1
|
Mourya B, Chaudhari SB, Gadge ST, Bhanage BM. Pd/C-Catalyzed Oxidative Aminocarbonylation of Aryldiazonium Tetrafluoroborate Salts through sp 3CN Bond Activation of Inert Tertiary Amines to Tertiary Amides. Chempluschem 2025:e2500153. [PMID: 40356319 DOI: 10.1002/cplu.202500153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/07/2025] [Accepted: 05/11/2025] [Indexed: 05/15/2025]
Abstract
Aryldiazonium tetrafluoroborate salts are highly accessible from readily available and inexpensive amines, and by realizing these advantages, an efficient protocol is developed that employs aryldiazonium tetrafluoroborate salts as an effective electrophile for oxidative aminocarbonylation with unreactive tertiary amines. In this, molecular oxygen has been used as an ideal and green oxidant, which activates the inert CN bond. Various derivatives of aryldiazonium tetrafluoroborate salts are prepared, which include different electron-withdrawing and electron-donating group substituents. This protocol utilizes Pd/C as a heterogeneous catalyst, which is smoothly recyclable. Moreover, this developed method is ligand and cocatalyst free, and it does not require any base to activate the amines as nucleophile, and the new process effectively provides a mild pathway toward a variety of tertiary amide moieties with significant yield. This way, the potent protocol is economical, simple, recyclable, and operates at milder conditions and contributes toward valuable products that are vital in an industrial domain.
Collapse
Affiliation(s)
- Bharati Mourya
- Department of Chemistry, Institute of Chemical Technology, Mumbai, 400019, India
| | - Shankar B Chaudhari
- Department of Chemistry and Research Center, New Arts, Commerce and Science College Parner, Savitribai Phule Pune University, Pune, 40008, India
| | - Sandip T Gadge
- Department of Chemistry, Institute of Chemical Technology, Mumbai, 400019, India
| | | |
Collapse
|
2
|
Vega-Ces S, Brutiu BR, Kaiser D, Maulide N. Regioselective Synthesis of β,γ-Unsaturated Amides from Unactivated Alkenes. J Org Chem 2025; 90:4121-4126. [PMID: 40056122 PMCID: PMC11934130 DOI: 10.1021/acs.joc.5c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/10/2025]
Abstract
β,γ-Unsaturated amides are valuable substrates for downstream functionalization reactions but can be challenging to prepare. Herein, we introduce an approach featuring the regioselective addition of carbamoyl chlorides to unactivated alkenes, present its scope and limitations, and exemplify its synthetic utility.
Collapse
Affiliation(s)
- Sabela Vega-Ces
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Bogdan R. Brutiu
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
3
|
Zuo D, Li C, Wu Q, Wang Q, Huang T, Liu L, Chen T. Acid/halide co-mediated transesterification of unactivated carboxylic esters with O-H nucleophiles. Org Biomol Chem 2025; 23:2424-2431. [PMID: 39902554 DOI: 10.1039/d4ob02027h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The transesterification of unactivated carboxylic esters with alcohols was achieved in one pot through acid/halide cooperative catalysis. By this strategy, various weakly nucleophilic phenols could react with unactivated methyl esters to produce the corresponding phenolic esters in good to high yields. Aliphatic alcohols could also be used as the nucleophiles and showed higher reactivity. Moreover, high functional group tolerance has been demonstrated. This reaction is also applicable to the late-stage modification of clinical drug derivatives. These results clearly show the potential synthetic value of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Dongxu Zuo
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Chenglong Li
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Qiang Wu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Qun Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tianzeng Huang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Long Liu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Liu F, Yan X, Cai F, Hou W, Dong J, Yin SF, Huang G, Chen T, Szostak M, Zhou Y. Divergent alkynylative difunctionalization of amide bonds through C-O deoxygenation versus C-N deamination. Nat Commun 2025; 16:1294. [PMID: 39900580 PMCID: PMC11791076 DOI: 10.1038/s41467-024-55618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025] Open
Abstract
The transformation and utilization of amides are significant in organic synthesis and drug discovery. Here we demonstrate a divergent alkynylative difunctionalization of amides in a single transformation. In this reaction, amides react with an organometallic nucleophile to form a tetrahedral intermediate. By altering the N-substitution or the acyl group, the tetrahedral intermediate species selectively undergoes C-O or C-N cleavage with a concomitant capture by an alkynyl nucleophile generated in situ. This process enables the selective introduction of two different functional groups into the amide molecular architecture, producing valuable propargyl amine and propargyl alcohol products. The selectivity between deoxygenation and deamination process has been further elucidated by DFT calculations. Overall, this reaction successfully transforms the traditional mode of nucleophilic acyl addition to amides to a divergent C-O/C-N cleavage. The particularly wide substrate scope, including late-stage modification of bioactive molecules, demonstrates its potential broad applications in organic synthesis.
Collapse
Affiliation(s)
- Feng Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Xueyuan Yan
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fangfang Cai
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Wenjuan Hou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jianyu Dong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China.
