in the mechanism of ammonia-induced astrocyte swelling. Glutamine, a byproduct of ammonia metabolism, has also been shown to induce OS, the mPT, and astrocyte swelling. Such effects of glutamine were suggested to be mediated by its hydrolysis in mitochondria, potentially yielding high levels of ammonia in this organelle and leading to OS and the mPT. L-histidine, an inhibitor of mitochondrial glutamine transport, was recently shown to mitigate OS, mPT, and cell swelling in cultured astrocytes treated with ammonia. The present study examined whether L-histidine similarly abolishes OS, the mPT, and brain edema in a rat model of ALF. Treatment of rats with thioacetamide caused a significant degree of brain edema, which was associated with induction of OS and the mPT. These changes were completely abolished by L-histidine, supporting a key role of mitochondrial glutamine transport and hydrolysis in the mechanism of the brain edema associated with ALF.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami, Miller School of Medicine, PO Box 016960, Miami, Fl 33101, USA
| | | | | | | |
Collapse
|
24
|
Huang HC, Wang SS, Lee FY, Chan CY, Chang FY, Lin HC, Chu CJ, Chen YC, Lee SD. Simvastatin for rats with thioacetamide-induced liver failure and encephalopathy. J Gastroenterol Hepatol 2008; 23:e236-42. [PMID: 17573832 DOI: 10.1111/j.1440-1746.2007.04988.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Nitric oxide (NO) inhibition aggravates hepatic damage and encephalopathy and increases mortality in rats with thioacetamide (TAA)-induced acute liver failure. Statins enhance NO synthase expression beyond their lipid-lowering capability, but the impact on encephalopathy remains unexplored. The aim of this study was to assess the effects of simvastatin on rats with TAA-induced acute liver damage and hepatic encephalopathy. METHODS Sprague-Dawley rats received TAA (350 mg/kg/day) or normal saline (NS) by intraperitoneal injection for 3 consecutive days. Two days before injections, each group was divided into three subgroups, taking (i) distilled water; (ii) simvastatin (20 mg/kg/day); or (iii) simvastatin plus N(G)-nitro-l-arginine methyl ester (L-NAME, 25 mg/kg/day) by oral gavage for 5 days. On the fifth day, severity of encephalopathy was assessed and plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin and ammonia were measured. RESULTS The TAA subgroups showed higher ALT, AST, bilirubin and ammonia levels and lower motor activity counts as compared with the NS subgroups. Among the TAA-treated subgroups, rats with simvastatin treatment exerted higher motor activity counts and survival rate (P = 0.043), and a trend of lower ALT, AST, bilirubin and ammonia levels than those receiving saline. All rats that underwent simvastatin plus L-NAME treatment died during or after TAA injections. CONCLUSIONS Simvastatin improved encephalopathy and survival in TAA-administered rats. The beneficial effect was offset by L-NAME, suggesting the role of NO in liver damage and encephalopathy.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of Gastroenterology, Taipei Veterans General Hospital, and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Metabolic encephalopathy is an acute disturbance in cellular metabolism in the brain evoked by conditions of hypoxia, hypoglycaemia, oxidative stress and/or inflammation. It usually develops acutely or subacutely and is reversible if the systemic disorder is treated. If left untreated, however, metabolic encephalopathy may result in secondary structural damage to the brain. Most encephalopathies are present with neuropsychiatric symptoms, one in particular being depression. However, mood disorders are often co-morbid with cardiovascular, liver, kidney and endocrine disorders, while increasing evidence concurs that depression involves inflammatory and neurodegenerative processes. This would suggest that metabolic disturbances resembling encephalopathy may underscore the basic neuropathology of depression at a far deeper level than currently realized. Viewing depression as a form of encephalopathy, and exploiting knowledge gleaned from our understanding of the neurochemistry and treatment of metabolic encephalopathy, may assist in our understanding of the neurobiology of depression, but also in realizing new ideas in the pharmacotherapy of mood disorders.
Collapse
Affiliation(s)
- Brian H Harvey
- Unit for Drug Research and Development, Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
26
|
Ahboucha S, Butterworth RF. The neurosteroid system: implication in the pathophysiology of hepatic encephalopathy. Neurochem Int 2008; 52:575-587. [PMID: 17610999 DOI: 10.1016/j.neuint.2007.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/23/2007] [Accepted: 05/03/2007] [Indexed: 01/09/2023]
Abstract
Hepatic encephalopathy (HE) is a serious cerebral complication of both acute and chronic liver failure. In acute liver failure, astrocytes undergo swelling which results in increased intracranial pressure and may lead to brain herniation and death. In chronic liver failure, Alzheimer-type II astrocytosis is the characteristic neuropathologic finding. Patients with liver failure manifest severe alterations of their quality of life including sleep disorders as well as memory, learning, and locomotor abnormalities. Neurosteroids (NS) are synthesized in the brain mainly by astrocytes independent of peripheral steroidal sources (adrenals and gonads) and are suggested to play a role in the pathogenesis of HE. NS bind and modulate different types of neural receptors; effects on the gamma amino butyric acid (GABA)-A receptor complex are the most extensively studied. For example, the NS tetrahydroprogesterone (allopregnanolone), and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of the GABA-A receptor. As a consequence of modulation of these receptors, NS stimulate inhibitory neurotransmission in the CNS, and neuroinhibitory changes including "increased GABA-ergic tone" have been suggested as pathophysiological mechanisms in HE. Moreover, some NS bind to intracellular receptors through which they also regulate gene expression, and there is substantial evidence confirming that expression of genes coding for key astrocytic and neuronal proteins are altered in HE. This review summarizes findings consistent with the involvement of NS in human and experimental HE.
