Copyright
©The Author(s) 2025.
Artif Intell Gastroenterol. Jun 8, 2025; 6(1): 107277
Published online Jun 8, 2025. doi: 10.35712/aig.v6.i1.107277
Published online Jun 8, 2025. doi: 10.35712/aig.v6.i1.107277
Table 1 Artificial intelligence techniques in viral hepatitis management
AI technique | Application | Accuracy/Achievement |
Deep learning | Image analysis for liver abnormalities | High accuracy in detecting HCV-related lesions (Vijayakumar[1], 2023) |
SVM and KNN algorithms | Patient classification based on liver function tests | High accuracy in HCV diagnosis (Hiyari et al[5], 2024) (Venkatesan et al[6], 2023) |
Hybrid quantum neural networks | Early detection of HCV from CT scans | Improved accuracy and speed (Vijayakumar[1], 2023) |
C5.0 algorithm with chi-square | HCV classification | 96.75% accuracy (Mahmud et al[7], 2024) |
Fuzzy Logic | HBV diagnosis | 94.35% accuracy (Singh et al[14], 2024) |
Genetic neural network | HBV diagnosis | 99.14% accuracy (Singh and Kaur[14], 2024) |
- Citation: Chen ML, Li WM, Liu Q, Gu Y, Wang JR. Revolutionizing viral hepatitis management: Artificial intelligence-assisted diagnosis and personalized treatment. Artif Intell Gastroenterol 2025; 6(1): 107277
- URL: https://www.wjgnet.com/2644-3236/full/v6/i1/107277.htm
- DOI: https://dx.doi.org/10.35712/aig.v6.i1.107277