1
|
Mellors PW, Lange AN, Casino Remondo B, Shestov M, Planer JD, Peterson AR, Ying Y, Zhou S, Christie JD, Diamond JM, Cantu E, Basil MC, Gill S. Shared roles of immune and stromal cells in the pathogenesis of human bronchiolitis obliterans syndrome. JCI Insight 2025; 10:e176596. [PMID: 40232854 DOI: 10.1172/jci.insight.176596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/11/2025] [Indexed: 04/17/2025] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is a progressive, fatal obstructive lung disease that occurs following lung transplant, where it is termed chronic lung allograft dysfunction BOS (CLAD-BOS), or as the primary manifestation of pulmonary chronic graft versus host disease (cGVHD-BOS) following allogeneic hematopoietic stem cell transplant. Disease pathogenesis is poorly understood; however, chronic alloreactivity is common to both conditions, suggesting a shared pathophysiology. We performed single-cell RNA-Seq (scRNA-Seq) on explanted human lungs from 4 patients with CLAD-BOS, 3 patients with cGVHD-BOS, and 3 deceased controls to identify cell types, genes, and pathways enriched in BOS to better understand disease mechanisms. In both forms of BOS, we found an expanded population of CD8+ tissue resident memory T cells (TRM), which was distinct to BOS compared with other chronic lung diseases. In addition, BOS samples expressed genes and pathways associated with macrophage chemotaxis and proliferation, including in nonimmune cell populations. We also identified dysfunctional stromal cells in BOS, characterized by pro- and antifibrotic gene programs. These data suggest substantial cellular and molecular overlap between CLAD- and cGVHD-BOS and, therefore, common pathways for possible therapeutic intervention.
Collapse
Affiliation(s)
- Patrick W Mellors
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania (Penn), Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies and
| | - Ana N Lange
- Department of Medicine, Perelman School of Medicine, Penn, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute and
- Penn Cardiovascular Institute, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Joseph D Planer
- Department of Medicine, Perelman School of Medicine, Penn, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute and
- Penn Cardiovascular Institute, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew R Peterson
- Department of Medicine, Perelman School of Medicine, Penn, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute and
- Penn Cardiovascular Institute, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yun Ying
- Department of Medicine, Perelman School of Medicine, Penn, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute and
- Penn Cardiovascular Institute, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, Penn, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute and
- Penn Cardiovascular Institute, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jason D Christie
- Department of Medicine, Perelman School of Medicine, Penn, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute and
| | - Joshua M Diamond
- Department of Medicine, Perelman School of Medicine, Penn, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute and
| | - Edward Cantu
- Penn-CHOP Lung Biology Institute and
- Department of Surgery, Perelman School of Medicine, Penn, Philadelphia, Pennsylvania, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, Penn, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute and
- Penn Cardiovascular Institute, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Saar Gill
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania (Penn), Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies and
| |
Collapse
|
2
|
Li S, Pan M, Zhao H, Li Y. Role of CCL2/CCR2 axis in pulmonary fibrosis induced by respiratory viruses. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00036-2. [PMID: 39955168 DOI: 10.1016/j.jmii.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Respiratory virus infection is an important cause of both community acquired pneumonia and hospital-acquired pneumonia. Various respiratory viruses, including influenza virus, avian influenza virus, respiratory syncytial virus (RSV), SARS-CoV, MERS-CoV, and SARS-CoV-2, result in severe fibrosis sequelae after the acute phase. Since the COVID-19 pandemic, respiratory virus infection, as an important cause of pulmonary fibrosis, has attracted increasing attention around the world. Respiratory virus infection usually triggers robust inflammation responses, leading to large amounts of proinflammatory mediator production, such as chemokine (C-C motif) ligand 2 (CCL2), a critical chemokine involved in the recruitment of various inflammatory cells. Moreover, CCL2 plays a pivotal role in the pathogenesis of fibrosis progression, through regulating recruitment of bone marrow-derived monocytes and increasing the expression of extracellular matrix proteins. This review provided a concise overview of the common fibrosis sequelae after virus infection. Then we discussed the elevated levels of CCL2 in various respiratory virus infection, underscoring its potent profibrotic role. Targeting the CCL2/CCR2 axis holds promise for alleviating fibrosis sequelae post-acute virus infection and warrants further investigation.
Collapse
Affiliation(s)
- Shuangyan Li
- Beijing Hospital, National Centre of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.
| | - Mingming Pan
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| |
Collapse
|
3
|
Starikova EA, Mammedova JT, Rubinstein AA, Sokolov AV, Kudryavtsev IV. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr Issues Mol Biol 2025; 47:108. [PMID: 39996829 PMCID: PMC11854423 DOI: 10.3390/cimb47020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Hemostasis is a mechanism that stops bleeding from an injured vessel, involves multiple interlinked steps, culminating in the formation of a "clot" sealing the damaged area. Moreover, it has long been recognized that inflammation also provokes the activation of the coagulation system. However, there has been an increasing amount of evidence revealing the immune function of the hemostasis system. This review collects and analyzes the results of the experimental studies and data from clinical observations confirming the inflammatory function of hemostasis. Here, we summarize the latest knowledge of the pathways in immune system activation under the influence of coagulation factors. The data analyzed allow us to consider the components of hemostasis as receptors recognizing «foreign» or damaged «self» or/and as «self» damage signals that initiate and reinforce inflammation and affect the direction of the adaptive immune response. To sum up, the findings collected in the review allow us to classify the coagulation factors, such as Damage-Associated Molecular Patterns that break down the conventional concepts of the coagulation system.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Department of Microbiology and Virology, Institute of Medical Education Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 Saint Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Department of Molecular Biotechnology, Chemical and Biotechnology Faculty, Saint Petersburg State Institute of Technology, Moskovski Ave., 26, 190013 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
| | - Alexey V. Sokolov
- Laboratory of Systemic Virology, Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, 15/17, Prof. Popova Str., 197376 Saint Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| |
Collapse
|
4
|
Chen T, Sun W, Xu ZJ. The immune mechanisms of acute exacerbations of idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1450688. [PMID: 39737178 PMCID: PMC11682984 DOI: 10.3389/fimmu.2024.1450688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) are the leading cause of mortality among patients with IPF. There is still a lack of effective treatments for AE-IPF, resulting in a hospitalization mortality rate as high as 70%-80%. To reveal the complicated mechanism of AE-IPF, more attention has been paid to its disturbed immune environment, as patients with IPF exhibit deficiencies in pathogen defense due to local immune dysregulation. During the development of AE-IPF, the classical stimulatory signals in adaptive immunity are inhibited, while the nonclassical immune reactions (Th17) are activated, attracting numerous neutrophils and monocytes to lung tissues. However, there is limited information about the specific changes in the immune response of AE-IPF. We summarized the immune mechanisms of AE-IPF in this review.
Collapse
Affiliation(s)
- Tao Chen
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Department of Respiratory and Critical Medicine, The second hospital of Tianjin Medical University, Tianjin, China
| | - Zuo-jun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Russo RC, Ryffel B. The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice. Cells 2024; 13:2058. [PMID: 39768150 PMCID: PMC11674266 DOI: 10.3390/cells13242058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system.
Collapse
Affiliation(s)
- Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France
| |
Collapse
|
6
|
Zhang H, Hua H, Liu J, Wang C, Zhu C, Xia Q, Jiang W, Cheng X, Hu X, Zhang Y. Integrative analysis of the efficacy and pharmacological mechanism of Xuefu Zhuyu decoction in idiopathic pulmonary fibrosis via evidence-based medicine, bioinformatics, and experimental verification. Heliyon 2024; 10:e38122. [PMID: 39416822 PMCID: PMC11481653 DOI: 10.1016/j.heliyon.2024.e38122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Objective We used evidence-based medicine, bioinformatics and experimental verification to comprehensively analyze the efficacy and pharmacological mechanism of Xuefu Zhuyu decoction (XFZYD) in the treatment of idiopathic pulmonary fibrosis (IPF). Methods Major databases were retrieved for randomized controlled trials (RCTs) of XFZYD treating IPF to perform meta-analysis. Active ingredients and target genes of XFZYD were identified from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). IPF-related differentially expressed genes (DEGs) were identified from the Gene Expression Omnibus (GEO) database. The RGUI software was utilized for Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The ingredient-target and protein-protein interaction (PPI) networks were achieved through Cytoscape software and the STRING database to identify the key compounds and target proteins. Molecular docking was performed using AutoDockTool and AutoDock Vina software. The effect between key compounds and target proteins was verified in animal experiments. Results Six RCTs were included for meta-analysis, which uncovered that the total effective rate of clinical efficacy was higher in the experimental group than control group. Then, 156 active ingredients and 254 target genes of XFZYD, and 1,566 IPF-related DEGs were identified. The intersection analysis identified 48 target genes correlating with 130 active ingredients of XFZYD treating IPF. GO functional enrichment, KEGG pathway enrichment, ingredient-target network and PPI network were achieved. Following the identification of key compounds and target proteins, we performed molecular docking. Ultimately, our research focused on the key compound quercetin for experimental validation to assess its interactions with two key target proteins, JUN and PTGS2. Conclusion The effectiveness of XFZYD on IPF has been substantiated through evidence-based medicine. The pharmacological mechanism of XFZYD for IPF treatment involves a complex interplay of various compounds and targets, with quercetin exerting pronounced impacts on JUN and PTGS2 proteins.