Collapse
Affiliation(s)
- Samir Ahboucha
- Neuroscience Research Unit, Hôpital Saint-Luc (CHUM), 1058 St-Denis, Montreal, Quebec, Canada H2X 3J4
| | | |
Collapse
|
27
|
Neuropsychological Aspects of Liver Disease and its Treatment. Neurochem Res 2007; 33:683-90. [DOI: 10.1007/s11064-007-9522-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2007] [Indexed: 01/18/2023]
|
28
|
Huang HC, Wang SS, Chan CY, Chen YC, Lee FY, Chang FY, Chu CJ, Lin HC, Lu RH, Lee SD. Role of hepatic nitric oxide synthases in rats with thioacetamide-induced acute liver failure and encephalopathy. J Chin Med Assoc 2007; 70:16-23. [PMID: 17276928 DOI: 10.1016/s1726-4901(09)70295-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hepatic encephalopathy is neuropsychiatric derangement secondary to hepatic decompensation or portal-systemic shunting. Nitric oxide (NO) synthase inhibition aggravates encephalopathy and increases mortality in rats with thioacetamide (TAA)-induced acute liver failure, suggesting a protective role of NO. This study investigated the roles of endothelium-derived constitutive NO synthase (eNOS) and inducible NOS (iNOS) in the liver of rats with fulminant hepatic failure and encephalopathy. METHODS Male Sprague-Dawley rats (300-350 g) were randomized to receive TAA 350 mg/kg/day, by intraperitoneal injection or normal saline for 3 days. Severity of encephalopathy was assessed with the Opto-Varimex animal activity meter. Plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, and bilirubin were measured. Hepatic iNOS and eNOS RNA and protein expressions were assessed by reverse transcription-polymerase chain reaction and Western blot analyses, respectively. RESULTS The TAA group showed lower motor activity counts than the normal saline group. Hepatic eNOS, but not iNOS, mRNA and protein expressions were enhanced in the TAA group. In addition, hepatic eNOS mRNA expression was negatively correlated with total movement but positively correlated with ALT and AST. Protein expression of hepatic eNOS was positively correlated with ALT, AST and bilirubin. CONCLUSION Upregulation of hepatic eNOS was observed in rats with TAA-induced fulminant hepatic failure and encephalopathy, which might play a regulatory role.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, and National Yang-Ming University School of Medicine, Taipei, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chu CJ, Chang CC, Wang TF, Lee FY, Chang FY, Chen YC, Chan CC, Huang HC, Wang SS, Lee SD. Detrimental effects of nitric oxide inhibition on hepatic encephalopathy in rats with thioacetamide-induced fulminant hepatic failure: role of nitric oxide synthase isoforms. J Gastroenterol Hepatol 2006; 21:1194-9. [PMID: 16824075 DOI: 10.1111/j.1440-1746.2006.04310.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Hepatic encephalopathy is a complex neuropsychiatric syndrome. A previous study showed that chronic nitric oxide (NO) inhibition aggravated the severity of encephalopathy in thioacetamide (TAA)-treated rats. The present study investigated the relative contribution of NO synthase (NOS) isoforms on the severity of hepatic encephalopathy in TAA-treated rats. METHOD Fulminant hepatic failure was induced in male Sprague-Dawley rats by intraperitoneal injection of TAA (350 mg/kg/day) for 3 days. Rats were divided into three groups to receive N(omega)-nitro-L-arginine methyl ester (L-NAME, a non-selective NOS inhibitor, 25 mg/kg/day in tap water), L-canavanine (an inducible NOS inhibitor, 100 mg/kg/day via intraperitoneal injection) or normal saline (N/S) from 2 days prior to TAA administration and lasting for 5 days. Severity of encephalopathy was assessed by the counts of motor activity. Plasma levels of tumor necrosis factor-alpha (TNF- alpha) were determined by enzyme-linked immunosorbent assay (ELISA), and total bilirubin, alanine aminotransferase (ALT) and creatinine were determined by colorimetric assay. RESULTS Compared with L-canavanine or N/S-treated rats (0% and 4%, respectively), the mortality rate was significantly higher in rats receiving L-NAME administration (29%, P < 0.005). Inhibition of NO created detrimental effects on the counts of motor activities (P < 0.05). Rats treated with L-NAME had significantly higher plasma levels of total bilirubin, ALT, creatinine and TNF- alpha as compared with rats treated with L-canavanine or N/S (P < 0.01). CONCLUSION Chronic L-NAME administration, but not L-canavanine, had detrimental effects on the severity of hepatic damage and motor activities in TAA-treated rats. These results suggest that constitutive NOS activities play a major protective role in rats with fulminant hepatic failure.
