Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. May 15, 2025; 17(5): 103804
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.103804
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.103804
Table 5 Predictive variables for survival types extracted from the articles
Selected features | Number (n) | Percentage (%) |
Age | 7 | 87.5 |
Stage | 7 | 87.5 |
Grade | 6 | 75.0 |
Treatment modality | 6 | 75.0 |
Primary tumor site | 5 | 62.5 |
Sex | 4 | 50.0 |
Tumor size | 4 | 50.0 |
Race | 3 | 37.5 |
Histopathology type | 3 | 37.5 |
Marital status | 3 | 37.5 |
Positive lymph node numbers | 2 | 25.0 |
Lymph node metastasis | 2 | 25.0 |
Metastasis status | 2 | 25.0 |
Regional nodes examined | 1 | 12.5 |
Lymph node dissection | 1 | 12.5 |
ASA grade | 1 | 12.5 |
History of other cancers | 1 | 12.5 |
Blood markers | 1 | 12.5 |
Lauren type | 1 | 12.5 |
Lymphovascular invasion | 1 | 12.5 |
Months from diagnosis to treatment | 1 | 12.5 |
Body weight | 1 | 12.5 |
- Citation: Wang HN, An JH, Wang FQ, Hu WQ, Zong L. Predicting gastric cancer survival using machine learning: A systematic review. World J Gastrointest Oncol 2025; 17(5): 103804
- URL: https://www.wjgnet.com/1948-5204/full/v17/i5/103804.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i5.103804