Collapse
Affiliation(s)
- Huizhe Zhang
- Department of Respiratory Medicine, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng TCM Hospital, Yancheng, Jiangsu, 224005, China
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
| | - Jian Liu
- Department of Respiratory Medicine, Xuejia People's Hospital of Xinbei District, Changzhou, Jiangsu, 213003, China
| | - Cong Wang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Chenjing Zhu
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Qingqing Xia
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Weilong Jiang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Xiangjin Cheng
- Department of Critical Care Medicine, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng TCM Hospital, Yancheng, Jiangsu, 224005, China
| | - Xiaodong Hu
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| | - Yufeng Zhang
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
- Research Institute of Respiratory Diseases, Jiangsu Province Clinical Academy of Traditional Chinese Medicine (Jiangyin Branch), Jiangyin, Jiangsu, 214400, China
| |
Collapse
|
7
|
Surendran A, Huang C, Liu L. Circular RNAs and their roles in idiopathic pulmonary fibrosis. Respir Res 2024; 25:77. [PMID: 38321530 PMCID: PMC10848557 DOI: 10.1186/s12931-024-02716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited treatment options. Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with diverse functions in cellular processes. This review paper aims to explore the potential involvement of circRNAs in the pathogenesis of IPF and their diagnostic and therapeutic implications. We begin by providing an overview of the epidemiology and risk factors associated with IPF, followed by a discussion of the pathophysiology underlying this complex disease. Subsequently, we delve into the history, types, biogenesis, and functions of circRNAs and then emphasize their regulatory roles in the pathogenesis of IPF. Furthermore, we examine the current methodologies for detecting circRNAs and explore their diagnostic applications in IPF. Finally, we discuss the potential utility of circRNAs in the treatment of IPF. In conclusion, circRNAs hold great promise as novel biomarkers and therapeutic targets in the management of IPF.
Collapse
Affiliation(s)
- Akshaya Surendran
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA.
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
8
|
Roy RM, Allawzi A, Burns N, Sul C, Rubio V, Graham J, Stenmark K, Nozik ES, Tuder RM, Vohwinkel CU. Lactate produced by alveolar type II cells suppresses inflammatory alveolar macrophages in acute lung injury. FASEB J 2023; 37:e23316. [PMID: 37983890 PMCID: PMC10914122 DOI: 10.1096/fj.202301722r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Alveolar inflammation is a hallmark of acute lung injury (ALI), and its clinical correlate is acute respiratory distress syndrome-and it is as a result of interactions between alveolar type II cells (ATII) and alveolar macrophages (AM). In the setting of acute injury, the microenvironment of the intra-alveolar space is determined in part by metabolites and cytokines and is known to shape the AM phenotype. In response to ALI, increased glycolysis is observed in AT II cells, mediated by the transcription factor hypoxia-inducible factor (HIF) 1α, which has been shown to decrease inflammation. We hypothesized that in acute lung injury, lactate, the end product of glycolysis, produced by ATII cells shifts AMs toward an anti-inflammatory phenotype, thus mitigating ALI. We found that local intratracheal delivery of lactate improved ALI in two different mouse models. Lactate shifted cytokine expression of murine AMs toward increased IL-10, while decreasing IL-1 and IL-6 expression. Mice with ATII-specific deletion of Hif1a and mice treated with an inhibitor of lactate dehydrogenase displayed exacerbated ALI and increased inflammation with decreased levels of lactate in the bronchoalveolar lavage fluid; however, all those parameters improved with intratracheal lactate. When exposed to LPS (to recapitulate an inflammatory stimulus as it occurs in ALI), human primary AMs co-cultured with alveolar epithelial cells had reduced inflammatory responses. Taken together, these studies reveal an innate protective pathway, in which lactate produced by ATII cells shifts AMs toward an anti-inflammatory phenotype and dampens excessive inflammation in ALI.
Collapse
Affiliation(s)
- René M. Roy
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ayed Allawzi
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nana Burns
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christina Sul
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Victoria Rubio
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Graham
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kurt Stenmark
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eva S. Nozik
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rubin M. Tuder
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Program in Translational Lung Research, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christine U. Vohwinkel
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Wang F, Ting C, Riemondy KA, Douglas M, Foster K, Patel N, Kaku N, Linsalata A, Nemzek J, Varisco BM, Cohen E, Wilson JA, Riches DW, Redente EF, Toivola DM, Zhou X, Moore BB, Coulombe PA, Omary MB, Zemans RL. Regulation of epithelial transitional states in murine and human pulmonary fibrosis. J Clin Invest 2023; 133:e165612. [PMID: 37768734 PMCID: PMC10645382 DOI: 10.1172/jci165612] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease arising from impaired regeneration of the alveolar epithelium after injury. During regeneration, type 2 alveolar epithelial cells (AEC2s) assume a transitional state that upregulates multiple keratins and ultimately differentiate into AEC1s. In IPF, transitional AECs accumulate with ineffectual AEC1 differentiation. However, whether and how transitional cells cause fibrosis, whether keratins regulate transitional cell accumulation and fibrosis, and why transitional AECs and fibrosis resolve in mouse models but accumulate in IPF are unclear. Here, we show that human keratin 8 (KRT8) genetic variants were associated with IPF. Krt8-/- mice were protected from fibrosis and accumulation of the transitional state. Keratin 8 (K8) regulated the expression of macrophage chemokines and macrophage recruitment. Profibrotic macrophages and myofibroblasts promoted the accumulation of transitional AECs, establishing a K8-dependent positive feedback loop driving fibrogenesis. Finally, rare murine transitional AECs were highly senescent and basaloid and may not differentiate into AEC1s, recapitulating the aberrant basaloid state in human IPF. We conclude that transitional AECs induced and were maintained by fibrosis in a K8-dependent manner; in mice, most transitional cells and fibrosis resolved, whereas in human IPF, transitional AECs evolved into an aberrant basaloid state that persisted with progressive fibrosis.
