1
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Dąbrowska K, Skowrońska K, Popek M, Albrecht J, Zielińska M. The Role of Nrf2 Transcription Factor and Sp1-Nrf2 Protein Complex in Glutamine Transporter SN1 Regulation in Mouse Cortical Astrocytes Exposed to Ammonia. Int J Mol Sci 2021; 22:ijms222011233. [PMID: 34681893 PMCID: PMC8538223 DOI: 10.3390/ijms222011233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022] Open
Abstract
Ammonia toxicity in the brain primarily affects astrocytes via a mechanism in which oxidative stress (OS), is coupled to the imbalance between glutamatergic and GABAergic transmission. Ammonia also downregulates the astrocytic N system transporter SN1 that controls glutamine supply from astrocytes to neurons for the replenishment of both neurotransmitters. Here, we tested the hypothesis that activation of Nrf2 is the process that links ammonia-induced OS formation in astrocytes to downregulation and inactivation of SN1 and that it may involve the formation of a complex between Nrf2 and Sp1. Treatment of cultured cortical mouse astrocytes with ammonia (5 mM NH4Cl for 24 h) evoked Nrf2 nuclear translocation, increased its activity in a p38 MAPK pathway-dependent manner, and enhanced Nrf2 binding to Slc38a3 promoter. Nrf2 silencing increased SN1 mRNA and protein level without influencing astrocytic [3H]glutamine transport. Ammonia decreased SN1 expression in Nrf2 siRNA treated astrocytes and reduced [3H]glutamine uptake. In addition, while Nrf2 formed a complex with Sp1 in ammonia-treated astrocytes less efficiently than in control cells, treatment of astrocytes with hybrid-mode inactivated Sp1-Nrf2 complex (Nrf2 silencing + pharmacological inhibition of Sp1) did not affect SN1 protein level in ammonia-treated astrocytes. In summary, the results document that SN1 transporter dysregulation by ammonia in astrocytes involves activation of Nrf2 but does not require the formation of the Sp1-Nrf2 complex.
Collapse
|
3
|
Zimmermann M, Reichert AS. Rapid metabolic and bioenergetic adaptations of astrocytes under hyperammonemia - a novel perspective on hepatic encephalopathy. Biol Chem 2021; 402:1103-1113. [PMID: 34331848 DOI: 10.1515/hsz-2021-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022]
Abstract
Hepatic encephalopathy (HE) is a well-studied, neurological syndrome caused by liver dysfunctions. Ammonia, the major toxin during HE pathogenesis, impairs many cellular processes within astrocytes. Yet, the molecular mechanisms causing HE are not fully understood. Here we will recapitulate possible underlying mechanisms with a clear focus on studies revealing a link between altered energy metabolism and HE in cellular models and in vivo. The role of the mitochondrial glutamate dehydrogenase and its role in metabolic rewiring of the TCA cycle will be discussed. We propose an updated model of ammonia-induced toxicity that may also be exploited for therapeutic strategies in the future.
Collapse
Affiliation(s)
- Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Häussinger D, Butz M, Schnitzler A, Görg B. Pathomechanisms in hepatic encephalopathy. Biol Chem 2021; 402:1087-1102. [PMID: 34049427 DOI: 10.1515/hsz-2021-0168] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a frequent neuropsychiatric complication in patients with acute or chronic liver failure. Symptoms of HE in particular include disturbances of sensory and motor functions and cognition. HE is triggered by heterogeneous factors such as ammonia being a main toxin, benzodiazepines, proinflammatory cytokines and hyponatremia. HE in patients with liver cirrhosis is triggered by a low-grade cerebral edema and cerebral oxidative/nitrosative stress which bring about a number of functionally relevant alterations including posttranslational protein modifications, oxidation of RNA, gene expression changes and senescence. These alterations are suggested to impair astrocyte/neuronal functions and communication. On the system level, a global slowing of oscillatory brain activity and networks can be observed paralleling behavioral perceptual and motor impairments. Moreover, these changes are related to increased cerebral ammonia, alterations in neurometabolite and neurotransmitter concentrations and cortical excitability in HE patients.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Markus Butz
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Drews L, Zimmermann M, Westhoff P, Brilhaus D, Poss RE, Bergmann L, Wiek C, Brenneisen P, Piekorz RP, Mettler-Altmann T, Weber APM, Reichert AS. Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner. Dis Model Mech 2020; 13:dmm047134. [PMID: 32917661 PMCID: PMC7657470 DOI: 10.1242/dmm.047134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023] Open
Abstract
Astrocyte dysfunction is a primary factor in hepatic encephalopathy (HE) impairing neuronal activity under hyperammonemia. In particular, the early events causing ammonia-induced toxicity to astrocytes are not well understood. Using established cellular HE models, we show that mitochondria rapidly undergo fragmentation in a reversible manner upon hyperammonemia. Further, in our analyses, within a timescale of minutes, mitochondrial respiration and glycolysis were hampered, which occurred in a pH-independent manner. Using metabolomics, an accumulation of glucose and numerous amino acids, including branched chain amino acids, was observed. Metabolomic tracking of 15N-labeled ammonia showed rapid incorporation of 15N into glutamate and glutamate-derived amino acids. Downregulating human GLUD2 [encoding mitochondrial glutamate dehydrogenase 2 (GDH2)], inhibiting GDH2 activity by SIRT4 overexpression, and supplementing cells with glutamate or glutamine alleviated ammonia-induced inhibition of mitochondrial respiration. Metabolomic tracking of 13C-glutamine showed that hyperammonemia can inhibit anaplerosis of tricarboxylic acid (TCA) cycle intermediates. Contrary to its classical anaplerotic role, we show that, under hyperammonemia, GDH2 catalyzes the removal of ammonia by reductive amination of α-ketoglutarate, which efficiently and rapidly inhibits the TCA cycle. Overall, we propose a critical GDH2-dependent mechanism in HE models that helps to remove ammonia, but also impairs energy metabolism in mitochondria rapidly.
Collapse
Affiliation(s)
- Leonie Drews
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marcel Zimmermann
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebecca E Poss
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Laura Bergmann
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery (ENT), Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Peter Brenneisen
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Roland P Piekorz
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Bobermin LD, Roppa RHA, Gonçalves CA, Quincozes-Santos A. Ammonia-Induced Glial-Inflammaging. Mol Neurobiol 2020; 57:3552-3567. [DOI: 10.1007/s12035-020-01985-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
7
|
Sepehrinezhad A, Zarifkar A, Namvar G, Shahbazi A, Williams R. Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema. Metab Brain Dis 2020; 35:559-578. [PMID: 32146658 DOI: 10.1007/s11011-020-00549-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) may occur in patients with liver failure. The most critical pathophysiologic mechanism of HE is cerebral edema following systemic hyperammonemia. The dysfunctional liver cannot eliminate circulatory ammonia, so its plasma and brain levels rise sharply. Astrocytes, the only cells that are responsible for ammonia detoxification in the brain, are dynamic cells with unique phenotypic properties that enable them to respond to small changes in their environment. Any pathological changes in astrocytes may cause neurological disturbances such as HE. Astrocyte swelling is the leading cause of cerebral edema, which may cause brain herniation and death by increasing intracranial pressure. Various factors may have a role in astrocyte swelling. However, the exact molecular mechanism of astrocyte swelling is not fully understood. This article discusses the possible mechanisms of astrocyte swelling which related to hyperammonia, including the possible roles of molecules like glutamine, lactate, aquaporin-4 water channel, 18 KDa translocator protein, glial fibrillary acidic protein, alanine, glutathione, toll-like receptor 4, epidermal growth factor receptor, glutamate, and manganese, as well as inflammation, oxidative stress, mitochondrial permeability transition, ATP depletion, and astrocyte senescence. All these agents and factors may be targeted in therapeutic approaches to HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Gholamreza Namvar
- Department of Neuroscience and Cognition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roger Williams
- The Institute of Hepatology London and Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK.
- Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
8
|
Guazzelli PA, Cittolin-Santos GF, Meira-Martins LA, Grings M, Nonose Y, Lazzarotto GS, Nogara D, da Silva JS, Fontella FU, Wajner M, Leipnitz G, Souza DO, de Assis AM. Acute Liver Failure Induces Glial Reactivity, Oxidative Stress and Impairs Brain Energy Metabolism in Rats. Front Mol Neurosci 2020; 12:327. [PMID: 31998076 PMCID: PMC6968792 DOI: 10.3389/fnmol.2019.00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Acute liver failure (ALF) implies a severe and rapid liver dysfunction that leads to impaired liver metabolism and hepatic encephalopathy (HE). Recent studies have suggested that several brain alterations such as astrocytic dysfunction and energy metabolism impairment may synergistically interact, playing a role in the development of HE. The purpose of the present study is to investigate early alterations in redox status, energy metabolism and astrocytic reactivity of rats submitted to ALF. Adult male Wistar rats were submitted either to subtotal hepatectomy (92% of liver mass) or sham operation to induce ALF. Twenty-four hours after the surgery, animals with ALF presented higher plasmatic levels of ammonia, lactate, ALT and AST and lower levels of glucose than the animals in the sham group. Animals with ALF presented several astrocytic morphological alterations indicating astrocytic reactivity. The ALF group also presented higher mitochondrial oxygen consumption, higher enzymatic activity and higher ATP levels in the brain (frontoparietal cortex). Moreover, ALF induced an increase in glutamate oxidation concomitant with a decrease in glucose and lactate oxidation. The increase in brain energy metabolism caused by astrocytic reactivity resulted in augmented levels of reactive oxygen species (ROS) and Poly [ADP-ribose] polymerase 1 (PARP1) and a decreased activity of the enzymes superoxide dismutase and glutathione peroxidase (GSH-Px). These findings suggest that in the early stages of ALF the brain presents a hypermetabolic state, oxidative stress and astrocytic reactivity, which could be in part sustained by an increase in mitochondrial oxidation of glutamate.