Collapse
Affiliation(s)
- Chi-Jen Chu
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ahboucha S, Coyne L, Hirakawa R, Butterworth RF, Halliwell RF. An interaction between benzodiazepines and neuroactive steroids at GABA A receptors in cultured hippocampal neurons. Neurochem Int 2006; 48:703-707. [PMID: 16487630 DOI: 10.1016/j.neuint.2005.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/13/2005] [Accepted: 12/15/2005] [Indexed: 11/21/2022]
Abstract
Neurosteroids are modulators of several receptors and ion channels and are implicated in the pathophysiology of several neuropsychiatric diseases including hepatic encephalopathy (HE). The neurosteroid, allopregnanolone, a positive allosteric modulator of GABA(A) receptors, accumulates in the brains of HE patients where it can potentiate GABA(A) receptor-mediated responses. Attenuation of the effects of neurosteroids on GABA-ergic neurotransmission is therefore of interest for the management of HE. In the present study, we determined the effect of the benzodiazepine partial inverse agonist, Ro15-4513, and the benzodiazepine antagonist, flumazenil on modulation of the GABA(A) mediated chloride currents by allopregnanolone and on spontaneous synaptic activity in cultured hippocampal neurons using the patch-clamp technique. Allopregnanolone (0.03-0.3 microM), dose-dependently potentiated GABA-induced currents, an action significantly reduced by Ro15-4513 (10 microM). In contrast, flumazenil (10 microM) had no effect on the ability of allopregnanolone to potentiate GABA(A) currents but it blocked the effects of Ro15-4513. The frequency of spontaneous synaptic activity was significantly reduced in the presence of allopregnanolone (0.1 microM) from 1.5+/-0.7 to 0.1+/-0.04Hz. This action was partially reversed by Ro15-4513 (10 microM) but was not significantly influenced by flumazenil (10 microM). These findings suggest that the beneficial affects of Ro15-4513 in experimental HE result from attenuation of the effects of neurosteroids at GABA(A) receptors. Our results may provide a rational basis for the use of benzodiazepine inverse agonists in the management and treatment of hepatic encephalopathy in patients with liver failure.
Collapse
Affiliation(s)
- Samir Ahboucha
- Neuroscience Research Unit, CHUM-Hôpital Saint-Luc, 1058 St. Denis, Montreal, Quebec, Canada H2X 3J4
| | | | | | | | | |
Collapse
|
31
|
Rajagopalan P, Berthiaume F, Tilles AW, Toner M, Yarmush ML. Selective enhancement of cytochrome p-450 activity in rat hepatocytes by in vitro heat shock. ACTA ACUST UNITED AC 2005; 11:1527-34. [PMID: 16259607 DOI: 10.1089/ten.2005.11.1527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the effect of heat shock on cytochrome P-450 activity in rat hepatocytes and report a significant, selective, and time-dependent enhancement of cytochrome P-450 activity in heatshocked hepatocytes. Stable long-term cultures of rat hepatocytes were heat shocked (42.5 degrees C) for 1 to 3 h and allowed to recover at 37 degrees C. Cytochrome P-450-dependent ethoxyresorufin O-dealkylase (EROD) and benzyloxyresorufin O-dealkylase (BROD) activities were measured up to 48 h after heat shock treatment. In general, the optimal heat shock exposure time was between 2 and 3 h. BROD activity (induced by sodium phenobarbital) increased approximately 6-fold in hepatocytes heat shocked for 3 h in comparison with hepatocytes maintained at 37 degrees C. EROD activity (induced by 3-methylcholanthrene) increased 2-fold on exposure to heat shock for 2 h. The expression of inducible heat shock proteins Hsp70 and Hsp32 was verified by Western immunoblot analyses. In the absence of the appropriate inducer, heat shock treatment did not enhance cytochrome P-450 activity. Furthermore, enhanced P-450 enzyme activity was delayed for heat-shocked hepatocytes. It is hypothesized that heat shock treatment attenuates the negative effects triggered by the addition of the toxic inducers and possibly stabilizes the levels of cytochrome P-450 proteins. These results suggest that heat shock treatment may be used to enhance the functionality of hepatocytes, specifically, in bioartificial liver assist devices.
Collapse
Affiliation(s)
- Padmavathy Rajagopalan
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
32
|
Ahboucha S, Butterworth RF. Role of endogenous benzodiazepine ligands and their GABA-A--associated receptors in hepatic encephalopathy. Metab Brain Dis 2005; 20:425-437. [PMID: 16382352 DOI: 10.1007/s11011-005-7928-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Benzodiazepine receptor ligands are suggested to play a role in the pathogenesis of hepatic encephalopathy (HE). Accumulation of these ligands in brain was suggested to explain in part the notion of"increased GABAergic tone," the rational for which arose initially from reports of a beneficial effect of the selective benzodiazepine antagonist flumazenil in HE patients. It was suggested on the basis of the effect of flumazenil in human HE that liver failure may result in alterations of the density and/or affinity of the benzodiazepine-associated GABA-A receptor site. Subsequent controlled-clinical trials showed that fumazenil had a transient beneficial effect in only a subpopulation of HE patients. In contrast to the antagonists, partial inverse agonists of the benzodiazepine receptor have unequivocal beneficial effects on behavioral and electro-physiological performance in all experimental models of HE studied so far. Benzodiazepine-associated GABA-A receptors have consistently been demonstrated to be unaltered in both human and experimental HE. Contrary to initial reports, the so-called "endogenous benzodiazepines" do not appear to be significantly related to the pathogenesis of HE. On the other hand, nonbenzodiazepine GABA-A receptor complex modulators, such as neuro-steroids, recently identified in brain in human and experimental HE, may provide a new mechanistic basis for this disorder and lead to novel treatments for human HE.