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
| | - Tieqiao Chen
- College of Chemical Engineering and Technology, Hainan University, Haikou, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, USA.
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
5
|
Jeong HC, Lee HJ, Maruoka K. Chemoselective Cleavage and Transamidation of Tertiary p-Methoxybenzyl Amides under Metal-Free Photoredox Catalysis. Org Lett 2024; 26:9513-9518. [PMID: 39431889 DOI: 10.1021/acs.orglett.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
A metal-free and mild cleavage of tertiary p-methoxybenzyl amides (PMB tert-amide) under photoredox conditions is developed using Mes-Acr-Ph+BF4- and Selectfluor to activate the electron-rich benzylic C-H bond of the PMB moiety. The resulting acyl fluoride intermediate is versatile and facilitates a one-pot transamidation of the PMB tert-amide. The value of this protocol is highlighted by performing the chemoselective activation of the PMB tert-amide in bifunctional molecules containing more reactive functionalities than the amide.
Collapse
Affiliation(s)
- Hee-Chan Jeong
- School of Advanced Science and Technology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Hyo-Jun Lee
- School of Advanced Science and Technology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Gui QW, Ying S, Liu X, Wang J, Xiao X, Liu Z, Wang X, Shang Y, Li Q. BF 3·OEt 2-mediated transamidation of unprotected primary amides under solvent-free conditions. Org Biomol Chem 2024; 22:6605-6611. [PMID: 39087323 DOI: 10.1039/d4ob00875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A BF3·OEt2-mediated transamidation between unactivated amides and amines is reported, enabling access to diverse secondary and tertiary amides under transition-metal-free and solvent-free conditions. The operationally simple procedure provides a novel manifold for converting amide-amide bonds with excellent chemoselectivity. In particular, a series of amides including challenging thioamides enable direct transamidation to products with modest to excellent yields. Meanwhile, additional experiments were conducted to elucidate the mechanism of this transformation, and a plausible mechanism was proposed based on the results and related literature.
Collapse
Affiliation(s)
- Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Shengneng Ying
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Xin Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 410128, People's Republic of China
| | - Xuliang Xiao
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Zhuoliang Liu
- College of Science, National University of Defense Technology, Changsha 410128, People's Republic of China
| | - Xia Wang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Yanxue Shang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Qiang Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| |
Collapse
|
7
|
Zuo D, Xiao X, Ma X, Nie P, Liu L, Chen T. Highly efficient esterification of carboxylic acids with O-H nucleophiles through acid/iodide cooperative catalysis. Org Biomol Chem 2024. [PMID: 39016558 DOI: 10.1039/d4ob00910j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The esterification of carboxylic acids is an important reaction for preparing esters which find wide applications in various research fields. In this manuscript, we report an acid/iodide cooperative catalytic method which enables highly efficient esterification of carboxylic acids with a wide range of equivalent O-H nucleophiles including both alcohols and weak nucleophilic phenols. Under the reaction conditions, both aromatic and aliphatic carboxylic acids including those bearing functional groups work well, furnishing the corresponding esters in good to high yields. Moreover, this reaction is scalable and applicable to the modification of bioactive molecules. These results demonstrate the synthetic value of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Dongxu Zuo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Xiong Xiao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Xinyue Ma
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Peng Nie
- Guizhou Institute for Food and Drug Control, 84 Shibei Road, Yunyan District, Guiyang City, Guizhou Province, 550000, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
8
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
9
|
Lin Y, Ye C, Zhou M, Tang Z, Liu L, Wang Y, Wang L, Chen T. Pd-catalyzed ortho-C-H arylation of free anilines with arylboric acids forming o-amino biaryls. Org Biomol Chem 2024; 22:2211-2217. [PMID: 38353657 DOI: 10.1039/d4ob00020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
We report a Pd-catalyzed ortho-C-H arylation of free anilines with arylboric acids. Under the reaction conditions, a wide range of arylboric acids can couple with free anilines to produce the corresponding o-amino biaryls in moderate to good yields with good functional group tolerance. This reaction can be conducted on the gram scale. The products can be easily further functionalized via transformation of the free amino group. These results indicate the potential synthetic value of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Ying Lin
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Changxu Ye
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Meng Zhou
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Zhi Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Yuansheng Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Lingling Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Rajamanickam KR, Lee S. Ring Opening of N-Acyl Lactams Using Nickel-Catalyzed Transamidation. J Org Chem 2024. [PMID: 38173413 DOI: 10.1021/acs.joc.3c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We successfully developed a nickel-catalyzed transamidation method for the ring opening of N-acyl lactams. The method involves a reaction between N-benzoylpyrrolidin-2-one derivatives and aniline derivatives, with Ni(PPh3)2Cl2 serving as the catalyst, 2,2'-bipyridine as the ligand, and manganese as the reducing agent. This reaction led to the formation of ring-opening-amidated products in good yields. Notably, the method exhibited excellent efficiency for producing the corresponding ring-opening transamidation products for various ring sizes, including four-, five-, six-, seven-, and eight-membered ring lactams.