Collapse
Affiliation(s)
- Pedro Arend Guazzelli
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Giordano Fabricio Cittolin-Santos
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Leo Anderson Meira-Martins
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Mateus Grings
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yasmine Nonose
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Gabriel S Lazzarotto
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Daniela Nogara
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Jussemara S da Silva
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Fernanda U Fontella
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Moacir Wajner
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Diogo O Souza
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Adriano Martimbianco de Assis
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas-UCPel, Pelotas, Brazil
| |
Collapse
|
9
|
Görg B, Karababa A, Schütz E, Paluschinski M, Schrimpf A, Shafigullina A, Castoldi M, Bidmon HJ, Häussinger D. O-GlcNAcylation-dependent upregulation of HO1 triggers ammonia-induced oxidative stress and senescence in hepatic encephalopathy. J Hepatol 2019; 71:930-941. [PMID: 31279900 DOI: 10.1016/j.jhep.2019.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Cerebral oxidative stress plays an important role in the pathogenesis of hepatic encephalopathy (HE), but the underlying mechanisms are incompletely understood. Herein, we analyzed a role of heme oxygenase (HO)1, iron and NADPH oxidase 4 (Nox4) for the induction of oxidative stress and senescence in HE. METHODS Gene and protein expression in human post-mortem brain samples was analyzed by gene array and western blot analysis. Mechanisms and functional consequences of HO1 upregulation were studied in NH4Cl-exposed astrocytes in vitro by western blot, qPCR and super-resolution microscopy. RESULTS HO1 and the endoplasmic reticulum (ER) stress marker grp78 were upregulated, together with changes in the expression of multiple iron metabolism-related genes, in post-mortem brain samples from patients with liver cirrhosis and HE. NH4Cl elevated HO1 protein and mRNA in cultured astrocytes through glutamine synthetase (GS)-dependent upregulation of glutamine/fructose amidotransferases 1/2 (GFAT1/2), which blocked the transcription of the HO1-targeting miR326-3p in a O-GlcNAcylation dependent manner. Upregulation of HO1 by NH4Cl triggered ER stress and was associated with elevated levels of free ferrous iron and expression changes in iron metabolism-related genes, which were largely abolished after knockdown or inhibition of GS, GFAT1/2, HO1 or iron chelation. NH4Cl, glucosamine (GlcN) and inhibition of miR326-3p upregulated Nox4, while knockdown of Nox4, GS, GFAT1/2, HO1 or iron chelation prevented NH4Cl-induced RNA oxidation and astrocyte senescence. Elevated levels of grp78 and O-GlcNAcylated proteins were also found in brain samples from patients with liver cirrhosis and HE. CONCLUSION The present study identified glucosamine synthesis-dependent protein O-GlcNAcylation as a novel mechanism in the pathogenesis of HE that triggers oxidative and ER stress, as well as senescence, through upregulation of HO1 and Nox4. LAY SUMMARY Patients with liver cirrhosis frequently exhibit hyperammonemia and suffer from cognitive and motoric dysfunctions, which at least in part involve premature ageing of the astrocytes in the brain. This study identifies glucosamine and an O-GlcNAcylation-dependent disruption of iron homeostasis as novel triggers of oxidative stress, thereby mediating ammonia toxicity in the brain.
Collapse
Affiliation(s)
- Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| | - Ayşe Karababa
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Elina Schütz
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Martha Paluschinski
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Alina Schrimpf
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Aygul Shafigullina
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Mirco Castoldi
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans J Bidmon
- C.&O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Lu K, Zimmermann M, Görg B, Bidmon HJ, Biermann B, Klöcker N, Häussinger D, Reichert AS. Hepatic encephalopathy is linked to alterations of autophagic flux in astrocytes. EBioMedicine 2019; 48:539-553. [PMID: 31648987 PMCID: PMC6838440 DOI: 10.1016/j.ebiom.2019.09.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hepatic encephalopathy (HE) is a severe neuropsychiatric syndrome caused by various types of liver failure resulting in hyperammonemia-induced dysfunction of astrocytes. It is unclear whether autophagy, an important pro-survival pathway, is altered in the brains of ammonia-intoxicated animals as well as in HE patients. Methods Using primary rat astrocytes, a co-culture model of primary mouse astrocytes and neurons, an in vivo rat HE model, and post mortem brain samples of liver cirrhosis patients with HE we analyzed whether and how hyperammonemia modulates autophagy. Findings We show that autophagic flux is efficiently inhibited after administration of ammonia in astrocytes. This occurs in a fast, reversible, time-, dose-, and ROS-dependent manner and is mediated by ammonia-induced changes in intralysosomal pH. Autophagic flux is also strongly inhibited in the cerebral cortex of rats after acute ammonium intoxication corroborating our results using an in vivo rat HE model. Transglutaminase 2 (TGM2), a factor promoting autophagy, is upregulated in astrocytes of in vitro- and in vivo-HE models as well as in post mortem brain samples of liver cirrhosis patients with HE, but not in patients without HE. LC3, a commonly used autophagy marker, is significantly increased in the brain of HE patients. Ammonia also modulated autophagy moderately in neuronal cells. We show that taurine, known to ameliorate several parameters caused by hyperammonemia in patients suffering from liver failure, is highly potent in reducing ammonia-induced impairment of autophagic flux. This protective effect of taurine is apparently not linked to inhibition of mTOR signaling but rather to reducing ammonia-induced ROS formation. Interpretation Our data support a model in which autophagy aims to counteract ammonia-induced toxicity, yet, as acidification of lysosomes is impaired, possible protective effects thereof, are hampered. We propose that modulating autophagy in astrocytes and/or neurons, e.g. by taurine, represents a novel strategy to treat liver diseases associated with HE. Funding Supported by the DFG, CRC974 “Communication and Systems Relevance in Liver Injury and Regeneration“, Düsseldorf (Project number 190586431) Projects A05 (DH), B04 (BG), B05 (NK), and B09 (ASR).
Collapse
Affiliation(s)
- Kaihui Lu
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Hans-Jürgen Bidmon
- C. & O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Barbara Biermann
- Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany.
| |
Collapse
|
11
|
Silencing of Transcription Factor Sp1 Promotes SN1 Transporter Regulation by Ammonia in Mouse Cortical Astrocytes. Int J Mol Sci 2019; 20:ijms20020234. [PMID: 30634395 PMCID: PMC6359076 DOI: 10.3390/ijms20020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
The involvement of the astrocytic SN1 (SNAT3) transporter in ammonia-induced l-glutamine retention was recently documented in mouse-cultured astrocytes. Here we investigated the involvement of specificity protein 1 (Sp1) transcription factor in SN1 regulation in ammonium chloride (“ammonia”)-treated astrocytes. Sp1 expression and its cellular localization were determined using real-time qPCR, Western blot, and confocal microscopy. Sp1 binding to Snat3 promoter was analyzed by chromatin immunoprecipitation. The role of Sp1 in SN1 expression and SN1-mediated [3H]glutamine uptake in ammonia-treated astrocytes was verified using siRNA and mithramycin A. The involvement of protein kinase C (PKC) isoforms in Sp1 level/phosphorylation status was verified using siRNA technology. Sp1 translocation to the nuclei and its enhanced binding to the Snat3 promoter, along with Sp1 dependence of system N-mediated [3H]glutamine uptake, were observed in astrocytes upon ammonia exposure. Ammonia decreased the level of phosphorylated Sp1, and the effect was reinforced by long-term incubation with PKC modulator, phorbol 12-myristate 13-acetate, which is a treatment likely to dephosphorylate Sp1. Furthermore, silencing of the PKCδ isoform appears to enhance the ammonia effect on the Sp1 level. Collectively, the results demonstrate the regulatory role of Sp1 in regulation of SN1 expression and activity in ammonia-treated astrocytes and implicate altered Sp1 phosphorylation status in this capacity.