Collapse
Affiliation(s)
- Samir Ahboucha
- Neuroscience Research Unit, CHUM-Hôpital Saint-Luc, Montreal, Quebec, Canada
| | | |
Collapse
|
33
|
Abstract
AIMS Endocannabinoids are endogenous compounds that bind to the same receptors as tetrahydrocannabinol, the active component in marijuana and hashish. They have been found to have many physiological and patho-physiological functions, including mood alteration, control of feeding and appetite, motor and co-ordination activities, analgesia, immune modulation and gut motility. In this review we aim to elucidate current knowledge as to their role in liver physiology and disease. METHODS The major findings published to date concerning endocannabinoids and liver disease are described, and their implications with regard to understanding disease mechanisms, and the development of new treatments is considered. RESULTS Recently, endocannabinoids have been implicated in the hemodynamic alterations occurring in cirrhosis. These changes appear to be mediated via specific cannabinoid receptors (CB1) on splanchnic and hepatic vascular endothelium. Plasma levels of endocannabinoids also seem to be elevated in hepatitis, and are involved in apoptosis of hepatocytes by a membrane mechanism not related to a specific receptor. Other studies suggest a beneficial role for cannabinoids in reducing the inflammation of experimental hepatitis. In an animal model of acute hepatic failure, both endocannabinoids and the antagonist to the CB1 receptor have been found to have a beneficial effect on neurological and cognitive function. CONCLUSIONS Endocannabinoids appear to be involved in several aspects of acute and chronic liver disease, including vascular changes, modulation of inflammatory process and neurological function, Further research may provide new insights into the pathophysiology of liver disease, as well as a basis for novel treatment modalities.
Collapse
Affiliation(s)
- Ezra Gabbay
- Department of Metabolism and Human Nutrition, Hadassah-Hebrew University Medical School, Jerusalem 91120, Israel.
| | | | | | | | | |
Collapse
|
34
|
Avraham Y, Israeli E, Gabbay E, Okun A, Zolotarev O, Silberman I, Ganzburg V, Dagon Y, Magen I, Vorobia L, Pappo O, Mechoulam R, Ilan Y, Berry EM. Endocannabinoids affect neurological and cognitive function in thioacetamide-induced hepatic encephalopathy in mice. Neurobiol Dis 2005; 21:237-45. [PMID: 16102970 DOI: 10.1016/j.nbd.2005.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 07/11/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022] Open
Abstract
Endocannabinoids function as neurotransmitters and neuromodulators in the central nervous system via specific receptors and apparently have a neuroprotective role. We assumed that the endocannabinoid system could be involved in the pathogenesis of hepatic encephalopathy (HE), a neuropsychiatric syndrome due to liver disease. We used a mouse model of a thioacetamide induced fulminant hepatic failure. We found that the levels of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) were elevated in the brain. Treatment with either 2-AG or with the CB1 receptor antagonist, SR141716A, improved a neurological score, activity and cognitive function. Activation of the CB2 receptor by a selective agonist, HU308, also improved the neurological score. 2-AG activity could be blocked with the specific CB2 receptor antagonist SR144528A. The CB1 receptor agonist noladin ether was inactive. We conclude that the endocannabinoid system may play an important role in the pathogenesis of HE. Modulation of this system either by exogenous agonists specific for the CB2 receptors or possibly also by antagonists to the CB1 receptors may have therapeutic potential.
Collapse
Affiliation(s)
- Yosefa Avraham
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel 91120.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen CT, Chu CJ, Wang TF, Lu RH, Lee FY, Chang FY, Lin HC, Chan CC, Wang SS, Huang HC, Lee SD. Evidence against a role for endotoxin in the hepatic encephalopathy of rats with thioacetamide-induced fulminant hepatic failure. J Gastroenterol Hepatol 2005; 20:450-5. [PMID: 15740491 DOI: 10.1111/j.1440-1746.2004.03550.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Endotoxin has been proposed to participate in the development of hepatic encephalopathy. However, there is no published data concerning the effects of endotoxin neutralization on the degree of hepatic encephalopathy. The present study investigated the effect of chronic intraperitoneal injection of polymyxin B, a neutralizing antagonist of endotoxin, on hepatic encephalopathy in rats with thioacetamide (TAA)-induced fulminant hepatic failure. METHODS Male Sprague-Dawley rats weighing 300-350 g were used. Fulminant hepatic failure was induced by intraperitoneal injection of TAA (350 mg/kg/day) for 3 days. Two series of rats were designed to compare the effects of low dose (0.1 mg) or high dose (0.2 mg) intraperitoneal polymyxin B administration versus normal saline (NS) on hepatic encephalopathy. The injection was twice daily started from 2 days prior to TAA administration and lasted for 5 days. Severity of encephalopathy was assessed by the counts of motor activity in an Opto-Varimex animal activity meter. Plasma levels of endotoxin and tumor necrosis factor-alpha (an index of liver injury) were measured by Limulus assay and the ELISA method, respectively. RESULTS Neutralization of endotoxin by either low dose or high dose polymyxin B administration did not significantly alleviate the degree of hepatic encephalopathy, as represented by the counts of motor activities (P > 0.05). Plasma levels of endotoxin and tumor necrosis factor-alpha were comparable between rats treated with polymyxin B or NS (P > 0.05). CONCLUSION Our findings do not support the notion that endotoxin plays a major role in the pathogenesis of hepatic encephalopathy in rats with TAA-induced fulminant hepatic failure.
Collapse
Affiliation(s)
- Chien-Ting Chen
- Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chu CJ, Hsiao CC, Wang TF, Chan CY, Lee FY, Chang FY, Chen YC, Huang HC, Wang SS, Lee SD. Prostacyclin inhibition by indomethacin aggravates hepatic damage and encephalopathy in rats with thioacetamide-induced fulminant hepatic failure. World J Gastroenterol 2005; 11:232-6. [PMID: 15633222 PMCID: PMC4205408 DOI: 10.3748/wjg.v11.i2.232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Vasodilatation and increased capillary permeability have been proposed to be involved in the pathogenesis of acute and chronic form of hepatic encephalopathy. Prostacyclin (PGI2) and nitric oxide (NO) are important contributors to hyperdynamic circulation in portal hypertensive states. Our previous study showed that chronic inhibition of NO had detrimental effects on the severity of encephalopathy in thioacetamide (TAA)-treated rats due to aggravation of liver damage. To date, there are no detailed data concerning the effects of PGI2 inhibition on the severity of hepatic encephalopathy during fulminant hepatic failure.