Collapse
Affiliation(s)
- Fa Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Ting
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kent A. Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Douglas
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nisha Patel
- College of Literature, Science, and the Arts
| | - Norihito Kaku
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jean Nemzek
- Unit for Laboratory Animal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian M. Varisco
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jasmine A. Wilson
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Denver Colorado, USA
| | - Elizabeth F. Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Diana M. Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Xiaofeng Zhou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - M. Bishr Omary
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Program in Cellular and Molecular Biology, School of Medicine, and
| |
Collapse
|
10
|
Lee SY, Park SY, Lee SH, Kim H, Kwon JH, Yoo JY, Kim K, Park MS, Lee CG, Elias JA, Sohn MH, Shim HS, Yoon HG. The deubiquitinase UCHL3 mediates p300-dependent chemokine signaling in alveolar type II cells to promote pulmonary fibrosis. Exp Mol Med 2023; 55:1795-1805. [PMID: 37524875 PMCID: PMC10474292 DOI: 10.1038/s12276-023-01066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, fatal, fibrotic, interstitial lung disease of unknown cause. Despite extensive studies, the underlying mechanisms of IPF development remain unknown. Here, we found that p300 was upregulated in multiple epithelial cells in lung samples from patients with IPF and mouse models of lung fibrosis. Lung fibrosis was significantly diminished by the alveolar type II (ATII) cell-specific deletion of the p300 gene. Moreover, we found that ubiquitin C-terminal hydrolase L3 (UCHL3)-mediated deubiquitination of p300 led to the transcriptional activation of the chemokines Ccl2, Ccl7, and Ccl12 through the cooperative action of p300 and C/EBPβ, which consequently promoted M2 macrophage polarization. Selective blockade of p300 activity in ATII cells resulted in the reprogramming of M2 macrophages into antifibrotic macrophages. These findings demonstrate a pivotal role for p300 in the development of lung fibrosis and suggest that p300 could serve as a promising target for IPF treatment.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jae-Hwan Kwon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, Wonju, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
- Department of Internal Medicine, Hanyang University, Seoul, 04763, Korea
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Myung Hyun Sohn
- Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
11
|
Nie Y, Zhai X, Li J, Sun A, Che H, Christman JW, Chai G, Zhao P, Karpurapu M. NFATc3 Promotes Pulmonary Inflammation and Fibrosis by Regulating Production of CCL2 and CXCL2 in Macrophages. Aging Dis 2023; 14:1441-1457. [PMID: 37523510 PMCID: PMC10389814 DOI: 10.14336/ad.2022.1202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/02/2022] [Indexed: 08/02/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and highly lethal inflammatory interstitial lung disease characterized by aberrant extracellular matrix deposition. Macrophage activation by cytokines released from repetitively injured alveolar epithelial cells regulates the inflammatory response, tissue remodeling, and fibrosis throughout various phases of IPF. Our previous studies demonstrate that nuclear factor of activated T cells cytoplasmic member 3 (NFATc3) regulates a wide array of macrophage genes during acute lung injury pathogenesis. However, the role of NFATc3 in IPF pathophysiology has not been previously reported. In the current study, we demonstrate that expression of NFATc3 is elevated in lung tissues and pulmonary macrophages in mice subjected to bleomycin (BLM)-induced pulmonary fibrosis and IPF patients. Remarkably, NFATc3 deficiency (NFATc3+/-) was protective in bleomycin (BLM)-induced lung injury and fibrosis. Adoptive transfer of NFATc3+/+ macrophages to NFATc3+/- mice restored susceptibility to BLM-induced pulmonary fibrosis. Furthermore, in vitro treatment with IL-33 or conditioned medium from BLM-treated epithelial cells increased production of CCL2 and CXCL2 in macrophages from NFATc3+/+ but not NFATc3+/- mice. CXCL2 promoter-pGL3 Luciferase reporter vector showed accentuated reporter activity when co-transfected with the NFATc3 expression vector. More importantly, exogenous administration of recombinant CXCL2 into NFATc3+/- mice increased fibrotic markers and exacerbated IPF phenotype in BLM treated mice. Collectively, our data demonstrate, for the first time, that NFATc3 regulates pulmonary fibrosis by regulating CCL2 and CXCL2 gene expression in macrophages.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Xiaorun Zhai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Jiao Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Aijuan Sun
- Department of Pathology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China.
| | - Huilian Che
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - John W Christman
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
12
|
Liu S, Liu C, Wang Q, Liu S, Min J. CC Chemokines in Idiopathic Pulmonary Fibrosis: Pathogenic Role and Therapeutic Potential. Biomolecules 2023; 13:biom13020333. [PMID: 36830702 PMCID: PMC9953349 DOI: 10.3390/biom13020333] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), characterized by progressive worsening of dyspnea and irreversible decline in lung function, is a chronic and progressive respiratory disease with a poor prognosis. Chronic or repeated lung injury results in inflammation and an excessive injury-repairing response that drives the development of IPF. A number of studies have shown that the development and progression of IPF are associated with dysregulated expression of several chemokines and chemokine receptors, several of which have been used as predictors of IPF outcome. Chemokines of the CC family play significant roles in exacerbating IPF progression by immune cell attraction or fibroblast activation. Modulating levels of detrimental CC chemokines and interrupting the corresponding transduction axis by neutralizing antibodies or antagonists are potential treatment options for IPF. Here, we review the roles of different CC chemokines in the pathogenesis of IPF, and their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Correspondence:
| | - Chang Liu
- Drug Clinical Trial Institution, Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
13
|
Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. Int J Mol Sci 2023; 24:3149. [PMID: 36834561 PMCID: PMC9958859 DOI: 10.3390/ijms24043149] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Fibrosis and structural remodeling of the lung tissue can significantly impair lung function, often with fatal consequences. The etiology of pulmonary fibrosis (PF) is diverse and includes different triggers such as allergens, chemicals, radiation, and environmental particles. However, the cause of idiopathic PF (IPF), one of the most common forms of PF, remains unknown. Experimental models have been developed to study the mechanisms of PF, and the murine bleomycin (BLM) model has received the most attention. Epithelial injury, inflammation, epithelial-mesenchymal transition (EMT), myofibroblast activation, and repeated tissue injury are important initiators of fibrosis. In this review, we examined the common mechanisms of lung wound-healing responses after BLM-induced lung injury as well as the pathogenesis of the most common PF. A three-stage model of wound repair involving injury, inflammation, and repair is outlined. Dysregulation of one or more of these three phases has been reported in many cases of PF. We reviewed the literature investigating PF pathogenesis, and the role of cytokines, chemokines, growth factors, and matrix feeding in an animal model of BLM-induced PF.
Collapse
Affiliation(s)
| | | | | | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
14
|
Vohwinkel CU, Burns N, Coit E, Yuan X, Vladar EK, Sul C, Schmidt EP, Carmeliet P, Stenmark K, Nozik ES, Tuder RM, Eltzschig HK. HIF1A-dependent induction of alveolar epithelial PFKFB3 dampens acute lung injury. JCI Insight 2022; 7:e157855. [PMID: 36326834 PMCID: PMC9869967 DOI: 10.1172/jci.insight.157855] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Acute lung injury (ALI) is a severe form of lung inflammation causing acute respiratory distress syndrome in patients. ALI pathogenesis is closely linked to uncontrolled alveolar inflammation. We hypothesize that specific enzymes of the glycolytic pathway could function as key regulators of alveolar inflammation. Therefore, we screened isolated alveolar epithelia from mice exposed to ALI induced by injurious ventilation to assess their metabolic responses. These studies pointed us toward a selective role for isoform 3 of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Pharmacologic inhibition or genetic deletion of Pfkfb3 in alveolar epithelia (Pfkfb3loxP/loxP SPC-ER-Cre+ mice) was associated with profound increases in ALI during injurious mechanical ventilation or acid instillation. Studies in genetic models linked Pfkfb3 expression and function to Hif1a. Not only did intratracheal pyruvate instillation reconstitute Pfkfb3loxP/loxP or Hif1aloxP/loxP SPC-ER-Cre+ mice, but pyruvate was also effective in ALI treatment of wild-type mice. Finally, proof-of-principle studies in human lung biopsies demonstrated increased PFKFB3 staining in injured lungs and colocalized PFKFB3 to alveolar epithelia. These studies reveal a specific role for PFKFB3 in counterbalancing alveolar inflammation and lay the groundwork for novel metabolic therapeutic approaches during ALI.
Collapse
Affiliation(s)
- Christine U. Vohwinkel
- Cardio Vascular Pulmonary Research Lab and
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Nana Burns
- Cardio Vascular Pulmonary Research Lab and
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Ethan Coit
- Cardio Vascular Pulmonary Research Lab and
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center Houston, Houston, Texas, USA
| | - Eszter K. Vladar
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Christina Sul
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kurt Stenmark
- Cardio Vascular Pulmonary Research Lab and
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Eva S. Nozik
- Cardio Vascular Pulmonary Research Lab and
- Section of Critical Care Medicine, Department of Pediatrics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Rubin M. Tuder
- Cardio Vascular Pulmonary Research Lab and
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center Houston, Houston, Texas, USA
| |
Collapse
|
15
|
Seyran M, Melanie S, Philip S, Amiq G, Fabian B. Allies or enemies? The effect of regulatory T cells and related T lymphocytes on the profibrotic environment in bleomycin-injured lung mouse models. Clin Exp Med 2022:10.1007/s10238-022-00945-7. [PMID: 36403186 PMCID: PMC10390389 DOI: 10.1007/s10238-022-00945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
AbstractIdiopathic pulmonary fibrosis (IPF) is characterized by permanent scarring of lung tissue and declining lung function, and is an incurable disease with increase in prevalence over the past decade. The current consensus is that aberrant wound healing following repeated injuries to the pulmonary epithelium is the most probable cause of IPF, with various immune inflammatory pathways having been reported to impact disease pathogenesis. While the role of immune cells, specifically T lymphocytes and regulatory T cells (Treg), in IPF pathogenesis has been reported and discussed recently, the pathogenic or beneficial roles of these cells in inducing or preventing lung fibrosis is still debated. This lack of understanding could be due in part to the difficulty in obtaining diseased human lung tissue for research purposes. For this reason, many animal models have been developed over the years to attempt to mimic the main clinical hallmarks of IPF: among these, inducing lung injury in rodents with the anti-cancer agent bleomycin has now become the most commonly studied animal model of IPF. Pulmonary fibrosis is the major side effect when bleomycin is administered for cancer treatment in human patients, and a similar effect can be observed after intra-tracheal administration of bleomycin to rodents. Despite many pathophysiological pathways of lung fibrosis having been investigated in bleomycin-injured animal models, one central facet still remains controversial, namely the involvement of specific T lymphocyte subsets, and in particular Treg, in disease pathogenesis. This review aims to summarize the major findings and conclusions regarding the involvement of immune cells and their receptors in the pathogenesis of IPF, and to elaborate on important parallels between animal models and the human disease. A more detailed understanding of the role of Treg and other immune cell subsets in lung injury and fibrosis derived from animal models is a critical basis for translating this knowledge to the development of new immune-based therapies for the treatment of human IPF.