Collapse
|
12
|
TLR5 silencing reduced hyperammonaemia-induced liver injury by inhibiting oxidative stress and inflammation responses via inactivating NF-κB and MAPK signals. Chem Biol Interact 2018; 299:102-110. [PMID: 30508503 DOI: 10.1016/j.cbi.2018.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver injury is a serious threat for human health and life. Toll-like receptor 5 (TLR5) has reported to be a vital mediator in flagellin or tetrachloride (CCl4)-induced liver injury. However, the roles and etiology of TLR5 in hyperammonaemia (HA)-induced liver injury are poor defined. METHODS HA rats were generated by intragastric administration using ammonium chloride solution. Liver status was assessed by haematoxylin and eosin (H&E) staining and measuring serum levels of liver injury markers. Immunohistochemistry (IHC) assay was used to visualize protein expression in tissues. Apoptotic index in tissues was determined by TUNEL assay. RT-qPCR assay was employed to test mRNA expression. Oxidative stress responses was assessed by detecting levels of reactive oxygen species (ROS) and related indicators. NF-κB activity was examined by TransAM NF-κB colorimetric kit. RESULTS TLR5 was highly expressed in liver tissues of HA rats. TLR5 knockdown ameliorated HA-induced liver injury by inhibiting liver cell apoptosis. TLR5 depletion inhibited HA-induced pro-inflammatory cytokine expression in liver tissues, but had no effect on the infiltration of T and macrophage cells into liver tissues. TLR5 silencing impaired HA-induced oxidative stress responses in hepatocytes, but not in hepatic stellate cells (HSCs). TLR5 downregulation inhibited HA-induced activation on TLR5/NF-κB and TLR5/MAPK signaling pathways. CONCLUSION TLR5 silencing reduced HA-induced liver injury by inhibiting hepatocyte apoptosis, oxidative stress and inflammation responses via inactivating NF-κB and MAPK signals, deepening our understanding on the molecular mechanism of HA-induced liver injury and providing a potential therapeutic target for alleviating liver injury.
Collapse
|
13
|
Görg B, Karababa A, Häussinger D. Hepatic Encephalopathy and Astrocyte Senescence. J Clin Exp Hepatol 2018; 8:294-300. [PMID: 30302047 PMCID: PMC6175776 DOI: 10.1016/j.jceh.2018.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatic Encephalopathy (HE) is a severe complication of acute or chronic liver diseases with a broad spectrum of neurological symptoms including motor disturbances and cognitive impairment of different severity. Contrary to former beliefs, a growing number of studies suggest that cognitive impairment may not fully reverse after an acute episode of overt HE in patients with liver cirrhosis. The reasons for persistent cognitive impairment in HE are currently unknown but recent observations raise the possibility that astrocyte senescence may play a role here. Astrocyte senescence is closely related to oxidative stress and correlate with irreversible cognitive decline in aging and neurodegenerative diseases. In line with this, surrogate marker for oxidative stress and senescence were upregulated in ammonia-exposed cultured astrocytes and in post mortem brain tissue from patients with liver cirrhosis with but not without HE. Ammonia-induced senescence in astrocytes involves glutamine synthesis-dependent formation of reactive oxygen species (ROS), p53 activation and upregulation of cell cycle inhibitory factors p21 and GADD45α. More recent studies also suggest a role of ROS-induced downregulation of Heme Oxygenase (HO)1-targeting micro RNAs and upregulation of HO1 for ammonia-induced proliferation inhibition in cultured astrocytes. Further studies are required to identify the precise sequence of events that lead to astrocyte senescence and to elucidate functional implications of senescence for cognitive performance in patients with liver cirrhosis and HE.
Collapse
Key Words
- ARE, Antioxidant Response Elements
- BDNF, Brain-Derived Neurotrophic Factor
- Eph, Ephrine
- EphR, Ephrine Receptor
- GADD45α, Growth Arrest and DNA Damage Inducible 45α
- GS, Glutamine Synthetase
- HE, Hepatic Encephalopathy
- HO1, Heme Oxygenase 1
- LOLA, l-Ornithine-l-Aspartate
- MAP, Mitogen Activated Protein Kinases
- NAPDH, Reduced Form of Nicotinamide Adenine Dinucleotide Phosphate
- Nox, NADPH Oxidase
- Nrf2, Nuclear Factor-Like 2
- PBR, Peripheral-Type Benzodiazepine Receptor
- PTN, Protein Tyrosine Nitration
- RNOS, Reactive Nitrogen and Oxygen Species
- ROS, Reactive Oxygen Species
- SA-β-Gal, Senescence-Associated β-d-Galactosidase
- TSP, Trombospondin
- TrkBT, Truncated Tyrosine Receptor Kinase B
- ZnPP, Zinc Protoporphyrin
- ammonia
- astrocytes
- heme oxygenase 1
- hepatic encephalopathy
- mPT, Mitochondrial Permeability Transition
- miRNAs
- nNOS, Neuronal-Type Nitric-Oxide Synthase
- oxidative stress
Collapse
Affiliation(s)
| | | | - Dieter Häussinger
- Address for correspondence: Dieter Häussinger, Universitätsklinikum Düsseldorf, Klinik für Gastroenterologie, Hepatologie und Infektiologie, Moorenstrasse 5, 40225 Düsseldorf, Germany. Tel.: +49 211 811 7569; fax: +49 211 811 8838.
| |
Collapse
|
14
|
Liu XM, Peyton KJ, Durante W. Ammonia promotes endothelial cell survival via the heme oxygenase-1-mediated release of carbon monoxide. Free Radic Biol Med 2017; 102:37-46. [PMID: 27867098 PMCID: PMC5209302 DOI: 10.1016/j.freeradbiomed.2016.11.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
Although endothelial cells produce substantial quantities of ammonia during cell metabolism, the physiologic role of this gas in these cells is not known. In this study, we investigated if ammonia regulates the expression of heme oxygenase-1 (HO-1), and if this enzyme influences the biological actions of ammonia on endothelial cells. Exogenously administered ammonia, given as ammonium chloride or ammonium hydroxide, or endogenously generated ammonia stimulated HO-1 protein expression in cultured human and murine endothelial cells. Dietary supplementation of ammonia also induced HO-1 protein expression in murine arteries. The increase in HO-1 protein by ammonia in endothelial cells was first detected 4h after ammonia exposure and was associated with the induction of HO-1 mRNA, enhanced production of reactive oxygen species (ROS), and increased expression and activity of NF-E2-related factor-2 (Nrf2). Ammonia also activated the HO-1 promoter and this was blocked by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. The induction of HO-1 expression by ammonia was dependent on ROS formation and prevented by N-acetylcysteine or rotenone. Finally, prior treatment of endothelial cells with ammonia inhibited tumor necrosis factor-α-stimulated cell death. However, silencing HO-1 expression abrogated the protective action of ammonia and this was reversed by the administration of carbon monoxide but not bilirubin or iron. In conclusion, this study demonstrates that ammonia stimulates the expression of HO-1 in endothelial cells via the ROS-Nrf2 pathway, and that the induction of HO-1 contributes to the cytoprotective action of ammonia by generating carbon monoxide. Moreover, it identifies ammonia as a potentially important signaling gas in the vasculature that promotes endothelial cell survival.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA.
| |
Collapse
|
15
|
Ashkani-Esfahani S, Bagheri F, Emami Y, Esmaeilzadeh E, Azarpira N, Hassanabadi N, Keshtkar M, Farjam M, Koohi-Hosseinabadi O, Noorafshan A. Protective Effects of Co-Enzyme Q10 on Thioacetamide-Induced Acute Liver Damage and Its Correlation With Behavioral, Biochemical, and Pathological Factors. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e29166. [PMID: 28058114 PMCID: PMC5192999 DOI: 10.5812/ircmj.29166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/29/2015] [Accepted: 09/26/2015] [Indexed: 12/25/2022]
Abstract
Background Acute liver damage may be followed by biochemical, behavioral, and pathological alterations, which can result in serious complications and even death. Objectives In this experimental study we determined whether coenzyme Q10 (CoQ10), a common supplementary medicine known to have protective, antioxidative, and anti-inflammatory effects in cells, has any protective effect against thioacetamide (TAA)-induced liver damage and its related neurobehavioral alterations in rats. Materials and Methods In this experimental study forty-eight Wistar rats were divided randomly into four groups (n = 12): C1 was the control group; C2 received a single-dose of TAA (350mg/kg; intraperitoneally) without any other treatment; E1 received TAA + 5 mg/kg CoQ10 (intraperitoneally); and E2 received TAA + 10 mg/kg CoQ10. After sacrificing the rats, liver enzymes and plasma-ammonia (NH4) were measured and histopathological analyses of the livers were carried out. Elevated-plus-maze, open-field, and forced-swimming tests were also performed to investigate behavioral correlations. Results The serum levels of alanine-aminotransferase (ALT), aspartate-aminotransferase (AST), and NH4 show significant increases (P < 0.05). The groups treated with CoQ10 were shown to have significantly lower clinical grade of encephalopathy (P = 0.001), higher locomotor activity (P = 0.000), and lower levels of depression (P = 0.000). Furthermore, it was also shown that CoQ10 treatment may lead to significant decreases in scores of centrilobular necrosis, apoptosis, inflammatory cell infiltration, vacuolization, and liver necrosis (P < 0.05). Conclusions Overall, CoQ10 was determined to have positive effects on liver injury and its related behavioral and biochemical changes.