METHODS: Male Sprague-Dawley rats weighing 300-350 g were used. Fulminant hepatic failure was induced by intraperitoneal injection of TAA (350 mg/(kg.d) for 3 d. Rats were divided into two groups to receive intraperitoneal injection of indomethacin (5 mg/(kg.d), n = 20) or normal saline (N/S, n = 20) for 5 d, starting 2 d before TAA administration. Severity of encephalopathy was assessed by the counts of motor activity measured with Opto-Varimex animal activity meter. Plasma tumor necrosis factor-α (TNF-α, an index of liver injury) and 6-keto-PGF1α (a metabolite of PGI2) levels were measured by enzyme-linked immunosorbent assay.
RESULTS: As compared with N/S-treated rats, the mortality rate was significantly higher in rats receiving indomethacin (20% vs 5%, P<0.01). Inhibition of PGI2 created detrimental effects on total movement counts (indomethacin vs N/S: 438±102 vs 841±145 counts/30 min, P<0.05). Rats treated with indomethacin had significant higher plasma levels of TNF-α (indomethacin vs N/S: 22±5 vs 10±1 pg/mL, P<0.05) and lower plasma levels of 6-keto-PGF1α (P<0.001), but not total bilirubin or creatinine (P>0.05), as compared with rats treated with N/S.
CONCLUSION: Chronic indomethacin administration has detrimental effects on the severity of encephalopathy in TAA-treated rats and this phenomenon may be attributed to the aggravation of liver injury. This study suggests that PGI2 may provide a protective role in the development of fulminant hepatic failure.
Collapse
Affiliation(s)
- Chi-Jen Chu
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Scorticati C, Prestifilippo JP, Eizayaga FX, Castro JL, Romay S, Fernández MA, Lemberg A, Perazzo JC. Hyperammonemia, brain edema and blood-brain barrier alterations in prehepatic portal hypertensive rats and paracetamol intoxication. World J Gastroenterol 2004; 10:1321-1324. [PMID: 15112350 PMCID: PMC4622774 DOI: 10.3748/wjg.v10.i9.1321] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 11/02/2003] [Accepted: 12/24/2003] [Indexed: 12/15/2022] Open
Abstract
AIM To study the blood-brain barrier integrity, brain edema, animal behavior and ammonia plasma levels in prehepatic portal hypertensive rats with and without acute liver intoxication. METHODS Adults male Wistar rats were divided into four groups. Group I: sham operation; II: Prehepatic portal hypertension, produced by partial portal vein ligation; III: Acetaminophen intoxication and IV: Prehepatic portal hypertension plus acetaminophen. Acetaminophen was administered to produce acute hepatic injury. Portal pressure, liver serum enzymes and ammonia plasma levels were determined. Brain cortex water content was registered and trypan blue was utilized to study blood brain barrier integrity. Reflexes and behavioral tests were recorded. RESULTS Portal hypertension was significantly elevated in groups II and IV. Liver enzymes and ammonia plasma levels were increased in groups II, III and IV. Prehepatic portal hypertension (group II), acetaminophen intoxication (group III) and both (group IV) had changes in the blood brain-barrier integrity (trypan blue) and hyperammonemia. Cortical edema was present in rats with acute hepatic injury in groups III and IV. Behavioral test (rota rod) was altered in group IV. CONCLUSION These results suggest the possibility of another pathway for cortical edema production because blood brain barrier was altered (vasogenic) and hyperammonemia was registered (cytotoxic). Group IV, with behavioral altered test, can be considered as a model for study at an early stage of portal-systemic encephalopathy.
Collapse
Affiliation(s)
- Camila Scorticati
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jones EA. Potential mechanisms of enhanced GABA-mediated inhibitory neurotransmission in liver failure. Neurochem Int 2003; 43:509-16. [PMID: 12742098 DOI: 10.1016/s0197-0186(03)00041-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- E Anthony Jones
- Department of Gastrointestinal and Liver Diseases, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam-ZO, The Netherlands.
| |
Collapse
|
39
|
Ruscito BJ, Harrison NL. Hemoglobin metabolites mimic benzodiazepines and are possible mediators of hepatic encephalopathy. Blood 2003; 102:1525-8. [PMID: 12714506 DOI: 10.1182/blood-2003-03-0739] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Liver failure is often accompanied by cognitive impairment and coma, a syndrome known as hepatic encephalopathy (HE). The administration of flumazenil, a benzodiazepine (BZ) antagonist, is effective in reversing the symptoms of HE in many patients. These clinical observations gave rise to notions of an endogenous BZ-like mechanism in HE, but to date no viable candidate compounds have been characterized. We show here that the hemoglobin (Hb) metabolites hemin and protoporphyrin IX (PPIX) interact with the BZ site on the gamma-aminobutyric acid (GABA(A)) receptor and enhance inhibitory synaptic transmission in a manner similar to diazepam and zolpidem. This finding suggests that hemin and PPIX are neuroactive porphyrins capable of acting as endogenous ligands for the central BZ site. The accumulation of these porphyrins under pathophysiologic conditions provides a potentially novel mechanism for the central manifestations of HE.