Collapse
|
16
|
Ye Y, Ji J, Huang Y, Zhang Y, Sun X. Metabolic Regulation Effect and Potential Metabolic Biomarkers of Pre-Treated Delphinidin on Oxidative Damage Induced by Paraquat in A549 Cells. Foods 2022; 11:foods11223575. [PMID: 36429167 PMCID: PMC9689328 DOI: 10.3390/foods11223575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Delphinidin (Del) is an anthocyanin component with high in vitro antioxidant capacity. In this study, based on the screening of a cell model, gas chromatography-time of flight mass spectrometry (GC-TOF/MS) was used to evaluate the effect of Del pre-protection on the metabolite levels of intracellular oxidative stress induced by paraquat (PQ). According to the cytotoxicity and reactive oxygen species (ROS) responses of four lung cell lines to PQ induction, A549 cell was selected and treated with 100 μM PQ for 12 h to develop a cellular oxidative stress model. Compared with the PQ-induced group, the principal components of the Del pretreatment group had significant differences, but not significant with the control group, indicating that the antioxidant activity of Del can be correlated to the maintenance of metabolite levels. Del preconditioning protects lipid-related metabolic pathways from the disturbance induced by PQ. In addition, the levels of amino acid- and energy-related metabolites were significantly recovered. Del may also exert an antioxidant effect by regulating glucose metabolism. The optimal combinations of biomarkers in the PQ-treatment group and Del-pretreatment group were alanine-valine-urea and alanine-galactose-glucose. Cell metabolome data provided characteristic fingerprints associated with the antioxidant activity of Del.
Collapse
|
17
|
Haist M, Ries F, Gunzer M, Bednarczyk M, Siegel E, Kuske M, Grabbe S, Radsak M, Bros M, Teschner D. Neutrophil-Specific Knockdown of β2 Integrins Impairs Antifungal Effector Functions and Aggravates the Course of Invasive Pulmonal Aspergillosis. Front Immunol 2022; 13:823121. [PMID: 35734179 PMCID: PMC9207500 DOI: 10.3389/fimmu.2022.823121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
β2-integrins are heterodimeric surface receptors that are expressed specifically by leukocytes and consist of a variable α (CD11a-d) and a common β-subunit (CD18). Functional impairment of CD18, which causes leukocyte adhesion deficiency type-1 results in an immunocompromised state characterized by severe infections, such as invasive pulmonary aspergillosis (IPA). The underlying immune defects have largely been attributed to an impaired migratory and phagocytic activity of polymorphonuclear granulocytes (PMN). However, the exact contribution of β2-integrins for PMN functions in-vivo has not been elucidated yet, since the mouse models available so far display a constitutive CD18 knockout (CD18-/- or CD18hypo). To determine the PMN-specific role of β2-integrins for innate effector functions and pathogen control, we generated a mouse line with a Ly6G-specific knockdown of the common β-subunit (CD18Ly6G cKO). We characterized CD18Ly6G cKO mice in-vitro to confirm the PMN-specific knockdown of β2-integrins. Next, we investigated the clinical course of IPA in A. fumigatus infected CD18Ly6G cKO mice with regard to the fungal burden, pulmonary inflammation and PMN response towards A. fumigatus. Our results revealed that the β2-integrin knockdown was restricted to PMN and that CD18Ly6G cKO mice showed an aggravated course of IPA. In accordance, we observed a higher fungal burden and lower levels of proinflammatory innate cytokines, such as TNF-α, in lungs of IPA-infected CD18Ly6G cKO mice. Bronchoalveolar lavage revealed higher levels of CXCL1, a stronger PMN-infiltration, but concomitantly elevated apoptosis of PMN in lungs of CD18Ly6G cKO mice. Ex-vivo analysis further unveiled a strong impairment of PMN effector function, as reflected by an attenuated phagocytic activity, and a diminished generation of reactive oxygen species (ROS) and neutrophil-extracellular traps (NET) in CD18-deficient PMN. Overall, our study demonstrates that β2-integrins are required specifically for PMN effector functions and contribute to the clearance of A. fumigatus by infiltrating PMN, and the establishment of an inflammatory microenvironment in infected lungs.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- *Correspondence: Maximilian Haist,
| | - Frederic Ries
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften ISAS -e.V, Dortmund, Germany
| | - Monika Bednarczyk
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ekkehard Siegel
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Daniel Teschner
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Cao J, Li L, Xiong L, Wang C, Chen Y, Zhang X. Research on the mechanism of berberine in the treatment of COVID-19 pneumonia pulmonary fibrosis using network pharmacology and molecular docking. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100252. [PMID: 35403089 PMCID: PMC8895682 DOI: 10.1016/j.phyplu.2022.100252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 05/14/2023]
Abstract
Purpose Pulmonary fibrosis caused by COVID-19 pneumonia is a serious complication of COVID-19 infection, there is a lack of effective treatment methods clinically. This article explored the mechanism of action of berberine in the treatment of COVID-19 (Corona Virus Disease 2019, COVID-19) pneumonia pulmonary fibrosis with the help of the network pharmacology and molecular docking. Methods We predicted the role of berberine protein targets with the Pharmmapper database and the 3D structure of berberine in the Pubchem database. And GeneCards database was used in order to search disease target genes and screen common target genes. Then we used STRING web to construct PPI interaction network of common target protein. The common target genes were analyzed by GO and KEGG by DAVID database. The disease-core target gene-drug network was established and molecular docking was used for prediction. We also analyzed the binding free energy and simulates molecular dynamics of complexes. Results Berberine had 250 gene targets, COVID-19 pneumonia pulmonary fibrosis had 191 gene targets, the intersection of which was 23 in common gene targets. Molecular docking showed that berberine was associated with CCl2, IL-6, STAT3 and TNF-α. GO and KEGG analysis reveals that berberine mainly plays a vital role by the signaling pathways of influenza, inflammation and immune response. Conclusion Berberine acts on TNF-α, STAT3, IL-6, CCL2 and other targets to inhibit inflammation and the activation of fibrocytes to achieve the purpose of treating COVID-19 pneumonia pulmonary fibrosis.
Collapse
Key Words
- ARDS, acute respiratory distress syndrome
- BP, biological process
- Berberine
- CC, cellular component
- CCL2, chemokine ligand2
- COVID-19
- COVID-19 pneumonia
- COVID-19, corona virus disease 2019
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal cell transformation
- FOXM1, forkhead box M1
- Fsp1, fibroblast-specific protein 1
- GO, gene ontology
- HIF-1, hypoxia inducible factor
- IBD, inflammatory bowel disease
- IL-12, interleukin 12
- IL-6, interleukin 6
- JAK, Janus kinase
- KEGG, Kyoto encyclopedia of genes and genomes
- LR-MSCs, mesenchymal stem cells
- MF, molecular function
- MMP14, matrix metalloproteinase 14
- MMP7, matrix metalloproteinase 7
- Molecular docking
- NF-κB, nuclear transcription factor
- NOS, nitric oxide synthase
- Network pharmacology
- OTUB1, deubiquitinase
- PAI-1, plasminogen activator inhibitor 1
- PPI, protein-protein interaction
- Pulmonary fibrosis
- STAT3, transcription activator
- TGF-β, transforming growth factor-β
- TNF-α, tumor necrosis factor-α
- sIL-6R, interleukin 6 receptor
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Junfeng Cao
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Lianglei Li
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, No.783 Xindu Road, Xindu District, Chengdu, Sichuan 610500, China
| | - Li Xiong
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Chaochao Wang
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yijun Chen
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, No.783 Xindu Road, Xindu District, Chengdu, Sichuan 610500, China
| |
Collapse
|
19
|
Francis LRA, Millington-Burgess SL, Rahman T, Harper MT. Q94 is not a selective modulator of proteinase-activated receptor 1 (PAR1) in platelets. Platelets 2022; 33:1090-1095. [PMID: 35417662 DOI: 10.1080/09537104.2022.2026911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Thrombin is a potent platelet activator, acting through proteinase-activated receptors -1 and -4 (PAR1 and PAR4). Of these, PAR-1 is activated more rapidly and by lower thrombin concentrations. Consequently, PAR-1 has been extensively investigated as a target for anti-platelet drugs to prevent myocardial infarction. Q94 has been reported to act as an allosteric modulator of PAR1, potently and selectively inhibiting PAR1-Gαq coupling in multiple cell lines, but its effects on human platelet activation have not been previously studied. Platelet Ca2+ signaling, integrin αIIbβ3 activation and α-granule secretion were monitored following stimulation by a PAR1-activating peptide (PAR1-AP). Although Q94 inhibited these responses, its potency was low compared to other PAR1 antagonists. In addition, αIIbβ3 activation and α-granule secretion in response to other platelet activators were also inhibited with similar potency. Finally, in endothelial cells, Q94 did not inhibit PAR1-dependent Ca2+ signaling. Our data suggest that Q94 may have PAR1-independent off-target effects in platelets, precluding its use as a selective PAR1 allosteric modulator.