Collapse
Affiliation(s)
| | - Fereshteh Bagheri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Yasaman Emami
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Elmira Esmaeilzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Negar Azarpira
- Organ Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Nazila Hassanabadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Marzieh Keshtkar
- International Branch, Shiraz University of Medical Sciences, Kish, IR Iran
| | - Mojtaba Farjam
- Department Of Pharmacology, Fasa University of Medical Sciences, Shiraz, IR Iran
| | - Omid Koohi-Hosseinabadi
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding Author: Ali Noorafshan, Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, IR Iran. Tel: +98-9173397040, Fax: +98-7136262034, E-mail:
| |
Collapse
|
16
|
Ammonia-induced miRNA expression changes in cultured rat astrocytes. Sci Rep 2016; 6:18493. [PMID: 26755400 PMCID: PMC4709596 DOI: 10.1038/srep18493] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022] Open
Abstract
Hepatic encephalopathy is a neuropsychiatric syndrome evolving from cerebral osmotic disturbances and oxidative/nitrosative stress. Ammonia, the main toxin of hepatic encephalopathy, triggers astrocyte senescence in an oxidative stress-dependent way. As miRNAs are critically involved in cell cycle regulation and their expression may be regulated by oxidative stress, we analysed, whether astrocyte senescence is a consequence of ammonia-induced miRNA expression changes. Using a combined miRNA and gene microarray approach, 43 miRNA species which were downregulated and 142 genes which were upregulated by NH4Cl (5 mmol/l, 48 h) in cultured rat astrocytes were found. Ammonia-induced miRNA and gene expression changes were validated by qPCR and 43 potential miRNA target genes, including HO-1, were identified by matching upregulated mRNA species with predicted targets of miRNA species downregulated by ammonia. Inhibition of HO-1 targeting miRNAs which were downregulated by NH4Cl strongly upregulated HO-1 mRNA and protein levels and inhibited astrocyte proliferation in a HO-1-dependent way. Preventing ammonia-induced upregulation of HO-1 by taurine (5 mmol/l) as well as blocking HO-1 activity by tin-protoporphyrine IX fully prevented ammonia-induced proliferation inhibition and senescence. The data suggest that ammonia induces astrocyte senescence through NADPH oxidase-dependent downregulation of HO-1 targeting miRNAs and concomitant upregulation of HO-1 at both mRNA and protein level.
Collapse
|
17
|
Jördens MS, Keitel V, Karababa A, Zemtsova I, Bronger H, Häussinger D, Görg B. Multidrug resistance-associated protein 4 expression in ammonia-treated cultured rat astrocytes and cerebral cortex of cirrhotic patients with hepatic encephalopathy. Glia 2015; 63:2092-2105. [PMID: 26102310 DOI: 10.1002/glia.22879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome frequently accompanying liver cirrhosis and reflects the clinical manifestation of a low grade cerebral edema associated with cerebral oxidative/nitrosative stress. The multidrug resistance-associated protein (Mrp) 4 is an export pump which transports metabolites that were recently suggested to play a major role in the pathogenesis of HE such as neurosteroids and cyclic nucleotides. We therefore studied Mrp4 expression changes in ammonia-exposed cultured astrocytes and postmortem human brain samples of cirrhotic patients with HE. NH4 Cl increased Mrp4 mRNA and protein levels in astrocytes in a dose- and time-dependent manner up to threefold after 72 h of exposure and concurrently inhibited N-glycosylation of Mrp4 protein. Upregulation of Mrp4 mRNA and protein as well as impaired N-glycosylation of Mrp4 protein by ammonia were sensitive towards the glutamine-synthetase inhibitor l-methionine-S-sulfoximine and were not induced by CH3 NH3 Cl (5 mmol/L). Upregulation of Mrp4 mRNA required ammonia-induced activation of nitric oxide synthases or NADPH oxidase and p38MAPK -dependent activation of PPARα. Inhibition of Mrp4 by ceefourin 1 synergistically enhanced both, inhibition of astrocyte proliferation as well as transcription of the oxidative stress surrogate marker heme oxygenase 1 by forskolin (10 µmol/L, 72 h) or NH4 Cl (5 mmol/L, 72 h) in cultured rat astrocytes. Increased Mrp4 mRNA and protein levels were also found in postmortem brain samples from patients with liver cirrhosis with HE but not in those without HE. The data show that Mrp4 is upregulated in HE, which may be relevant for the handling of neurosteroids and cyclic nucleotides in response to ammonia. GLIA 2015;63:2092-2105.
Collapse
Affiliation(s)
- Markus S Jördens
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Ayse Karababa
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Irina Zemtsova
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Holger Bronger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
18
|
Lin SH, Song W, Cressatti M, Zukor H, Wang E, Schipper HM. Heme oxygenase-1 modulates microRNA expression in cultured astroglia: implications for chronic brain disorders. Glia 2015; 63:1270-84. [PMID: 25820186 DOI: 10.1002/glia.22823] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/02/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Over-expression of the heme-degrading enzyme, heme oxygenase-1 (HO-1) promotes iron deposition, mitochondrial damage, and autophagy in astrocytes and enhances the vulnerability of nearby neuronal constituents to oxidative injury. These neuropathological features and aberrant brain microRNA (miRNA) expression patterns have been implicated in the etiopathogeneses of various neurodevelopmental and aging-related neurodegenerative disorders. OBJECTIVE To correlate glial HO-1 overexpression with altered miRNA patterns, which have been linked to the aforementioned "core" neuropathological features. METHODS miRNA microchip assays were performed on HMOX1- and sham-transfected primary rat astroglia and affected miRNAs were further validated by qPCR. The roles of the heme degradation products, carbon monoxide (CO), iron (Fe) and bilirubin on miRNA expression were assessed and salient mRNA targets of the impacted miRNAs were ascertained. RESULTS In HMOX1-transfected astrocytes, rno-miR-140*, rno-miR-17, and rno-miR-16 were significantly up-regulated, and rno-miR-297, rno-miR-206, rno-miR-187, rno-miR-181a, rno-miR-138 and rno-miR-29c were down-regulated, compared to sham-transfected controls. CO and Fe were implicated in the HMOX1 effects, whereas bilirubin was inert or counteracted the HMOX1-related changes. mRNA levels of Ngfr, Vglut1, Mapk3, Tnf-α, and Sirt1, known targets of the down-regulated miRNAs and abnormal in various human brain disorders, were significantly increased in the HMOX-1-transfected astrocytes. CONCLUSIONS In chronic CNS disorders, altered expression of salient miRNAs and their mRNA targets may contribute to the neural damage accruing from the over-expression of glial HO-1.
Collapse
Affiliation(s)
- Shih-Hsiung Lin
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Rama Rao KV, Jayakumar AR, Norenberg MD. Brain edema in acute liver failure: mechanisms and concepts. Metab Brain Dis 2014; 29:927-36. [PMID: 24567229 DOI: 10.1007/s11011-014-9502-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/05/2014] [Indexed: 12/18/2022]
Abstract
Brain edema and associated increase in intracranial pressure continue to be lethal complications of acute liver failure (ALF). Abundant evidence suggests that the edema in ALF is largely cytotoxic brought about by swelling of astrocytes. Elevated blood and brain ammonia levels have been strongly implicated in the development of the brain edema. Additionally, inflammation and sepsis have been shown to contribute to the astrocyte swelling/brain edema in the setting of ALF. We posit that ammonia initiates a number of signaling events, including oxidative/nitrative stress (ONS), the mitochondrial permeability transition (mPT), activation of the transcription factor (NF-κB) and signaling kinases, all of which have been shown to contribute to the mechanism of astrocyte swelling. All of these factors also impact ion-transporters, including Na(+), K(+), Cl(-) cotransporter and the sulfonylurea receptor 1, as well as the water channel protein aquaporin-4 resulting in a perturbation of cellular ion and water homeostasis, ultimately resulting in astrocyte swelling/brain edema. All of these events are also potentiated by inflammation. This article reviews contemporary knowledge regarding mechanisms of astrocyte swelling/brain edema formation which hopefully will facilitate the identification of therapeutic targets capable of mitigating the brain edema associated with ALF.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA,
| | | | | |
Collapse
|
20
|
Oenarto J, Görg B, Moos M, Bidmon HJ, Häussinger D. Expression of organic osmolyte transporters in cultured rat astrocytes and rat and human cerebral cortex. Arch Biochem Biophys 2014; 560:59-72. [DOI: 10.1016/j.abb.2014.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 01/21/2023]
|
21
|
Scott TR, Kronsten VT, Hughes RD, Shawcross DL. Pathophysiology of cerebral oedema in acute liver failure. World J Gastroenterol 2013; 19:9240-9255. [PMID: 24409052 PMCID: PMC3882398 DOI: 10.3748/wjg.v19.i48.9240] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/28/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Cerebral oedema is a devastating consequence of acute liver failure (ALF) and may be associated with the development of intracranial hypertension and death. In ALF, some patients may develop cerebral oedema and increased intracranial pressure but progression to life-threatening intracranial hypertension is less frequent than previously described, complicating less than one third of cases who have proceeded to coma since the advent of improved clinical care. The rapid onset of encephalopathy may be dramatic with the development of asterixis, delirium, seizures and coma. Cytotoxic and vasogenic oedema mechanisms have been implicated with a preponderance of experimental data favouring a cytotoxic mechanism. Astrocyte swelling is the most consistent neuropathological finding in humans with ALF and ammonia plays a definitive role in the development of cytotoxic brain oedema. The mechanism(s) by which ammonia induces astrocyte swelling remains unclear but glutamine accumulation within astrocytes has led to the osmolyte hypothesis. Current evidence also supports an alternate ‘Trojan horse’ hypothesis, with glutamine as a carrier of ammonia into mitochondria, where its accumulation results in oxidative stress, energy failure and ultimately astrocyte swelling. Although a complete breakdown of the blood-brain barrier is not evident in human ALF, increased permeation to water and other small molecules such as ammonia has been demonstrated resulting from subtle alterations in the protein composition of paracellular tight junctions. At present, there is no fully efficacious therapy for cerebral oedema other than liver transplantation and this reflects our incomplete knowledge of the precise mechanisms underlying this process which remain largely unknown.