Collapse
Affiliation(s)
- Brian J Ruscito
- Graduate Program in Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
40
|
Mannaioni G, Carpenedo R, Moroni F. 5-hydroxyindole causes convulsions and increases transmitter release in the CA1 region of the rat hippocampus. Br J Pharmacol 2003; 138:245-53. [PMID: 12522096 PMCID: PMC1573633 DOI: 10.1038/sj.bjp.0705007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 5-hydroxyindole (5-OHi) is a proposed tryptophan metabolite able to cause convulsions when systemically injected into rodents. We studied its effects using microdialysis in vivo and electrophysiological approaches in vitro. 2 Local administration of 5-OHi into the CA1 region of the rat hippocampus, via a microdialysis probe, significantly increased glutamate concentrations in the dialysates. 3 In rat hippocampal slices, using extracellular recordings in the CA1 region, 5-OHi (30-300 microM) increased the amplitude of population spikes and fEPSPs. 4 In the same preparation, using intracellular recordings in CA1 pyramidal neurons, 5-OHi reduced the latency of firing induced by direct depolarization and increased both evoked excitatory and slow inhibitory postsynaptic potential amplitudes, without affecting the resting membrane potential, the after-hyperpolarization or the neuronal input resistance. It also altered GABA(A)-mediated neurotransmission by increasing the frequency and the amplitude of pharmacologically isolated spontaneous inhibitory postsynaptic currents (sIPSC). 5 In separate experiments, performed by measuring AMPA or NMDA-induced depolarization in cortical wedges, 5-OHi did not modify glutamate receptor agonist responses. 6 Our results show that 5-OHi causes convulsions, modifies the properties and the function of the hippocampal circuitry, and facilitates the output of both excitatory and inhibitory transmitters.
Collapse
Affiliation(s)
- Guido Mannaioni
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, U.S.A.
| | | | | |
Collapse
|
41
|
Albrecht J, Zielińska M. The role of inhibitory amino acidergic neurotransmission in hepatic encephalopathy: a critical overview. Metab Brain Dis 2002; 17:283-94. [PMID: 12602505 DOI: 10.1023/a:1021901700493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gamma-Aminobutyric acid (GABA) is the main inhibitory amino acid in the central nervous system (CNS). Experiments with animal models of HE, and with brain slices or cultured CNS cells treated with ammonia, have documented changes in GABA distribution and transport, and modulation of the responses of both the GABA(A)-benzodiazepine receptor complex and GABA(B) receptors. Although many of the data point to an enhancement of GABAergic transmission probably contributing to HE, the evidence is not unequivocal. The major weaknesses of the GABA theory are (1) in a vast majority of HE models, there were no alterations of GABA content in the brain tissue and/or extracellular space, indicating that exposure of neurons to GABA may not have been altered, (2) changes in the affinity and capacity of GABA receptor binding were either absent or qualitatively different in HE models of comparable severity and duration, and (3) no sound changes in the GABAergic system parameters were noted in clinical cases of HE. Taurine (Tau) is an amino acid that is thought to mimic GABA function because of its agonistic properties towards GABA(A) receptors, and to contribute to neuroprotection and osmoregulation. These effects require Tau redistribution between the different cell compartments and the extracellular space. Acute treatment with ammonia evokes massive release of radiolabeled or endogenous Tau from CNS tissues in vivo and in vitro, and the underlying mechanism of Tau release differs from the release evoked by depolarizing conditions or hypoosmotic treatment. Subacute or chronic HE, and also long-term treatment of cultured CNS cells in vitro with ammonia, increase spontaneous Tau "leakage" from the tissue. This is accompanied by a decreased potassium- or hypoosmolarity-induced release of Tau and often by cell swelling, indicating impaired osmoregulation. In in vivo models of HE, Tau leakage is manifested by its increased accumulation in the extrasynaptic space, which may promote inhibitory neurotransmission and/or cell membrane protection. In chronic HE in humans, decreased Tau content in CNS is thought to be one of the causes of cerebral edema. However, understanding of the impact of the changes in Tau content and transport on the pathogenic mechanisms of HE is hampered by the lack of clear-cut evidence regarding the various roles of Tau in the normal CNS.
Collapse
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
42
|
Affiliation(s)
- Andrew J Wakefield
- Experimental Gastroenterology, Centre for Gastroenterology, Royal Free and University College Medical School, London, United Kingdom.
| |
Collapse
|
43
|
Bergasa NV, Rothman RB, Mukerjee E, Vergalla J, Jones EA. Up-regulation of central mu-opioid receptors in a model of hepatic encephalopathy: a potential mechanism for increased sensitivity to morphine in liver failure. Life Sci 2002; 70:1701-8. [PMID: 11991257 DOI: 10.1016/s0024-3205(02)01487-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Increased GABA-mediated neurotransmission, reported to occur in hepatic encephalopathy (HE), is associated with a decrease in the release of Met-enkephalin and the expression of its coding gene in the brain. Furthermore, patients with cirrhosis and a history of HE exhibit increased sensitivity to the neuroinhibitory effects of morphine. Thus, there is a rationale to study the status of the endogenous opioid system in HE. The aim of this study was to determine whether mu-opioid receptors in the brain are up-regulated in a well characterized model of HE. Binding parameters of mu-opioid receptors were derived by assaying the binding of the opiate agonist [3H]-tyr-D-Ala-Gly-N-Methyl-Phe-Gly-ol (DAMGO) to brain membranes from rats with precisely defined stages of HE and control animals. The mean density of mu-opioid receptor sites (Bmax) in rats with stage II, III, and IV HE was 15, 29, and 33% higher, respectively, than the corresponding control value (p<0.01). In addition, the affinity of mu opioid receptors for the agonist (1/Kd) also increased with progression of HE (mean for stage IV HE vs. corresponding control mean, p<0.01). In conclusion, in liver failure, increased density and affinity of central mu-opioid receptors in the brain may: (i) be the basis for the documented increased sensitivity to opiate agonists; and (ii) occur as a consequence of increased GABAergic tone reducing neuronal synthesis and release of opioid agonist peptides.
