Copyright
©The Author(s) 2025.
World J Hepatol. Aug 27, 2025; 17(8): 109530
Published online Aug 27, 2025. doi: 10.4254/wjh.v17.i8.109530
Published online Aug 27, 2025. doi: 10.4254/wjh.v17.i8.109530
Figure 1 Detailed process from biparametric magnetic resonance imaging acquisition to recurrence-free survival assessment.
AP: Arterial phase; T2WI: T2-weighted imaging; ROI: Region of interest; DTL: Deep transfer learning; CAM: Class activation mapping; ROC: Receiver operating characteristic; DCA: Decision curve analyses; RFS: Recurrence-free survival.
- Citation: Zuo XY, Liu HF. Biparametric magnetic resonance imaging-based radiomic and deep learning models for predicting Ki-67 risk stratification in hepatocellular carcinoma. World J Hepatol 2025; 17(8): 109530
- URL: https://www.wjgnet.com/1948-5182/full/v17/i8/109530.htm
- DOI: https://dx.doi.org/10.4254/wjh.v17.i8.109530