Collapse
Affiliation(s)
- Luc R A Francis
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Kim B, Guaregua V, Chen X, Zhao C, Yeow W, Berg NK, Eltzschig HK, Yuan X. Characterization of a Murine Model System to Study MicroRNA-147 During Inflammatory Organ Injury. Inflammation 2021; 44:1426-1440. [PMID: 33566257 PMCID: PMC7873671 DOI: 10.1007/s10753-021-01427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory organ injury and sepsis have profound impacts on the morbidity and mortality of surgical and critical care patients. MicroRNAs are small RNAs composed of 20-25 nucleotides that have a significant contribution to gene regulation. MicroRNA-147 (miR-147), in particular, has been shown to have an emerging role in different physiological functions such as cell cycle regulation and inflammatory responses. However, animal model systems to study tissue-specific functions of miR-147 during inflammatory conditions in vivo are lacking. In the present study, we characterize miR-147 expression in different organs and cell types. Next, we generated a transgenic mouse line with a floxed miR-147 gene. Subsequently, we used this mouse line to generate mice with whole-body deletion of miR-147 (miR-147 -/-) by crossing "floxed" miR-147 mice with transgenic mice expressing Cre recombinase in all tissues (CMVcre mice). Systematic analysis of miR-147 -/- mice demonstrates normal growth, development, and off-spring. In addition, deletion of the target gene in different organs was successful at baseline or during inflammation, including the heart, intestine, stomach, liver, spleen, bone marrow, lungs, kidneys, or stomach. Moreover, miR-147 -/- mice have identical baseline inflammatory gene expression compared to C57BL/6 mice, except elevated IL-6 expression in the spleen (7.5 fold, p < 0.05). Taken together, our data show the successful development of a transgenic animal model for tissue and cell-specific deletion of miR-147 that can be used to study the functional roles of miR-147 during inflammatory organ injury.
Collapse
Affiliation(s)
- Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Victor Guaregua
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xuebo Chen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Chad Zhao
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wanyi Yeow
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Nathaniel K Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Qin W, Crestani B, Spek CA, Scicluna BP, van der Poll T, Duitman J. Alveolar epithelial TET2 is not involved in the development of bleomycin-induced pulmonary fibrosis. FASEB J 2021; 35:e21599. [PMID: 33913570 DOI: 10.1096/fj.202002686rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown etiology with minimal treatment options. Repetitive alveolar epithelial injury has been suggested as one of the causative mechanisms of this disease. Type 2 alveolar epithelial cells (AEC2) play a crucial role during fibrosis by functioning as stem cells able to repair epithelial damage. The DNA demethylase Tet methylcytosine dioxygenase 2 (TET2) regulates the stemness of multiple types of stem cells, but whether it also affects the stemness of AEC2 during fibrosis remains elusive. To study the role of TET2 in AEC2 during fibrosis, we first determined TET2 protein levels in the lungs of IPF patients and compared TET2 expression in AEC2 of IPF patients and controls using publicly available data sets. Subsequently, pulmonary fibrosis was induced by the intranasal administration of bleomycin to wild-type and AEC2-specific TET2 knockout mice to determine the role of TET2 in vivo. Fibrosis was assessed by hydroxyproline analysis and fibrotic gene expression. Additionally, macrophage recruitment and activation, and epithelial injury were analyzed. TET2 protein levels and gene expression were downregulated in IPF lungs and AEC2, respectively. Bleomycin inoculation induced a robust fibrotic response as indicated by increased hydroxyproline levels and increased expression of pro-fibrotic genes. Additionally, increased macrophage recruitment and both M1 and M2 activation were observed. None of these parameters were, however, affected by AEC2-specific TET2 deficiency. TET2 expression is reduced in IPF, but the absence of TET2 in AEC2 cells does not affect the development of bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wanhai Qin
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Bruno Crestani
- INSERM UMR1152, Medical School Xavier Bichat, Paris, France.,Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - JanWillem Duitman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Kuang S, He F, Liu G, Sun X, Dai J, Chi A, Tang Y, Li Z, Gao Y, Deng C, Lin Z, Xiao H, Zhang M. CCR2-engineered mesenchymal stromal cells accelerate diabetic wound healing by restoring immunological homeostasis. Biomaterials 2021; 275:120963. [PMID: 34153785 DOI: 10.1016/j.biomaterials.2021.120963] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
Impaired wound healing presents great health risks to patients. While encouraging, the current clinical successes of mesenchymal stromal cell (MSC)-based therapies for tissue repair have been limited. Genetic engineering could endow MSCs with more robust regenerative capacities. Here, we identified that C-C motif chemokine receptor 2 (CCR2) overexpression enhanced the targeted migration and immunoregulatory potential of MSCs in response to C-C motif chemokine ligand 2 (CCL2) in vitro. Intravenously infusion of CCR2-engineered MSCs (MSCsCCR2) exhibited improved homing efficiencies to injured sites and lungs of diabetic mice. Accordingly, MSCCCR2 infusion inhibited monocyte infiltration, reshaped macrophage inflammatory properties, prompted the accumulation of regulatory T cells (Treg cells) in injured sites, and reshaped systemic immune responses via the lung and spleen in mouse diabetic wound models. In summary, CCR2-engineered MSCs restore immunological homeostasis to accelerate diabetic wound healing via their improved homing and immunoregulatory potentials in response to CCL2. Therefore, these findings provide a novel strategy to explore genetically engineered MSCs as tools to facilitate tissue repair in diabetic wounds.
Collapse
Affiliation(s)
- Shuhong Kuang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Feng He
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guihua Liu
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiangzhou Sun
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Dai
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ani Chi
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yali Tang
- Core Lab Plat for Medical Science, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuoran Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 51008, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
23
|
Planté-Bordeneuve T, Pilette C, Froidure A. The Epithelial-Immune Crosstalk in Pulmonary Fibrosis. Front Immunol 2021; 12:631235. [PMID: 34093523 PMCID: PMC8170303 DOI: 10.3389/fimmu.2021.631235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions between the lung epithelium and the immune system involve a tight regulation to prevent inappropriate reactions and have been connected to several pulmonary diseases. Although the distal lung epithelium and local immunity have been implicated in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF), consequences of their abnormal interplay remain less well known. Recent data suggests a two-way process, as illustrated by the influence of epithelial-derived periplakin on the immune landscape or the effect of macrophage-derived IL-17B on epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”, pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such as microbiome-sequencing has allowed for the identification of a disease-specific microbial environment. In this review, we propose to discuss how the interplays between the altered distal airway and alveolar epithelium, the lung microbiome and immune cells may shape a pro-fibrotic environment. More specifically, it will highlight DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thomas Planté-Bordeneuve
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Charles Pilette
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Antoine Froidure
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
24
|
Vohwinkel CU, Coit EJ, Burns N, Elajaili H, Hernandez‐Saavedra D, Yuan X, Eckle T, Nozik E, Tuder RM, Eltzschig HK. Targeting alveolar-specific succinate dehydrogenase A attenuates pulmonary inflammation during acute lung injury. FASEB J 2021; 35:e21468. [PMID: 33687752 PMCID: PMC8250206 DOI: 10.1096/fj.202002778r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
Acute lung injury (ALI) is an inflammatory lung disease, which manifests itself in patients as acute respiratory distress syndrome (ARDS). Previous studies have implicated alveolar-epithelial succinate in ALI protection. Therefore, we hypothesized that targeting alveolar succinate dehydrogenase SDH A would result in elevated succinate levels and concomitant lung protection. Wild-type (WT) mice or transgenic mice with targeted alveolar-epithelial Sdha or hypoxia-inducible transcription factor Hif1a deletion were exposed to ALI induced by mechanical ventilation. Succinate metabolism was assessed in alveolar-epithelial via mass spectrometry as well as redox measurements and evaluation of lung injury. In WT mice, ALI induced by mechanical ventilation decreased SDHA activity and increased succinate in alveolar-epithelial. In vitro, cell-permeable succinate decreased epithelial inflammation during stretch injury. Mice with inducible alveolar-epithelial Sdha deletion (Sdhaloxp/loxp SPC-CreER mice) revealed reduced lung inflammation, improved alveolar barrier function, and attenuated histologic injury. Consistent with a functional role of succinate to stabilize HIF, Sdhaloxp/loxp SPC-CreER experienced enhanced Hif1a levels during hypoxia or ALI. Conversely, Hif1aloxp/loxp SPC-CreER showed increased inflammation with ALI induced by mechanical ventilation. Finally, wild-type mice treated with intra-tracheal dimethlysuccinate were protected during ALI. These data suggest that targeting alveolar-epithelial SDHA dampens ALI via succinate-mediated stabilization of HIF1A. Translational extensions of our studies implicate succinate treatment in attenuating alveolar inflammation in patients suffering from ARDS.