Collapse
Affiliation(s)
- Nora V Bergasa
- Liver Diseases Section, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
44
|
López L, González-Pardo H, Cimadevilla JM, Cavas M, Aller MA, Arias J, Arias JL. Cytochrome oxidase activity of the suprachiasmatic nucleus and pineal gland in rats with portacaval shunt. Exp Neurol 2002; 173:275-82. [PMID: 11822891 DOI: 10.1006/exnr.2001.7840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rhythmic behavioral and biochemical changes have been observed in both human and animal models with hepatic insufficiency. The basis of all these alterations is the principal endogenous pacemaker, the suprachiasmatic nucleus. The aim of this work, therefore, is to determine cytochrome c oxidase activity, a marker of neuronal activity and oxidative metabolism, in this nucleus in rats with portacaval shunt. In order to do this, this enzyme was histochemically marked and quantified by computer-assisted optical densitometry. Results show a reduced cytochrome oxidase activity in the suprachiasmatic nucleus in animals with portacaval shunts and, inversely, an increase in oxidative metabolism in the pineal gland, another circadian structure. However, the activity measured in a noncircadian brain structure, the hippocampus, which served as a control, showed no changes with surgery. Additionally, locomotor activity was assessed by actimeters and revealed a clearly reduced activity in animals with portacaval shunt. We conclude that the suprachiasmatic nucleus is possibly involved in the rhythmic changes associated with hepatic insufficiency.
Collapse
Affiliation(s)
- Laudino López
- Laboratorio de Psicobiología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Basile AS, Mullen K. Preclinical models of hepatic encephalopathy. CURRENT PROTOCOLS IN NEUROSCIENCE 2001; Chapter 9:Unit9.3. [PMID: 18428551 DOI: 10.1002/0471142301.ns0903s08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hepatic encephalopathy is a multifactorial neuropsychiatric syndrome accompanying acute or chronic liver failure. Techniques for developing animal models of hepatic encephalopathy associated with acute or chronic liver failure, or vascular shunting are illustrated. In addition, the behavioral and biochemical characteristics of these models are described.
Collapse
Affiliation(s)
- A S Basile
- Laboratory of Bio-Organic Chemistry, National Institute of Diabetes and Digestive & Kidney Diseases, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
46
|
Chu CJ, Wang SS, Lee FY, Chang FY, Lin HC, Hou MC, Chan CC, Wu SL, Chen CT, Huang HC, Lee SD. Detrimental effects of nitric oxide inhibition on hepatic encephalopathy in rats with thioacetamide-induced fulminant hepatic failure. Eur J Clin Invest 2001; 31:156-63. [PMID: 11168455 DOI: 10.1046/j.1365-2362.2001.00775.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatic encephalopathy is a complex neuropsychiatric syndrome seen secondary to acute liver failure, chronic parenchymal liver disease, or portal-systemic anastomosis. Vasodilatation induced by nitric oxide (NO) may be involved in the development of hepatic coma. However, there are no comprehensive data concerning the effects of NO inhibition on the severity of hepatic encephalopathy. Male Sprague-Dawley rats weighing 300-350 g were used. Fulminant hepatic failure was induced by intraperitoneal injection of thioacetamide (TAA, 350 mg kg-1 day-1) for 3 days. Rats were divided into two groups to receive either NG-nitro-L-arginine methyl ester (L-NAME, 20 mg kg-1 day-1 via intragastric gavage) or normal saline (N/S) from 2 days prior to TAA administration for 5 days. Severity of encephalopathy was assessed by counts of motor activity and neurobehaviour test scores. Plasma levels of endotoxin, tumour necrosis factor-alpha and nitrate/nitrite were determined by the chromogenic Limulus assay, enzyme-linked immunosorbent assay and colorimetric assay, respectively. Compared with N/S-treated rats, the mortality rate was significantly higher in rats receiving L-NAME (59% vs. 18%, P < 0.01). Inhibition of NO had detrimental effects on the counts of motor activities (P < 0.05) and neurobehaviour score (P < 0.01). Rats treated with L-NAME had significantly higher plasma levels of endotoxin (26.7 +/- 3.8 pg mL-1) and tumour necrosis factor-alpha (29.4 +/- 6.5 pg mL-1) compared with rats treated with N/S (13.2 +/- 2.7 pg mL-1 and 11.2 +/- 2.6 pg mL-1, respectively, P < 0.01). Plasma levels of endotoxin and tumour necrosis factor-alpha, but not of nitrate/nitrite, were significantly correlated with the severity of hepatic encephalopathy (P < 0.05). Chronic L-NAME administration had detrimental effects on the severity of encephalopathy in TAA-treated rats, suggesting a protective role of NO in the development of fulminant hepatic failure.
