Review
Copyright ©The Author(s) 2020.
World J Stem Cells. Jul 26, 2020; 12(7): 545-561
Published online Jul 26, 2020. doi: 10.4252/wjsc.v12.i7.545
Table 3 Covalent immobilization bioactive molecules to promote bone marrow mesenchymal stem cell adhesion, proliferation, and osteogenic differentiation
Bioactive moleculesTreatment processCell responseRef.
Type I collagenTitanium fiber meshes were treated with NaOH, followed by p-nitrophenyl chloroformate, and coated with collagen type I.The modification of titanium fiber meshes can promote BMSC osteogenic differentiation.van den Dolder et al[72]
Covalent immobilization of collagen on titanium.Greater regulation effect on BMSC osteogenesis compared to adsorptive immobilization.Ao et al[74]
Hyaluronic acid was immobilized on titanium surface by layer-by-layer technique.BMSCs had more lamellipodia and adhered more closely to the covalently immobilized HyA surface.Ao et al[78]
HyACovalent immobilization of RGD peptide on titanium surface.RGD-functionalized titanium can improve early bone growth and matrix mineralization.Elmengaard et al[87], Karaman et al[88]
RGD peptideHBII-RGD was immobilized on the Ti surface.HBII-RGD-functionalized Ti surfaces could stimulate BMSC differentiation and mineralization.Guillem-Marti et al[90]
Growth factorsCovalently graft EGF and BMP-2 onto the oxide surfaces.BMSC adhesion and proliferation were dramatically increased by covalently grafting EGF, but covalently grafted BMP-2 did not.Bauer et al[92]
PDGF-BB loading on titanium nanotube.PDGF-BB functionalized surfaces significantly enhanced BMSC attachment and osteogenesis-related functionsMa et al[98]