Collapse
Affiliation(s)
- Christine U. Vohwinkel
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Ethan J. Coit
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Nana Burns
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Hanan Elajaili
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | | | - Xiaoyi Yuan
- Department of AnesthesiologyMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Tobias Eckle
- Department of AnesthesiologyUniversity of Colorado ‐ Anschutz Medical CampusAuroraCOUSA
| | - Eva Nozik
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraCOUSA
| | - Holger K. Eltzschig
- Department of AnesthesiologyMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTXUSA
| |
Collapse
|
25
|
Yamanaka Y, Gingery A, Oki G, Yang TH, Zhao C, Amadio PC. Effect of a monocyte chemoattractant protein-1 synthesis inhibitor on fibroblasts from patients with carpal tunnel syndrome. J Orthop Sci 2021; 26:295-299. [PMID: 32317146 PMCID: PMC7572818 DOI: 10.1016/j.jos.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Carpal Tunnel Syndrome (CTS) is an idiopathic fibrotic disorder. Fibrosis in the subsynovial connective tissues (SSCT) of CTS and many other fibrotic diseases is mediated by Transforming growth factor β (TGF-β). Recently monocyte chemoattractant protein-1 (MCP-1) a cytokine involved in cellular recruitment has been suggested to regulate TGF-β activity. It is related to the onset of diseases which are caused by fibrosis, such as idiopathic pulmonary fibrosis, renal fibrosis, and systemic scleroderma. In this study, we evaluated the effect of the MCP-1 synthesis inhibitor, Bindarit, on primary cultures of fibroblasts from the SSCT of five CTS patients. METHODS Fibroblasts were treated with Bindarit (10 μM, 50 μM, 100 μM, or 300 μM). Responses to inhibitors were evaluated by regulation of CTS fibrosis-associated genes, fibrosis gene array and Smad luciferase reporter assay. We also assessed the combination effect of Bindarit and SD208, a TGF-β receptor type 1 inhibitor on TGF-β signaling. RESULTS Collagen type III A1 (Col3), connective tissue growth factor (CTGF), and SERPINE1 expression were significantly down-regulated by Bindarit (300 μM) compared to vehicle control. In the fibrosis array, expression of inhibin beta E chain precursor (INHBE), beta actin (ACTB), endothelin 1 (EDN1) and hypoxanthine phosphoribosyltransferase 1 (HPRT1) were significantly down-regulated, and integrin beta-3 (ITGB3) was significantly up-regulated by Bindarit (300 μM). Smad signal transduction activation was significantly down-regulated by Bindarit (300 μM) and/or SD208 (1 μM) with TGF-β1 compared to vehicle control with TGF-β1. CONCLUSIONS These results suggest that Bindarit in combination with SD208 may be beneficial as medical therapy for the SSCT fibrosis associated with CTS.
Collapse
Affiliation(s)
- Yoshiaki Yamanaka
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Anne Gingery
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Gosuke Oki
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Tai-Hua Yang
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Peter C Amadio
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA,Corresponding Author: Peter C. Amadio, MD, Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA, Phone: 507-538-1717; Fax: 507-284-5392,
| |
Collapse
|
26
|
Brody SL, Gunsten SP, Luehmann HP, Sultan DH, Hoelscher M, Heo GS, Pan J, Koenitzer JR, Lee EC, Huang T, Mpoy C, Guo S, Laforest R, Salter A, Russell TD, Shifren A, Combadiere C, Lavine KJ, Kreisel D, Humphreys BD, Rogers BE, Gierada DS, Byers DE, Gropler RJ, Chen DL, Atkinson JJ, Liu Y. Chemokine Receptor 2-targeted Molecular Imaging in Pulmonary Fibrosis. A Clinical Trial. Am J Respir Crit Care Med 2021; 203:78-89. [PMID: 32673071 PMCID: PMC7781144 DOI: 10.1164/rccm.202004-1132oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis.Objectives: To phenotype patients with IPF for potential targeted therapy, we developed 64Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2+ monocytes and macrophages using positron emission tomography (PET).Methods: CCR2+ cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2+ cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and Ccr2 RNA in situ hybridization and then correlated with parallel quantitation of lung uptake by 64Cu-DOTA-ECL1i PET.Measurements and Main Results: Mouse models established that increased 64Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2+ cell infiltration associated with fibrosis (n = 72). As therapeutic models, the inhibition of fibrosis by IL-1β blockade (n = 19) or antifibrotic pirfenidone (n = 18) reduced CCR2+ macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2+ cells concentrated in perifibrotic regions and correlated with radiotracer localization (n = 21). Human imaging revealed little lung uptake in healthy volunteers (n = 7), whereas subjects with IPF (n = 4) exhibited intensive signals in fibrotic zones.Conclusions: These findings support a role for imaging CCR2+ cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Christophe Combadiere
- INSERM, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, Sorbonne Université, Paris, France
| | - Kory J. Lavine
- Department of Medicine
- Department of Developmental Biology
| | - Daniel Kreisel
- Department of Surgery, and
- Department of Immunology and Pathology, Washington University School of Medicine, Saint Louis, Missouri; and
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
K 2P2.1 (TREK-1) potassium channel activation protects against hyperoxia-induced lung injury. Sci Rep 2020; 10:22011. [PMID: 33319831 PMCID: PMC7738539 DOI: 10.1038/s41598-020-78886-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
No targeted therapies exist to counteract Hyperoxia (HO)-induced Acute Lung Injury (HALI). We previously found that HO downregulates alveolar K2P2.1 (TREK-1) K+ channels, which results in worsening lung injury. This decrease in TREK-1 levels leaves a subset of channels amendable to pharmacological intervention. Therefore, we hypothesized that TREK-1 activation protects against HALI. We treated HO-exposed mice and primary alveolar epithelial cells (AECs) with the novel TREK-1 activators ML335 and BL1249, and quantified physiological, histological, and biochemical lung injury markers. We determined the effects of these drugs on epithelial TREK-1 currents, plasma membrane potential (Em), and intracellular Ca2+ (iCa) concentrations using fluorometric assays, and blocked voltage-gated Ca2+ channels (CaV) as a downstream mechanism of cytokine secretion. Once-daily, intra-tracheal injections of HO-exposed mice with ML335 or BL1249 improved lung compliance, histological lung injury scores, broncho-alveolar lavage protein levels and cell counts, and IL-6 and IP-10 concentrations. TREK-1 activation also decreased IL-6, IP-10, and CCL-2 secretion from primary AECs. Mechanistically, ML335 and BL1249 induced TREK-1 currents in AECs, counteracted HO-induced cell depolarization, and lowered iCa2+ concentrations. In addition, CCL-2 secretion was decreased after L-type CaV inhibition. Therefore, Em stabilization with TREK-1 activators may represent a novel approach to counteract HALI.