Collapse
|
22
|
Hemeoxygenase-1 mediates an adaptive response to spermidine-induced cell death in human endothelial cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:238734. [PMID: 23983896 PMCID: PMC3747394 DOI: 10.1155/2013/238734] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 12/30/2022]
Abstract
Spermidine (SPD) is a ubiquitous polycation that is commonly distributed in living organisms. Intracellular levels of SPD are tightly regulated, and SPD controls cell proliferation and death. However, SPD undergoes oxidation in the presence of serum, producing aldehydes, hydrogen peroxide, and ammonia, which exert cytotoxic effect on cells. Hemeoxygenase-1 (HO-1) is thought to have a protective effect against oxidative stress. Upregulation of HO-1 in endothelial cells is considered to be beneficial in the cardiovascular disease. In the present study, we demonstrate that the ubiquitous polyamine, SPD, induces HO-1 in human umbilical vein endothelial cells (HUVECs). SPD-induced HO-1 expression was examined by Western blot and reverse transcription-polymerase chain reaction (RT-PCR). Involvement of reactive oxygen species, serum amine oxidase, PI3K/Akt signaling pathway, and transcription factor Nrf2 in the induction of HO-1 by SPD was also investigated. Furthermore, small interfering RNA knockdown of Nrf2 or HO-1 and treatment with the specific HO-1 inhibitor ZnPP exhibited a noteworthy increase of death of SPD-stimulated HUVECs. In conclusion, these results suggest that SPD induces PI3K/Akt-Nrf2-mediated HO-1 expression in human endothelial cells, which may have a role in cytoprotection of the cells against oxidative stress-induced death.
Collapse
|
23
|
Görg B, Bidmon HJ, Häussinger D. Gene expression profiling in the cerebral cortex of patients with cirrhosis with and without hepatic encephalopathy. Hepatology 2013; 57:2436-47. [PMID: 23325665 DOI: 10.1002/hep.26265] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/27/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatic encephalopathy (HE) is a frequent complication of liver cirrhosis and is seen as the clinical manifestation of a low-grade cerebral edema associated with oxidative-nitrosative stress. However, comprehensive data on HE-associated molecular derangements in the human brain are lacking. In the present study, we used a whole human genome microarray approach for gene expression profiling in post mortem brain samples from patients with cirrhosis with or without HE and controls without cirrhosis. Altered expression levels were found for a total of 1,012 genes in liver cirrhosis patients without and with HE, and HE-characteristic gene expression changes were identified. Genes with altered expression pattern in HE were related to oxidative stress, microglia activation, receptor signaling, inflammatory pathways, cell proliferation, and apoptosis. Despite an up-regulation of genes associated with microglia activation, pro-inflammatory cytokine messenger RNA profiles remained unchanged in the brains of patients with liver cirrhosis and HE compared with controls. Interestingly, many genes counteracting pro-inflammatory signaling and inflammatory cytokine expression were up-regulated in the cerebral cortex of patients with liver cirrhosis and HE. CONCLUSION Pathogenetic mechanisms of HE deduced from cell culture and animal experiments, such as oxidative stress, altered Zn(2+) homeostasis and microglia activation also apply to human brain from patients with liver cirrhosis and HE. The study also revealed a not-yet recognized increased expression of genes antagonizing proinflammatory signaling and inflammatory cytokine expression. (HEPATOLOGY 2013;57:2436-2447).
Collapse
Affiliation(s)
- Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | |
Collapse
|
24
|
Wang QM, Yin XY, Duan ZJ, Guo SB, Sun XY. Role of the heme oxygenase/carbon monoxide pathway in the pathogenesis and prevention of hepatic encephalopathy. Mol Med Rep 2013; 8:67-74. [PMID: 23670786 DOI: 10.3892/mmr.2013.1472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/29/2013] [Indexed: 11/05/2022] Open
Abstract
Hepatic encephalopathy (HE) is a severe complication of liver cirrhosis and its pathogenesis has yet to be fully elucidated. Previous studies have demonstrated that heme oxygenase-1 (HO-1) is important in the induction of liver cirrhosis. The present study aimed to investigate the role of HO-1 in the pathogenesis of HE. Rats were divided into 5 treatment groups; sham, bile duct ligation (BDL), HE, zinc protoporphyrin (ZnPP) and cobalt protoporphyrin (CoPP). The levels of HO-1 were examined by western blotting and quantitative real-time PCR (qRT-PCR). Serum levels of carboxyhemoglobin (COHb), ammonia levels in the plasma and brain, brain water content and portal vein pressure (PVP) were also quantified. Aquaporin-4 expression levels were measured by immunohistochemistry and qRT-PCR. The results demonstrated that the levels of HO-1 in the brain and the serum levels of COHb were significantly increased in the HE group compared with the BDL group. Brain water content, PVP and ammonia levels in the plasma and brain were increased in the HE and CoPP groups; however, these were reduced following the treatment with ZnPP. The levels of AQP-4 expression and oxidative stress in the brain were reduced following treatment with ZnPP and increased following treatment with CoPP. In conclusion, following the inhibition of HO-1 expression, treatment with ZnPP improved HE due to reducing the expression levels of AQP-4 and oxidative stress. Therefore, ZnPP treatment may represent a novel therapeutic approach for HE.
Collapse
Affiliation(s)
- Qiu-Ming Wang
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, PR China
| | | | | | | | | |
Collapse
|
25
|
Görg B, Schliess F, Häussinger D. Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy. Arch Biochem Biophys 2013; 536:158-63. [PMID: 23567841 DOI: 10.1016/j.abb.2013.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complication of acute or chronic liver failure. Currently, HE in cirrhotic patients is seen as a clinical manifestation of a low grade cerebral edema which exacerbates in response to a variety of precipitating factors after an ammonia-induced exhaustion of the volume-regulatory capacity of the astrocyte. Astrocyte swelling triggers a complex signaling cascade which relies on NMDA receptor activation, elevation of intracellular Ca(2+) concentration and prostanoid-driven glutamate exocytosis, which result in increased formation of reactive nitrogen and oxygen species (RNOS) through activation of NADPH oxidase and nitric oxide synthase. Since RNOS in turn promote astrocyte swelling, a self-amplifying signaling loop between osmotic- and oxidative stress ensues, which triggers a variety of downstream consequences. These include protein tyrosine nitration (PTN), oxidation of RNA, mobilization of zinc, alterations in intra- and intercellular signaling and multiple effects on gene transcription. Whereas PTN can affect the function of a variety of proteins, such as glutamine synthetase, oxidized RNA may affect local protein synthesis at synapses, thereby potentially interfering with protein synthesis-dependent memory formation. PTN and RNA oxidation are also found in post mortem human cerebral cortex of cirrhotic patients with HE but not in those without HE, thereby confirming a role for oxidative stress in the pathophysiology of HE. Evidence derived from animal experiments and human post mortem brain tissue also indicates an up-regulation of microglia activation markers in the absence of increased synthesis of pro-inflammatory cytokines. However, the role of activated microglia in the pathophysiology of HE needs to be worked out in more detail. Most recent observations made in whole genome micro-array analyses of post mortem human brain tissue point to a hitherto unrecognized activation of multiple anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Boris Görg
- Heinrich-Heine-University Düsseldorf, Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Germany
| | | | | |
Collapse
|
26
|
Skowrońska M, Albrecht J. Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem Int 2012; 62:731-7. [PMID: 23142151 DOI: 10.1016/j.neuint.2012.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/16/2022]
Abstract
Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia ("the Trojan horse" hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.
Collapse
Affiliation(s)
- Marta Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Center, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland.
| | | |
Collapse
|
27
|
Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD. Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 2012; 37:2569-88. [PMID: 22926576 DOI: 10.1007/s11064-012-0868-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 12/26/2022]
Abstract
During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system.