Collapse
Affiliation(s)
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
11
|
Shang W, Zhu L, Li Z, Xu W, Xiong B, Liu Y, Tang KW, Qian PC, Yin SF, Wong WY. Ruthenium-Catalyzed 1,6-Hydroalkylation of para-Quinone Methides with Ketones via the in Situ Activation of C( sp3)-H Bonds. J Org Chem 2023; 88:16196-16215. [PMID: 37955519 DOI: 10.1021/acs.joc.3c01661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A simple and efficient method for the ruthenium-catalyzed 1,6-hydroalkylation of para-quinone methides (p-QMs) with ketones via the in situ activation of C(sp3)-H bonds has been disclosed. Without the need for preactivation of the substrates and oxidant, a broad range of p-QMs and ketones are well tolerated, producing the expected 1,6-hydroalkylation products with moderate to good yields. Step-by-step control experiments and DFT calculation were conducted systematically to gain insights for the plausible reaction mechanism. This finding may have potential application in the selective diarylmethylation of ketones at the α-C position in organic synthesis.
Collapse
Affiliation(s)
- Wenli Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| |
Collapse
|
12
|
Moon H, Lee S. Reductive cross-coupling of N-acyl pyrazole and nitroarene using tetrahydroxydiboron: synthesis of secondary amides. Org Biomol Chem 2023; 21:8329-8334. [PMID: 37795749 DOI: 10.1039/d3ob01040f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
We report on a new method for the synthesis of amides using acyl pyrazoles and nitroarenes under reducing conditions. It was found that acyl pyrazoles react with organo-nitro compounds in the presence of B2(OH)4, giving the corresponding amides in good yields. We demonstrated that benzoyl pyrazoles having various substituents and nitroarenes with different substituents can be used to produce a range of N-substituted benzamides. The method shows good functional group tolerance and has potential application in the synthesis of a variety of organic molecules.
Collapse
Affiliation(s)
- Hayeon Moon
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
13
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
14
|
Lv C, Zhao R, Wang X, Liu D, Muschin T, Sun Z, Bai C, Bao A, Bao YS. Copper-Catalyzed Transamidation of Unactivated Secondary Amides via C-H and C-N Bond Simultaneous Activations. J Org Chem 2023; 88:2140-2157. [PMID: 36701175 DOI: 10.1021/acs.joc.2c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here, we demonstrate that α-C-H and C-N bonds of unactivated secondary amides can be activated simultaneously by the copper catalyst to synthesize α-ketoamides or α-ketoesters in one step, which is a challenging and underdeveloped transformation. Using copper as a catalyst and air as an oxidant, the reaction is compatible with a broad range of acetoamides, amines, and alcohols. The preliminary mechanism studies and density functional theory calculation indicated that the reaction process may undergo first radical α-oxygenation and then transamidation with the help of the resonant six-membered N,O-chelation and molecular oxygen plays a role as an initiator to trigger the transamidation process. The combination of chelation assistance and dioxygen selective oxygenation strategy would substantially extend the modern mild synthetic amide cleavage toolbox, and we envision that this broadly applicable method will be of great interest in the biopharmaceutical industry, synthetic chemistry, and agrochemical industry.
Collapse
Affiliation(s)
- Cong Lv
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Ruisheng Zhao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Xiuying Wang
- Inner Mongolia Autonomous Region Animal Epidemic Prevention Center, Hohhot 010020, China
| | - Dan Liu
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Tegshi Muschin
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Zhaorigetu Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Chaolumen Bai
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Agula Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yong-Sheng Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
15
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
16
|
Joseph D, Lee S. Reaction of Amide and Sodium Azide for the Synthesis of Acyl Azide, Urea, and Iminophosphorane. Org Lett 2022; 24:6186-6191. [PMID: 35959978 DOI: 10.1021/acs.orglett.2c02429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amides reacted with NaN3 to give the acyl azides in DMF at 25 °C and produce the symmetrical ureas in THF/H2O at 80 °C via the sequential reaction of acyl substitution and Curtius rearrangement. All acyl azides were also obtained from the secondary amides via sequential reaction of p-toluenesulfonyl chloride and NaN3. In addition, keto-stabilized iminophosphoranes were prepared from a one-pot reaction of amides, NaN3, and phosphines.
Collapse
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
17
|
Xing H, Chen M, Zhang D, Geng Z, Xie P, Loh TP. Dehydrative Cross-Coupling for C-N Bond Construction under Transition-Metal-Free Conditions. Org Lett 2022; 24:5657-5662. [PMID: 35900372 DOI: 10.1021/acs.orglett.2c01902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal-free catalytic system was designed to address the dehydrative cross-coupling of unactivated primary/secondary alcohols with amines/amides under environmentally benign conditions. Mg2+ and counteranion (PF6-) worked synergistically to realize C-OH bond cleavage and concomitant C-N bond formation. A wide range of allylic alcohols and amines/amides were tolerated well in this transformation, which allowed C-N bond construction with high efficiency.
Collapse
Affiliation(s)
- Huicong Xing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Meijuan Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Dong Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Zhishuai Geng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, P.R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 Singapore
| |
Collapse
|