Collapse
|
28
|
Chen X, Wu Y, Wang Y, Chen L, Zheng W, Zhou S, Xu H, Li Y, Yuan L, Xiang C. Human menstrual blood-derived stem cells mitigate bleomycin-induced pulmonary fibrosis through anti-apoptosis and anti-inflammatory effects. Stem Cell Res Ther 2020; 11:477. [PMID: 33176882 PMCID: PMC7656201 DOI: 10.1186/s13287-020-01926-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a kind of diffuse interstitial lung disease, the pathogenesis of which is unclear, and there is currently a lack of good treatment to improve the survival rate. Human menstrual blood-derived mesenchymal stem cells (MenSCs) have shown great potential in regenerative medicine. This study aimed to explore the therapeutic potential of MenSCs for bleomycin-induced pulmonary fibrosis. METHODS We investigated the transplantation of MenSCs in a pulmonary fibrosis mouse model induced by BLM. Mouse was divided into three groups: control group, BLM group, MenSC group. Twenty-one days after MenSC transplantation, we examined collagen content, pathological, fibrosis area in the lung tissue, and the level of inflammatory factors of serum. RNA sequence was used to examine the differential expressed gene between three groups. Transwell coculture experiments were further used to examine the function of MenSCs to MLE-12 cells and mouse lung fibroblasts (MLFs) in vitro. RESULTS We observed that transplantation of MenSCs significantly improves pulmonary fibrosis mouse through evaluations of pathological lesions, collagen deposition, and inflammation. Transwell coculturing experiments showed that MenSCs suppress the proliferation and the differentiation of MLFs and inhibit the apoptosis of MLE-12 cells. Furthermore, antibody array results demonstrated that MenSCs inhibit the apoptosis of MLE-12 cells by suppressing the expression of inflammatory-related cytokines, including RANTES, Eotaxin, GM-CSF, MIP-1γ, MCP-5, CCL1, and GITR. CONCLUSIONS Collectively, our results suggested MenSCs have a great potential in the treatment of pulmonary fibrosis, and cytokines revealed in antibody array are expected to become the target of future therapy of MenSCs in clinical treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Yi Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Yanling Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Wendi Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Huikang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou, 311215 China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| |
Collapse
|
29
|
Affiliation(s)
- Chao He
- Department of MedicineUniversity of Alabama at BirminghamBirmingham, Alabamaand
| | - A Brent Carter
- Department of MedicineUniversity of Alabama at BirminghamBirmingham, Alabamaand
- Birmingham VA Medical CenterBirmingham, Alabama
| |
Collapse
|
30
|
Malinina A, Dikeman D, Westbrook R, Moats M, Gidner S, Poonyagariyagorn H, Walston J, Neptune ER. IL10 deficiency promotes alveolar enlargement and lymphoid dysmorphogenesis in the aged murine lung. Aging Cell 2020; 19:e13130. [PMID: 32170906 PMCID: PMC7189990 DOI: 10.1111/acel.13130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/22/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
The connection between aging-related immune dysfunction and the lung manifestations of aging is poorly understood. A detailed characterization of the aging IL10-deficient murine lung, a model of accelerated aging and frailty, reconciles features of both immunosenescence and lung aging in a coherent model. Airspace enlargement developed in the middle-aged (12 months old) and aged (20-22 months old) IL10-deficient lung punctuated by an expansion of macrophages and alveolar cell apoptosis. Compared to wild-type (WT) controls, the IL10-deficient lungs from young (4-month-old) mice showed increased oxidative stress which was enhanced in both genotypes by aging. Active caspase 3 staining was increased in the alveolar epithelial cells of aged WT and mutant lungs but was greater in the IL10-deficient milieu. Lung macrophages were increased in the aged IL10-deficient lungs with exuberant expression of MMP12. IL10 treatment of naïve and M2-polarized bone marrow-derived WT macrophages reduced MMP12 expression. Conditioned media studies demonstrated the secretome of aged mutant macrophages harbors reduced AECII prosurvival factors, specifically keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), promotes cell death, and reduces survival of primary alveolar epithelial cells. Compared to WT controls, aged IL10-deficient mice have increased parenchymal lymphoid collections comprised of a reduced number of apoptotic cells and B cells. We establish that IL10 is a key modulator of airspace homeostasis and lymphoid morphogenesis in the aging lung enabling macrophage-mediated alveolar epithelial cell survival and B-cell survival within tertiary lymphoid structures.
Collapse
Affiliation(s)
- Alla Malinina
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | - Dustin Dikeman
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | - Reyhan Westbrook
- Division of Geriatrics Johns Hopkins School of Medicine Baltimore MD USA
| | - Michelle Moats
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
- Departments of Biology and Chemistry and Biochemistry Florida International University Miami FL USA
| | - Sarah Gidner
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| | | | - Jeremy Walston
- Division of Geriatrics Johns Hopkins School of Medicine Baltimore MD USA
| | - Enid R. Neptune
- Pulmonary and Critical Care Medicine Johns Hopkins School of Medicine Baltimore MD USA
| |
Collapse
|
31
|
Wiesner DL, Merkhofer RM, Ober C, Kujoth GC, Niu M, Keller NP, Gern JE, Brockman-Schneider RA, Evans MD, Jackson DJ, Warner T, Jarjour NN, Esnault SJ, Feldman MB, Freeman M, Mou H, Vyas JM, Klein BS. Club Cell TRPV4 Serves as a Damage Sensor Driving Lung Allergic Inflammation. Cell Host Microbe 2020; 27:614-628.e6. [PMID: 32130954 DOI: 10.1016/j.chom.2020.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/28/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Airway epithelium is the first body surface to contact inhaled irritants and report danger. Here, we report how epithelial cells recognize and respond to aeroallergen alkaline protease 1 (Alp1) of Aspergillus sp., because proteases are critical components of many allergens that provoke asthma. In a murine model, Alp1 elicits helper T (Th) cell-dependent lung eosinophilia that is initiated by the rapid response of bronchiolar club cells to Alp1. Alp1 damages bronchiolar cell junctions, which triggers a calcium flux signaled through calcineurin within club cells of the bronchioles, inciting inflammation. In two human cohorts, we link fungal sensitization and/or asthma with SNP/protein expression of the mechanosensitive calcium channel, TRPV4. TRPV4 is also necessary and sufficient for club cells to sensitize mice to Alp1. Thus, club cells detect junction damage as mechanical stress, which signals danger via TRPV4, calcium, and calcineurin to initiate allergic sensitization.
Collapse
Affiliation(s)
- Darin L Wiesner
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Richard M Merkhofer
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Gregory C Kujoth
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mengyao Niu
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology University of Wisconsin-Madison, Madison, WI 53706, USA; School of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Michael D Evans
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas Warner
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stephane J Esnault
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael B Feldman
- Division of Pulmonary and Critical Care Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Freeman
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hongmei Mou
- The Mucosal Immunology & Biology Research Center, Harvard Medical School, Boston, MA 02115, USA; Division of Pediatric Pulmonary Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jatin M Vyas
- Division of Infectious Disease, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
32
|
Xu T, Yan W, Wu Q, Xu Q, Yuan J, Li Y, Li P, Pan H, Ni C. MiR-326 Inhibits Inflammation and Promotes Autophagy in Silica-Induced Pulmonary Fibrosis through Targeting TNFSF14 and PTBP1. Chem Res Toxicol 2019; 32:2192-2203. [DOI: 10.1021/acs.chemrestox.9b00194] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tiantian Xu
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiwen Yan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi Xu
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiali Yuan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ping Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Honghong Pan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunhui Ni
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
33
|
Kloth C, Gruben N, Ochs M, Knudsen L, Lopez-Rodriguez E. Flow cytometric analysis of the leukocyte landscape during bleomycin-induced lung injury and fibrosis in the rat. Am J Physiol Lung Cell Mol Physiol 2019; 317:L109-L126. [PMID: 31042078 DOI: 10.1152/ajplung.00176.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bleomycin-induced lung injury and fibrosis is a well-described model to investigate lung inflammatory and remodeling mechanisms. Rat models are clinically relevant and are also widely used, but rat bronchoalveolar lavage (BAL) cells are not fully characterized with flow cytometry due to the limited availability of antibodies for this species. We optimized a comprehensive time-dependent flow cytometric analysis of cells after bleomycin challenge, confirming previous studies in other species and correlating them to histological staining, cytokine profiling, and collagen accumulation analysis in rat lungs. For this purpose, we describe a novel panel of rat surface markers and a strategy to identify and follow BAL cells over time. By combining surface markers in rat alveolar cells (CD45+), granulocytes and other myeloid cells, monocytes and macrophages can be identified by the expression of CD11b/c. Moreover, different activation states of macrophages (CD163+) can be observed: steady state (CD86-MHC-IIlow), activation during inflammation (CD86+,MHC-IIhigh), activation during remodeling (CD86+MHC-IIlow), and a population of newly recruited monocytes (CD163-α-granulocyte-). Hydroxyproline measured as marker of collagen content in lung tissue showed positive correlation with the reparative phase (CD163- cells and tissue inhibitor of metalloproteinases (TIMP) and IL-10 increase). In conclusion, after a very early granulocytic recruitment, inflammation in rat lungs is observed by activated macrophages, and high release of IL-6 and fibrotic remodeling is characterized by recovery of the macrophage population together with TIMP, IL-10, and IL-18 production. Recruited monocytes and a second peak of granulocytes appear in the transitioning phase, correlating with immunostaining of arginase-1 in the tissue, revealing the importance of events leading the changes from injury to aberrant repair.