Collapse
Affiliation(s)
- Sofie C Lange
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
28
|
Skowrońska M, Albrecht J. Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res 2011; 21:236-44. [PMID: 21874372 PMCID: PMC3246587 DOI: 10.1007/s12640-011-9269-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 02/01/2023]
Abstract
Ammonia is a neurotoxin involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy, a condition associated with acute—(ALF) or chronic liver failure. This article reviews evidence that apart from directly affecting the metabolism and function of the central nervous system cells, ammonia influences the passage of different molecules across the blood brain barrier (BBB). A brief description is provided of the tight junctions, which couple adjacent cerebral capillary endothelial cells to each other to form the barrier. Ammonia modulates the transcellular passage of low-to medium-size molecules, by affecting their carriers located at the BBB. Ammonia induces interrelated aberrations of the transport of the large neutral amino acids and aromatic amino acids (AAA), whose influx is augmented by exchange with glutamine produced in the course of ammonia detoxification, and maybe also modulated by the extracellularly acting gamma-glutamyl moiety transferring enzyme, gamma-glutamyl-transpeptidase. Impaired AAA transport affects neurotransmission by altering intracerebral synthesis of catecholamines (serotonin and dopamine), and producing “false neurotransmitters” (octopamine and phenylethylamine). Ammonia also modulates BBB transport of the cationic amino acids: the nitric oxide precursor, arginine, and ornithine, which is an ammonia trap, and affects the transport of energy metabolites glucose and creatine. Moreover, ammonia acting either directly or in synergy with liver injury-derived inflammatory cytokines also evokes subtle increases of the transcellular passage of molecules of different size (BBB “leakage”), which appears to be responsible for the vasogenic component of cerebral edema associated with ALF.
Collapse
Affiliation(s)
- Marta Skowrońska
- Departament of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warszawa, Pawińskiego 5, Poland
| | | |
Collapse
|
29
|
Alvarez VM, Rama Rao KV, Brahmbhatt M, Norenberg MD. Interaction between cytokines and ammonia in the mitochondrial permeability transition in cultured astrocytes. J Neurosci Res 2011; 89:2028-40. [PMID: 21748779 DOI: 10.1002/jnr.22708] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/10/2011] [Accepted: 05/13/2011] [Indexed: 01/23/2023]
Abstract
Hepatic encephalopathy (HE) is the major neurological complication occurring in patients with acute and chronic liver failure. Elevated levels of blood and brain ammonia are characteristic of HE, and astrocytes are the primary target of ammonia toxicity. In addition to ammonia, recent studies suggest that inflammation and associated cytokines (CKs) also contribute to the pathogenesis of HE. It was previously established that ammonia induces the mitochondrial permeability transition (mPT) in cultured astrocytes. As CKs have been shown to cause mitochondrial dysfunction in other conditions, we examined whether CKs induce the mPT in cultured astrocytes. Cultures treated with tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ, individually or in a mixture, resulted in the induction of the mPT in a time-dependent manner. Simultaneous treatment of cultures with a mixture of CKs and ammonia showed a marked additive effect on the mPT. As oxidative stress (OS) is known to induce the mPT, so we examined the effect of CKs and ammonia on hemeoxygenase-1 (HO-1) protein expression, a marker of OS. Such treatment displayed a synergistic effect in the upregulation of HO-1. Antioxidants significantly blocked the additive effects on the mPT by CKs and ammonia, suggesting that OS represents a major mechanism in the induction of the mPT. Treatment of cultures with minocycline, an antiinflammatory agent, which is known to inhibit OS, also diminished the additive effects on the mPT caused by CKs and ammonia. Induction of the mPT in astrocytes appears to represent a major pathogenetic factor in HE, in which CKs and ammonia are critically involved.
Collapse
Affiliation(s)
- Veronica M Alvarez
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33101, USA.
| | | | | | | |
Collapse
|
30
|
Rama Rao KV, Jayakumar AR, Tong X, Alvarez VM, Norenberg MD. Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes. J Neuroinflammation 2010; 7:66. [PMID: 20942959 PMCID: PMC2964656 DOI: 10.1186/1742-2094-7-66] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/13/2010] [Indexed: 12/19/2022] Open
Abstract
Background Brain edema leading to high intracranial pressure is a lethal complication of acute liver failure (ALF), which is believed to be cytotoxic due to swelling of astrocytes. In addition to the traditional view that elevated levels of blood and brain ammonia are involved in the mechanism of brain edema in ALF, emerging evidence suggests that inflammatory cytokines also contribute to this process. We earlier reported that treatment of astrocyte cultures with a pathophysiological concentration of ammonia (5 mM NH4Cl) resulted in the activation of nuclear factor-kappaB (NF-κB) and that inhibition of such activation diminished astrocyte swelling, suggesting a key role of NF-κB in the mechanism of ammonia-induced astrocyte swelling. Since cytokines are also well-known to activate NF-κB, this study examined for additive/synergistic effects of ammonia and cytokines in the activation of NF-κB and their role in astrocyte swelling. Methods Primary cultures of astrocytes were treated with ammonia and cytokines (TNF-α, IL-1, IL-6, IFN-γ, each at 10 ng/ml), individually or in combination, and cell volume was determined by the [3H]-O-methylglucose equilibration method. The effect of ammonia and cytokines on the activation of NF-κB was determined by immunoblots. Results Cell swelling was increased by ammonia (43%) and by cytokines (37%) at 24 h. Simultaneous co-treatment with cytokines and ammonia showed no additional swelling. By contrast, cultures pretreated with ammonia for 24 h and then exposed to cytokines for an additional 24 h, showed a marked increase in astrocyte swelling (129%). Treatment of cultures with ammonia or cytokines alone also activated NF-κB (80-130%), while co-treatment had no additive effect. However, in cultures pre-treated with ammonia for 24 h, cytokines induced a marked activation of NF-κB (428%). BAY 11-7082, an inhibitor of NF-κB, completely blocked the astrocyte swelling in cultures pre-treated with ammonia and followed by the addition of a mixture of cytokines. Conclusion Our results indicate that ammonia and a mixture of cytokines each cause astrocyte swelling but when these agents are added simultaneously, no additive effects were found. On the other hand, when cells were initially treated with ammonia and 24 h later given a mixture of cytokines, a marked potentiation in cell swelling and NF-κB activation occurred. These data suggest that the potentiation in cell swelling is a consequence of the initial activation of NF-κB by ammonia. These findings provide a likely mechanism for the exacerbation of brain edema in patients with ALF in the setting of sepsis/inflammation.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | | | | | | | | |
Collapse
|
31
|
Márquez-Aguirre A, Canales-Aguirre A, Gómez-Pinedo U, Gálvez-Gastélum F. Aspectos moleculares de la encefalopatía hepática. Neurologia 2010. [DOI: 10.1016/j.nrl.2009.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Yang X, Bosoi CR, Jiang W, Tremblay M, Rose CF. Portacaval anastomosis-induced hyperammonemia does not lead to oxidative stress. Metab Brain Dis 2010; 25:11-5. [PMID: 20195725 DOI: 10.1007/s11011-010-9174-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Ammonia is neurotoxic and believed to play a major role in the pathogenesis of hepatic encephalopathy (HE). It has been demonstrated, in vitro and in vivo, that acute and high ammonia treatment induces oxidative stress. Reactive oxygen species (ROS) are highly reactive and can lead to oxidization of proteins resulting in protein damage. The present study was aimed to assess oxidative status of proteins in plasma and brain (frontal cortex) of rats with 4-week portacaval anastomosis (PCA). Markers of oxidative stress, 4-hydroxy-2-nonenal (HNE) and carbonylation were evaluated by immunoblotting in plasma and frontal cortex. Western blot analysis did not demonstrate a significant difference in either HNE-linked or carbonyl derivatives on proteins between PCA and sham-operated control rats in both plasma and frontal cortex. The present study suggests PCA-induced hyperammonemia does not lead to systemic or central oxidative stress.
