Copyright
©The Author(s) 2025.
World J Hepatol. Apr 27, 2025; 17(4): 103330
Published online Apr 27, 2025. doi: 10.4254/wjh.v17.i4.103330
Published online Apr 27, 2025. doi: 10.4254/wjh.v17.i4.103330
Table 2 Description of model development, performance, and evaluation within included studies
Ref. | Model development | Model performance | Model evaluation | Clinical effectiveness | ||||||||||
Purpose | Blind edpredictor assessment | Predictor selection for modelling | Predictor selection during modelling | Missing data | Statistical modelling method | Model calibration performed | Model discrimination assessment | AUC (95%CI) (training model) | Internalvalidity assessment | AUC (95%CI) | Externalvalidity assessment | AUC (95%CI) | ||
Model development only | ||||||||||||||
Fang et al[21] | Binary | NR | Univariate association | NR | NR | MLR | Yes, calibration plots | Yes, AUC and CI | 0.845 (0.806-0.884) | Yes, split sample | 0.854 (0.782-0.926) | NR | NR | No study |
Meng et al[22] | Binary | NR | Univariate association | Stepwise | Yes | MLR | Yes, calibration plots | Yes, AUC only | 0.697 | Yes, bootstraps | 0.668 | NR | NR | No study |
Peng et al[23] | Binary | NR | Univariate association | NR | NR | MLR | NR | Yes, AUC and CI | 0.867 (0.790-0.943) | NR | NR | NR | NR | No study |
Shi et al[24] | Binary | NR | Univariate association | Forward | Yes | MLR | NR | Yes, AUC and CI | 0.844 (0.801-0.887) | NR | NR | NR | NR | Developed online calculators |
Choi et al[25] | Binary | NR | A bootstrap resampling approach | Backward | Yes | MLR | Yes, calibration curve and HL test | Yes, AUC and CI | 0.737 (0.687-0.787) | Yes, split sample | 0.672 (0.577-0.767) | NR | NR | No study |
Xu et al[26] | Binary | NR | NR | NR | Yes | Improved based on original model | NR | Yes, AUC and CI | 0.772 (0.716-0.822) | NR | NR | NR | NR | No study |
Mai et al[27] | Binary | NR | Univariate association | NR | Yes | ANN | Yes, calibration plots and HL test | Yes, AUC and CI | 0.88 (0.836-0.925) | Yes, split sample | 0.876 (0.801-0.950) | NR | NR | No study |
Yugawa et al[28] | Binary | NR | Univariate association | NR | Yes | MLR | NR | Yes, AUC only | 0.88 | NR | NR | NR | NR | No study |
Zhu et al[29] | Binary | NR | Univariate association and LASSO regression | Forward | NR | MLR | Yes, calibration curve and HL test | Yes, AUC and CI | 0.894 (0.823-0.964) | NR | NR | NR | NR | No study |
Lee et al[30] | Binary | NR | Univariate association | Backward | Yes | MLR | Yes, HL test | Yes, AUC and CIs | 0.853 (0.802-0.904) | Yes, CV and bootstraps | 0.852 (0.795-0.910) | NR | NR | No study |
Cho et al[31] | Binary | NR | Univariate association with the Kaplan-Meier plots | Backward | Yes | Cox regression | NR | Yes, AUC with DeLong test | 0.877 (0.805-0.948) | Yes, CV | 0.8 | NR | NR | No study |
Li et al[32] | Binary | NR | Univariate association | Backward | Yes | MLR | Yes, calibration plots and HL test | Yes, AUC and CI | 0.726 (0.696-0.760) | Yes, bootstraps | 0.717 (0.663-0.770) | NR | NR | No study |
Zhang et al[33] | Binary | NR | Univariate association | Forest algorithm | Yes | MLR | Yes, calibration plots | Yes, AUC and CI | 0.773 (0.729-0.818) | NR | NR | NR | NR | No study |
Wang et al[34] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration curve | Yes, AUC and CI | 0.857 (0.789-0.925) | Yes, split sample | 0.753 (0.696-0.809) | NR | NR | No study |
Prodeau et al[35] | Binary | NR | Bivariate ordinal logistic regression model | Backward | Yes | MLR | Yes, Lipsitz and Pulkstenis-Robinson tests | Yes, AUC only | 0.77 | Yes, bootstraps | 0.85 | NR | NR | No study |
Xiang et al[36] | Binary | NR | Univariate association and LASSO regression | NR | Yes | MLR | Yes, calibration plots and HL test | Yes, AUC and CI | 0.842 (0.761-0.922) | Yes, split sample | 0.863 (0.750-0.975) | NR | NR | No study |
Zhong et al[37] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration plots | Yes, AUC and CI | 0.832 (0.777-0.886) | Yes, split sample | 0.803 (0.723-0.883) | NR | NR | No study |