Collapse
Affiliation(s)
- C J Chu
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Beelke M, Carozzo S, De Carli F, Massimilla S, Nobili L, Ogliastro C, Sannita WG. Factor structure and ammonia-related modulation of the human retinal oscillatory potentials. Clin Neurophysiol 2001; 112:344-50. [PMID: 11165540 DOI: 10.1016/s1388-2457(00)00524-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate in man the factor structure of retinal oscillatory potentials (OPs) to full-field luminance stimulation (0.9-9.5 cd.s.m(-2)) and the correlation with the spontaneous fluctuations of plasma ammonia. METHODS Six male healthy volunteers were studied. Five OP recordings and ammonia determinations (GLDH method) were obtained for each subject at 2 h interval during an 8 h experimental session. A standard factor analysis was applied on the OP latency (time from stimulus to peak) and amplitudes values. RESULTS Two consecutive factors on latencies and two factors on amplitudes were identified, consistent with reported differences between the earlier and later OP waves. The model explained a large portion of the OP variance. Both factors on latencies and factor 1 on amplitudes were directly correlated to the stimulus intensity and the ammonia plasma concentration in the 15.8-39.5 micromol/l range. Factors 1 and 2 on latencies decreased and factor 1 on amplitude increased at increasing stimulus intensities. The latency factors decreased and the amplitude factor increased with increasing ammonia concentration. Factor 2 on amplitudes did not correlate with the stimulus intensity or ammonia concentration. CONCLUSIONS The factor structure further supports the evidence of functional differences between early and late OP waves. The observed correlation conceivably reflects a role of ammonia in the modulation of retinal electrophysiology in physiological conditions and potentially accounts for spontaneous variability in otherwise controlled electrophysiological studies.
Collapse
Affiliation(s)
- M Beelke
- Center for Neuropsychoactive Drugs, DISMR - Neurophysiopathology, University of Genoa, Ospedale S. Martino, Largo R. Benzi 10, I-16132, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Behnia K, Bhatia S, Jastromb N, Balis U, Sullivan S, Yarmush M, Toner M. Xenobiotic metabolism by cultured primary porcine hepatocytes. TISSUE ENGINEERING 2000; 6:467-79. [PMID: 11074934 DOI: 10.1089/107632700750022125] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Considering the large yield of viable cells comparable to human liver, primary porcine hepatocytes offer a valuable resource for constructing a bioartificial liver device. In this study, the ability of cultured primary porcine hepatocytes to detoxify xenobiotics has been examined using various known substrates of cytochrome P450 isoenzymes and UDP-glucuronosyltransferases. Present investigation demonstrated the stability of the isoenzymes responsible for the metabolism of diazepam in native state and stabilization of other isoenzymes, as judged by ethoxycoumarin o-dealkylase (ECOD), ethoxyresorufin o-dealkylase (EROD), benzyloxyresorufin o-dealkylase (BROD), and pentoxyresorufin o-dealkylase (PROD) activities following induction in culture environment, for a period of 8 days. Resorufin O-dealkylase activities were found to be the most unstable and deteriorated within first 5 days in culture. These activities were restored following induction with 3-methylcholanthrene (3-MC) or sodium phenobarbital (PB) to 20-fold of 1 activity for EROD, and 60 and 174% of day 1 activity for PROD and BROD on day 8, respectively. Metabolism of methoxyresorufin was most strikingly increased following induction with 3-MC to approximately 60-fold of day 1 activity, on day 8. UDP-glucuronosyltransferase-dependent glucuronidation of phenol red, however, stayed intact during the course of our study without induction. Our study indicated that porcine hepatocytes in vitro maintain many important liver-specific functions including detoxification (steady state and inducibility).
Collapse
Affiliation(s)
- K Behnia
- Centre for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Hepatic encephalopathy is considered to be a reversible metabolic encephalopathy, which occurs as a complication of hepatocellular failure and is associated with increased portal-systemic shunting of gut-derived nitrogenous compounds. Its manifestations are most consistent with a global depression of CNS function, which could arise as a consequence of a net increase in inhibitory neurotransmission, due to an imbalance between the functional status of inhibitory (e.g., GABA) and excitatory (e.g., glutamate) neurotransmitter systems. In liver failure, factors that contribute to increased GABAergic tone include increased synaptic levels of GABA and increased brain levels of natural central benzodiazepine (BZ) receptor agonists. Ammonia, present in modestly elevated levels, may also augment GABAergic tone by direct interaction with the GABAA receptor, synergistic interactions with natural central BZ receptor agonists, and stimulation of astrocytic synthesis and release of neurosteroid agonists of the GABAA receptor. Thus, there is a rationale for therapies of HE that lower ammonia levels and incrementally reduce increased GABAergic tone towards the physiologic norm.
Collapse
Affiliation(s)
- E A Jones
- Department of Gastrointestinal and Liver Diseases, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Abstract
While the pathogenesis of hepatic encephalopathy (HE) is unclear, there is evidence of enhanced GABAergic neurotransmission in this condition. Ammonia is believed to play a major pathogenetic role in HE. To determine whether ammonia might contribute to abnormalities in GABAergic neurotransmission, its effects on GABA uptake and release were studied in cultured astrocytes, cells that appear to be targets of ammonia neurotoxicity. Acutely, ammonium chloride (5 mM) inhibited GABA uptake by 30%, and by 50-60% after 4-day treatment. GABA uptake inhibition was associated with a predominant decrease in Vmax; the Km was also decreased. Ammonia also enhanced GABA release after 4-day treatment, although such release was initially inhibited. These effects of ammonia (inhibition of GABA uptake and enhanced GABA release) may elevate extracellular levels of GABA and contribute to a dysfunction of GABAergic neurotransmission in HE and other hyperammonemic states.
Collapse
Affiliation(s)
- A S Bender
- Veterans Administration Medical Center and Department of Pathology, University of Miami School of Medicine, FL 33101, USA
| | | |
Collapse
|