Collapse
Affiliation(s)
- Xiaoling Yang
- Neuroscience Research Unit, Université de Montréal (CRCHUM), 1058 St-Denis Street, Montreal, Quebec, H2X 3J4, Canada
| | | | | | | | | |
Collapse
|
33
|
Márquez-Aguirre A, Canales-Aguirre A, Gómez-Pinedo U, Gálvez-Gastélum F. Molecular aspects of hepatic encephalopathy. NEUROLOGÍA (ENGLISH EDITION) 2010. [DOI: 10.1016/s2173-5808(10)70048-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
Kruczek C, Görg B, Keitel V, Pirev E, Kröncke KD, Schliess F, Häussinger D. Hypoosmotic swelling affects zinc homeostasis in cultured rat astrocytes. Glia 2009; 57:79-92. [DOI: 10.1002/glia.20737] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Kireev RA, Tresguerres ACF, Garcia C, Ariznavarreta C, Vara E, Tresguerres JAF. Melatonin is able to prevent the liver of old castrated female rats from oxidative and pro-inflammatory damage. J Pineal Res 2008; 45:394-402. [PMID: 18573161 DOI: 10.1111/j.1600-079x.2008.00606.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the effect of aging and ovariectomy on various physiological parameters related to inflammation and oxidative stress in livers obtained from old female rats, and the influence of chronic administration of melatonin on these animals. Twenty-four female Wistar rats of 22 months of age were used. Animals were divided into four experimental groups: two intact groups that were untreated or given melatonin (1 mg/kg/day), and two ovariectomized groups that also untreated and treated with melatonin (1 mg/kg/day). After 10 wk of treatment, rats were sacrificed by decapitation, and livers were collected and homogenized. A group of 2-month-old female rats was used as young controls. Protein expression of inducible nitric oxide synthase (iNOS), heme oxygenase-1 (HO-1), IL-6, TNF-alpha and IL-1beta were determined by Western blot analysis. The levels of nitric oxide metabolites (NO(x)), lipid hydroperoxide (LPO), TNF-alpha, IL-1beta, IL-6 and IL-10 were determined. Levels of LPO in the liver homogenates as well as iNOS protein expression and NO(x) levels were increased in old rats as compared with young animals; this effect was more evident in ovariectomized animals. Pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6 were significantly increased and anti-inflammatory IL-10 decreased during aging and after ovariectomy. Aging also significantly increased the expression of HO-1 protein, and ovariectomized rats showed an additional increase. Administration of melatonin, both to intact and to the ovariectomized animals significantly reduced NO(x), LPO levels and pro-inflammatory cytokines in the liver as compared with untreated rats. Significant rice in IL-10 and reductions in the iNOS, HO-1, IL-6, TNF-alpha and IL-1beta protein expression were also found in rats treated with melatonin. Oxidative stress and inflammation induced during aging in the liver are more marked in castrated than in intact females. Administration of melatonin reduces both these situations.
Collapse
Affiliation(s)
- R A Kireev
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
36
|
Syapin PJ. Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 2008; 155:623-40. [PMID: 18794892 DOI: 10.1038/bjp.2008.342] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Injury to the CNS elicits a host defense reaction that utilizes astrocytes, microglia, neurons and oligodendrocytes. Neuroinflammation is a major host defense mechanism designed to restore normal structure and function after CNS insult, but like other forms of inflammation, chronic neuroinflammation may contribute to pathogenesis. The inducible haeme oxygenase isoform, haeme oxygenase-1 (HO-1), is a phase 2 enzyme upregulated in response to electrophilic xenobiotics, oxidative stress, cellular injury and disease. There is emerging evidence that HO-1 expression helps mediate the resolution of inflammation, including neuroinflammation. Whether this is solely because of the catabolism of haeme or includes additional mechanisms is unclear. This review provides a brief background on the molecular biology and biochemistry of haeme oxygenases and the actions of haeme, bilirubin, iron and carbon monoxide in the CNS. It then presents our current state of knowledge regarding HO-1 expression in the CNS, regulation of HO-1 induction in neural cells and discusses the prospect of pharmacological manipulation of HO-1 as therapy for CNS disorders. Because of recognized species and cellular differences in HO-1 regulation, a major objective of this review is to draw attention to areas where gaps exist in the experimental record regarding regulation of HO-1 in neural cells. The results indicate the HO-1 system to be an important therapeutic target in CNS disorders, but our understanding of HO-1 expression in human neural cells is severely lacking.
Collapse
Affiliation(s)
- P J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA.
| |
Collapse
|
37
|
Sanyal AJ, Bosch J, Blei A, Arroyo V. Portal hypertension and its complications. Gastroenterology 2008; 134:1715-28. [PMID: 18471549 DOI: 10.1053/j.gastro.2008.03.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 12/12/2022]
Affiliation(s)
- Arun J Sanyal
- Division Of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA.
| | | | | | | |
Collapse
|
38
|
|
39
|
Norenberg MD, Jayakumar AR, Rama Rao KV, Panickar KS. New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis 2007; 22:219-34. [PMID: 17823859 DOI: 10.1007/s11011-007-9062-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is generally accepted that astrocyte swelling forms the major anatomic substrate of the edema associated with acute liver failure (ALF) and that ammonia represents a major etiological factor in its causation. The mechanisms leading to such swelling, however, remain elusive. Recent studies have invoked the role of oxidative stress in the mechanism of hepatic encephalopathy (HE), as well as in the brain edema related to ALF. This article summarizes the evidence for oxidative stress as a major pathogenetic factor in HE/ALF and discusses mechanisms that are triggered by oxidative stress, including the induction of the mitochondrial permeability transition (MPT) and activation of signaling kinases. We propose that a cascade of events initiated by ammonia-induced oxidative stress results in cell volume dysregulation leading to cell swelling/brain edema. Blockade of this cascade may provide novel therapies for the brain edema associated with ALF.
Collapse
Affiliation(s)
- M D Norenberg
- Veterans Affairs Medical Center, Miami, FL 33101, USA.
| | | | | | | |
Collapse
|
40
|
Túnez I, Muñoz MC, Medina FJ, Salcedo M, Feijóo M, Montilla P. Comparison of melatonin, vitamin E and L-carnitine in the treatment of neuro- and hepatotoxicity induced by thioacetamide. Cell Biochem Funct 2007; 25:119-27. [PMID: 16245358 DOI: 10.1002/cbf.1276] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was designed to evaluate and compare the effect of melatonin, vitamin E and L-carnitine on brain and liver oxidative stress and liver damage. Oxidative stress and hepatic failure were produced by a single dose of thioacetamide (TAA) (150 mg kg(-1)) in Wistar rats. A dose of either melatonin (3 mg kg(-1)) vitamin E (20 mg kg(-1) ) or L-carnitine (100 mg kg(-1)) was used. Blood samples were taken from the neck vasculature in order to determine ammonium, blood urea nitrogen (BUN) and liver enzymes. Lipid peroxidation products, glutathione (GSH) content and antioxidative enzymes were determined in cerebral and hepatic homogenates. The results showed a decrease in BUN and in the antioxidant enzymes activities and GSH in the brain and liver. Likewise, TAA induced significant enhancement of lipid peroxidation products levels in both liver and brain, as well as in ammonia values. Melatonin, vitamin E and L-carnitine, although melatonin more significantly, decreased the intensity of the changes produced by the administration of TAA alone. Furthermore melatonin combined with TAA, decreased the ammonia levels and increased the BUN values compared with TAA animals. Also it was more effective than vitamin E or L-carnitine in these actions. These data show the protective effect of these agents, especially melatonin, against oxidative stress and hepatic damage present in fulminant hepatic failure.
Collapse
Affiliation(s)
- Isaac Túnez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Avda. Menendez Pidal s/n, 14004-Cordoba, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Schliess F, Görg B, Häussinger D. Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm. Biol Chem 2006; 387:1363-70. [PMID: 17081108 DOI: 10.1515/bc.2006.171] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE) defines a primary gliopathy associated with acute and chronic liver disease. Astrocyte swelling triggered by ammonia in synergism with different precipitating factors, including hyponatremia, tumor necrosis factor (TNF)-alpha, glutamate and ligands of the peripheral benzodiazepine receptor (PBR), is an early pathogenetic event in HE. On the other hand, reactive nitrogen and oxygen species (RNOS) including nitric oxide are considered to play a major role in HE. There is growing evidence that osmotic and oxidative stresses are closely interrelated. Astrocyte swelling produces RNOS and vice versa. Based on recent investigations, this review proposes a working model that integrates the pathogenetic action of osmotic and oxidative stresses in HE. Under participation of the N-methyl-D-aspartate (NMDA) receptor, Ca(2+), the PBR and organic osmolyte depletion, astrocyte swelling and RNOS production may constitute an autoamplificatory signaling loop that integrates at least some of the signals released by HE-precipitating factors.
Collapse
Affiliation(s)
- Freimut Schliess
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
42
|
Eizayaga F, Scorticati C, Prestifilippo JP, Romay S, Fernandez MA, Castro JL, Lemberg A, Perazzo JC. Altered blood-brain barrier permeability in rats with prehepatic portal hypertension turns to normal when portal pressure is lowered. World J Gastroenterol 2006; 12:1367-1372. [PMID: 16552803 PMCID: PMC4124312 DOI: 10.3748/wjg.v12.i9.1367] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/01/2005] [Accepted: 10/10/2005] [Indexed: 02/06/2023] Open
Abstract
AIM To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation,at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 d after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia,plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected,were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility.Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment.