Chin et al[38] | Binary | NR | Univariate association | LASSO method | Yes | Penalized logistic regression | Yes, HL test | Yes, AUC only | 0.823 | NR | NR | NR | NR | No study |
Morino et al[39] | Binary | NR | Univariate association | Stepwise | NR | MLR | NR | NR | 0.877 | NR | NR | NR | NR | No study |
Wang et al[40] | Binary | NR | SHAP analysis | NR | Yes | ML | NR | Yes, AUC only | 0.944 (0.924-0.964) | Yes, split sample | 0.870 (0.791-0.950) | No external validity, just a split sample like Internal validity | NR | No study |
Dhir et al[41] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration plots and HL test | Yes, AUC only | 0.78 | Yes, split sample | 0.78 | NR | NR | No study |
Model development and external validation | ||||||||||||||
Lei et al[42] | Binary | NR | The squares of the Spearman correlation coefficients | LASSO method | Yes | MLR | Yes, calibration curve | Yes, AUC with DeLong test | 0.73 (0.69-0.76) | Yes, CV (10-fold) | 0.73 (0.69-0.76) | Different patient population (other two hospitals) | 0.72 (0.65-0.78) | No study |
Xu et al[43] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration curve | Yes, AUC only | 0.863 (0.812-0.914) | Yes, split sample | 0.823 (0.737-0.909) | Different patient population | 0.74 (0.624-0.856) | No study |
Peng et al[44] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration curve and HL test | Yes, AUC with Delong test | 0.828 (0.756-0.901) | NR | NR | Different patient population | 0.821 (0.727-0.914) | No study |
Ye et al[45] | Binary | NR | Univariate association | Forest algorithm | Yes | MLR | Yes, calibration plots | Yes, AUC and CI | 0.868 (0.811-0.926) | Yes, split sample | 0.868 (0.811-0.926) | Different patient population | 0.82 (0.756-0.861) | Yes |
Hobeika et al[46] | Binary | NR | Binomial logistic regressions | Forward/backward | Yes | MLR | Yes, calibration plots and HL test | Yes, AUC with DeLong test | 0.77 (0.667, 0.872) | NR | NR | Different patient population | 0.888 (0.809-0.968) | No study |
Li et al[47] | Binary | NR | Univariate association | Forward | Yes | MLR | Yes, calibration curve | Yes, AUC only | 0.911 (0.865-0.958) | NR | NR | Different time period | 0.714 (0.697-0.902) | No study |
Chen et al[50] | Binary | NR | Univariate association; Pearson’s correlation coefficients | NR | Yes | MLR | NR | Yes, AUC only | 0.956 (0.955-0.962) | NR | NR | Different patient population | 0.844 (0.833-0.886) | No study |
Shen et al[51] | Binary | NR | Univariate association | NR | NR | MLR | Yes, calibration curve | Yes, AUC and CI | 0.818 (0.735-0.901) | NR | NR | Different patient population | 0.906 (0.833-0.979) | No study |
Ding et al[52] | Binary | NR | Univariate association | NR | Yes | MLR | Yes, calibration curve and HL test | Yes, AUC only | 0.91 | Yes, split sample | 0.82 | Different patient population | 0.89 | No study |
Xu et al[53] | Binary | NR | LASSO regression with 10-fold cross-validation | LASSO method | NR | MLR | Yes, calibration curve | Yes, AUC with Delong test | 0.838 (0.790-0.885) | Yes, split sample | 0.788 (0.693-0.884) | Different patient population | 0.750 (0.632-0.868) | No study |
Wang et al[54] | Binary Mortality + OS | NR | Univariate association | Backward | NR | MLR | Yes, calibration plots | Yes, AUC only | 0.883 (0.852-0.915) | Yes, split sample | 0.851 | Different patient population | 0.856 | No study |
External validation of pre-existing model | ||||||||||||||
Guo et al[55] | Binary | NR | NR | NR | Yes | NR | Yes, loess-smoothed plots | Yes, AUC with DeLong test | NR | NR | NR | NR | 0.64 (0.58-0.69); 0.58 (0.52-0.64); 0.59 (0.53-0.64); 0.57 (0.51-0.63); 0.57 (0.51-0.63); 0.61 (0.55-0.67) | No study |
Noji et al[56] | Binary | NR | NR | NR | Yes | NR | NR | Yes, AUC only | NR | NR | NR | NR | 0.62 | No study |
- Citation: Wang X, Zhu MX, Wang JF, Liu P, Zhang LY, Zhou Y, Lin XX, Du YD, He KL. Multivariable prognostic models for post-hepatectomy liver failure: An updated systematic review. World J Hepatol 2025; 17(4): 103330
- URL: https://www.wjgnet.com/1948-5182/full/v17/i4/103330.htm
- DOI: https://dx.doi.org/10.4254/wjh.v17.i4.103330