Collapse
Affiliation(s)
- Francisco Eizayaga
- Laboratory of Portal Hypertension, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956, C.P. 1113, Ciudad Autonoma de Buenos Aires, Republica Argentina
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Vaquero J, Rose C, Butterworth RF. Keeping cool in acute liver failure: rationale for the use of mild hypothermia. J Hepatol 2005; 43:1067-77. [PMID: 16246452 DOI: 10.1016/j.jhep.2005.05.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/05/2005] [Accepted: 05/12/2005] [Indexed: 12/19/2022]
Abstract
Encephalopathy, brain edema and intracranial hypertension are neurological complications responsible for substantial morbidity/mortality in patients with acute liver failure (ALF), where, aside from liver transplantation, there is currently a paucity of effective therapies. Mirroring its cerebro-protective effects in other clinical conditions, the induction of mild hypothermia may provide a potential therapeutic approach to the management of ALF. A solid mechanistic rationale for the use of mild hypothermia is provided by clinical and experimental studies showing its beneficial effects in relation to many of the key factors that determine the development of brain edema and intracranial hypertension in ALF, namely the delivery of ammonia to the brain, the disturbances of brain organic osmolytes and brain extracellular amino acids, cerebro-vascular haemodynamics, brain glucose metabolism, inflammation, subclinical seizure activity and alterations of gene expression. Initial uncontrolled clinical studies of mild hypothermia in patients with ALF suggest that it is an effective, feasible and safe approach. Randomized controlled clinical trials are now needed to adequately assess its efficacy, safety, clinical impact on global outcomes and to provide the guidelines for its use in ALF.
Collapse
Affiliation(s)
- Javier Vaquero
- Neuroscience Research Unit, Hôpital Saint-Luc (C.H.U.M.), 1058 St Denis street, Montreal, QC, Canada H2X 3J4
| | | | | |
Collapse
|
44
|
Abstract
Astrocyte swelling represents the major factor responsible for the brain edema associated with fulminant hepatic failure (FHF). The edema may be of such magnitude as to increase intracranial pressure leading to brain herniation and death. Of the various agents implicated in the generation of astrocyte swelling, ammonia has had the greatest amount of experimental support. This article reviews mechanisms of ammonia neurotoxicity that contribute to astrocyte swelling. These include oxidative stress and the mitochondrial permeability transition (MPT). The involvement of glutamine in the production of cell swelling will be highlighted. Evidence will be provided that glutamine induces oxidative stress as well as the MPT, and that these events are critical in the development of astrocyte swelling in hyperammonemia.
Collapse
Affiliation(s)
- M D Norenberg
- Veterans Affairs Medical Center, Miami, Florida 33101, USA. mnorenbe@med,miami.edu
| | | | | |
Collapse
|
45
|
|
46
|
Castillo C, Salazar V, Ariznavarreta C, Vara E, Tresguerres JAF. Effect of melatonin administration on parameters related to oxidative damage in hepatocytes isolated from old Wistar rats. J Pineal Res 2005; 38:240-6. [PMID: 15813900 DOI: 10.1111/j.1600-079x.2004.00199.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging induces changes in several organs and tissues, such as the liver, and this process might be due to oxidative damage caused by free radicals and inflammatory mediators. Melatonin is a secretory product with well-known antioxidant properties. The aim of this study was to investigate the effect of melatonin administration on age-induced alterations in hepatocytes. Twenty-two-month old male Wistar rats were treated with oral melatonin for 10 wk. At the end of the treatment, hepatocytes were isolated and cultured, and different parameters were measured in both cells and medium. Aging induced a significant increase in lipid peroxidation, nitric oxide, carbon monoxide and cyclic guanosyl-monophosphate, as well as a reduction in adenosine triphosphate content and phosphatidylcholine synthesis when compared to young animals. Melatonin administration significantly ameliorated all these age-related changes in males. Melatonin administration seems to exert beneficial effects against age-induced changes in hepatocytes.
Collapse
Affiliation(s)
- Carmen Castillo
- Laboratory of Experimental Endocrinology, Department of Physiology, School of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
47
|
Abstract
The pathogenesis of hepatic encephalopathy (HE) remains elusive. While it is clear that ammonia is the likely toxin and that astrocytes are the main target of its neurotoxicity, precisely how ammonia brings about cellular injury is poorly understood. Studies over the past decade have invoked the concept of oxidative stress as a pathogenetic mechanism for ammonia neurotoxicity. This review sets out the arguments in support of this concept based on evidence derived from human observations, animal studies, and cell culture investigations. The consequences and potential therapeutic implications of oxidative stress in HE are also discussed.
Collapse
Affiliation(s)
- M D Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, Florida 33101, USA.
| | | | | |
Collapse
|
48
|
Bidmon HJ, Starbatty J, Görg B, Zilles K, Behrends S. Cerebral expression of the α2-subunit of soluble guanylyl cyclase is linked to cerebral maturation and sensory pathway refinement during postnatal development. Neurochem Int 2004; 45:821-32. [PMID: 15312976 DOI: 10.1016/j.neuint.2004.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soluble guanylyl cylase (sGC) has been identified for being a receptor for the gaseous transmitters nitric oxide and carbon monoxide. Currently four subunits alpha1, alpha2, beta1, and beta2 have been characterized. Heterodimers of alpha and beta-subunits as well as homodimers of the beta2-subunit are known to constitute functional sGC which use GTP to form cGMP a potent signal molecule in a multitude of second messenger cascades. Since NO-cGMP signaling plays a pivotal role in neuronal development we analyzed the maturational expression pattern of the newly characterized alpha2-subunit of sGC within the brain of Wistar rats by means of RNase protection assay and immunohistochemistry. alpha2-subunit mRNA as well as immunoreactive alpha2-protein increased during postnatal cerebral development. Topographical analysis revealed a selective high expression of the alpha2-subunit in the choroid plexus and within developing sensory systems involving the olfactory and somatosensory system of the forebrain as well as parts of the auditory and visual system within the hindbrain. In cultured cortical neurons the alpha2-subunit was localized to the cell membrane, especially along neuronal processes. During the first 11 days of postnatal development several cerebral regions showed a distinct expression of the alpha2-subunit which was not paralleled by the alpha1/beta1-subunits especially within the developing thalamo-cortical circuitries of the somatosensory system. However, at later developmental stages all three subunits became more homogenously distributed among most cerebral regions, indicating that functional alpha1/beta1 and alpha2/beta1 heterodimers of sGC could be formed. Our findings indicate that the alpha2-subunit is an essential developmentally regulated constituent of cerebral sensory systems during maturation. In addition the alpha2-subunit may serve other functions than forming a functional heterodimer of sGC during the early phases of sensory pathway refinement.
Collapse
Affiliation(s)
- Hans-J Bidmon
- C.& O. Vogt Institute of Brain Research, Heinrich-Heine-University, University Street 1, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
49
|
Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 2004; 20:921-62. [PMID: 14680136 DOI: 10.1081/cbi-120025245] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Endogenous circadian and exogenously driven daily rhythms of antioxidative enzyme activities and of low molecular weight antioxidants (LMWAs) are described in various phylogenetically distant organisms. Substantial amplitudes are detected in several cases, suggesting the significance of rhythmicity in avoiding excessive oxidative stress. Mammalian and/or avian glutathione peroxidase and, as a consequence, glutathione reductase activities follow the rhythm of melatonin. Another hint for an involvement of melatonin in the control of redox processes is seen in its high-affinity binding to cytosolic quinone reductase 2, previously believed to be a melatonin receptor. Although antioxidative protection by pharmacological doses of melatonin is repeatedly reported, explanations of these findings are still insufficient and their physiological and chronobiological relevance is not yet settled. Recent data indicate a role of melatonin in the avoidance of mitochondrial radical formation, a function which may prevail over direct scavenging. Rhythmic changes in oxidative damage of protein and lipid molecules are also reported. Enhanced oxidative protein modification accompanied by a marked increase in the circadian amplitude of this parameter is detected in the Drosophila mutant rosy, which is deficient in the LMWA urate. Preliminary evidence for the significance of circadian rhythmicity in diminishing oxidative stress comes from clock mutants. In Drosophila, moderately enhanced protein damage is described for the arrhythmic and melatonin null mutant per0, but even more elevated, periodic damage is found in the short-period mutant per(s), synchronized to LD 12:12. Remarkably large increases in oxidative protein damage, along with impairment of tissue integrity and--obviously insufficient--compensatory elevations in protective enzymes are observed in a particularly vulnerable organ, the Harderian gland, of another short-period mutant tau, in the Syrian hamster. Mice deficient in the per2 gene homolog are reported to be cancer-prone, a finding which might also relate to oxidative stress. In the dinoflagellate Lingulodinium polyedrum [Gonyaulax polyedra], various treatments that cause oxidative stress result in strong suppressions of melatonin and its metabolite 5-methoxytryptamine (5-MT) and to secondary effects on overt rhythmicity. The glow maximum, depending on the presence of elevated 5-MT at the end of subjective night, decreases in a dose-dependent manner already under moderate, non-lethal oxidative stress, but is restored by replenishing melatonin. Therefore, a general effect of oxidative stress may consist in declines of easily oxidizable signaling molecules such as melatonin, and this can have consequences on the circadian intraorganismal organization and expression of overt rhythms. Recent findings on a redox-sensitive input into the core oscillator via modulation of NPAS2/BMAL1 or CLK/BMAL1 heterodimer binding to DNA indicate a direct influence of cellular redox balance, including oxidative stress, on the circadian clock.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.
| | | | | |
Collapse
|