Collapse
Affiliation(s)
- Christina Kloth
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany.,Institute of Experimental Haematology, Hannover Medical School , Hannover , Germany
| | - Nele Gruben
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany.,Institute of Vegetative Anatomy, Charité - Universitaetsmedizin Berlin, Berlin , Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany.,Institute of Vegetative Anatomy, Charité - Universitaetsmedizin Berlin, Berlin , Germany
| |
Collapse
|
34
|
Muraki Y, Naito T, Tohyama K, Shibata S, Kuniyeda K, Nio Y, Hazama M, Matsuo T. Improvement of pulmonary arterial hypertension, inflammatory response, and epithelium injury by dual activation of cAMP/cGMP pathway in a rat model of monocrotaline-induced pulmonary hypertension. Biosci Biotechnol Biochem 2019; 83:1000-1010. [PMID: 30835622 DOI: 10.1080/09168451.2019.1584520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pulmonary hypertension (PH) is a life-threatening lung disease. PH with concomitant lung diseases, e.g., idiopathic pulmonary fibrosis, is associated with poor prognosis. Development of novel therapeutic vasodilators for treatment of these patients is a key imperative. We evaluated the efficacy of dual activation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) using an active, small-molecule phosphodiesterase (PDE4)/PDE5 dual inhibitor (Compound A). Compound A increased both cAMP and cGMP levels in WI-38 lung fibroblasts and suppressed the expressions of type-1 collagen α1 chain and fibronectin. Additionally, compound A reduced right ventricular weight/left ventricular weight+septal weight ratio, brain natriuretic peptide expression levels in right ventricle, C─C motif chemokine ligand 2 expression levels in lung, and plasma surfactant protein D. Our data indicate that dual activation of cAMP/cGMP pathways may be a novel treatment strategy for PH.
Collapse
Affiliation(s)
- Yo Muraki
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Takako Naito
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Kimio Tohyama
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Sachio Shibata
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Kanako Kuniyeda
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Yasunori Nio
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Masatoshi Hazama
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Takanori Matsuo
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| |
Collapse
|
35
|
Wiesemann A, Ketteler J, Slama A, Wirsdörfer F, Hager T, Röck K, Engel DR, Fischer JW, Aigner C, Jendrossek V, Klein D. Inhibition of Radiation-Induced Ccl2 Signaling Protects Lungs from Vascular Dysfunction and Endothelial Cell Loss. Antioxid Redox Signal 2019; 30:213-231. [PMID: 29463096 DOI: 10.1089/ars.2017.7458] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Radiation-induced normal tissue toxicity often precludes the application of curative radiation doses. Here we investigated the therapeutic potential of chemokine C-C motif ligand 2 (Ccl2) signaling inhibition to protect normal lung tissue from radiotherapy (RT)-induced injury. Results: RT-induced vascular dysfunction and associated adverse effects can be efficiently antagonized by inhibition of Ccl2 signaling using either the selective Ccl2 inhibitor bindarit (BIN) or mice deficient for the main Ccl2 receptor CCR2 (KO). BIN-treatment efficiently counteracted the RT-induced expression of Ccl2, normalized endothelial cell (EC) morphology and vascular function, and limited lung inflammation and metastasis early after irradiation (acute effects). A similar protection of the vascular compartment was detected by loss of Ccl2 signaling in lungs of CCR2-KO mice. Long-term Ccl2 signaling inhibition also significantly limited EC loss and accompanied fibrosis progression as adverse late effect. With respect to the human situation, we further confirmed that Ccl2 secreted by RT-induced senescent epithelial cells resulted in the activation of normally quiescent but DNA-damaged EC finally leading to EC loss in ex vivo cultured human normal lung tissue. Innovation: Abrogation of certain aspects of the secretome of irradiated resident lung cells, in particular signaling inhibition of the senescence-associated secretory phenotype-factor Ccl2 secreted predominantly by RT-induced senescent epithelial cells, resulted in protection of the endothelial compartment. Conclusions: Radioprotection of the normal tissue via Ccl2 signaling inhibition without simultaneous protection or preferable radiosensitization of tumor tissue might improve local tumor control and survival, because higher doses of radiation could be used.
Collapse
Affiliation(s)
- Alina Wiesemann
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Julia Ketteler
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Alexis Slama
- 2 Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen , Essen, Germany
| | - Florian Wirsdörfer
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Thomas Hager
- 3 Institute of Pathology, University Clinic Essen, University of Duisburg-Essen , Essen, Germany
| | - Katharina Röck
- 4 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | - Daniel R Engel
- 5 Department Immunodynamics, Institute of Experimental Immunology and Imaging, University Duisburg-Essen, University Hospital Essen , Essen, Germany
| | - Jens W Fischer
- 4 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | - Clemens Aigner
- 2 Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen , Essen, Germany
| | - Verena Jendrossek
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Diana Klein
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| |
Collapse
|
36
|
Posma JJ, Grover SP, Hisada Y, Owens AP, Antoniak S, Spronk HM, Mackman N. Roles of Coagulation Proteases and PARs (Protease-Activated Receptors) in Mouse Models of Inflammatory Diseases. Arterioscler Thromb Vasc Biol 2019; 39:13-24. [PMID: 30580574 PMCID: PMC6310042 DOI: 10.1161/atvbaha.118.311655] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
Activation of the blood coagulation cascade leads to fibrin deposition and platelet activation that are required for hemostasis. However, aberrant activation of coagulation can lead to thrombosis. Thrombi can cause tissue ischemia, and fibrin degradation products and activated platelets can enhance inflammation. In addition, coagulation proteases activate cells by cleavage of PARs (protease-activated receptors), including PAR1 and PAR2. Direct oral anticoagulants have recently been developed to specifically inhibit the coagulation proteases FXa (factor Xa) and thrombin. Administration of these inhibitors to wild-type mice can be used to determine the roles of FXa and thrombin in different inflammatory diseases. These results can be compared with the phenotypes of mice with deficiencies of either Par1 (F2r) or Par2 (F2rl1). However, inhibition of coagulation proteases will have effects beyond reducing PAR signaling, and a deficiency of PARs will abolish signaling from all proteases that activate these receptors. We will summarize studies that examine the roles of coagulation proteases, particularly FXa and thrombin, and PARs in different mouse models of inflammatory disease. Targeting FXa and thrombin or PARs may reduce inflammatory diseases in humans.
Collapse
Affiliation(s)
- Jens J Posma
- Laboratory for Clinical Thrombosis and Hemostasis, Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Steven P Grover
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yohei Hisada
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A. Phillip Owens
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, OH, USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Henri M Spronk
- Laboratory for Clinical Thrombosis and Hemostasis, Departments of Internal Medicine and Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nigel Mackman
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Ion homeostasis and transport are regulated by genes differentially expressed in porcine buccal pouch mucosal cells during long-term culture in vitro – a microarray approach. ACTA ACUST UNITED AC 2018. [DOI: 10.2478/acb-2018-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
The oral mucosa is a compound tissue composed of several cells types, including fibroblasts and keratinocytes, that are characterized by different morphology, as well as biochemical and metabolomic properties. The oral mucosal cells are the most important factors mediated between transport and drugs delivery. The changes in cellular ion homeostasis may significantly affect the bioavailability of administrated drugs and their transport across the mucous membrane. Therefore we investigated the expression profile of genes involved in ion transport and homeostasis in porcine buccal pouch mucosal cells.
The oral mucosa was separated surgically and isolated enzymatically. The cells were examined during long-term in vitro culture (IVC). The cultured cells were collected at 7, 15 and 30 days of IVC and subsequently transferred to RNA isolation and next, the gene expression profile was measured using Affymetrix microarray assays.
In the results, we can extract genes belonging to four ontology groups: “ion homeostasis”, “ion transport”, “metal ion transport”, and “inorganic ion homeostasis”. For TGFB1 and CCL2, we observed up-regulation after 7 days of IVC, down-regulation after 15 days of IVC and upregulation again after 30 days of IVC. The ATP13A3, ATP1B1, CCL8, LYN, STEAP1, PDPN, PTGS2, and SLC5A3genes showed high activity after day 7 of IVC, and in the days 15 and 30 of IVC showed low activity.
We showed an expression profile of genes associated with the effects of ion influence on the porcine normal oral mucosal cell development in IVC. These studies may be the starting point for further research into oral diseases and will allow for the comparison of the gene expression profile of normal and disease altered cells.
Collapse
|
38
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|
39
|
Schuliga M, Grainge C, Westall G, Knight D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int J Biochem Cell Biol 2018; 97:108-117. [PMID: 29474926 DOI: 10.1016/j.biocel.2018.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
Fibrosis causes irreversible damage to lung structure and function in restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF). Extravascular coagulation involving fibrin formation in the intra-alveolar compartment is postulated to have a pivotal role in the development of pulmonary fibrosis, serving as a provisional matrix for migrating fibroblasts. Furthermore, proteases of the coagulation and plasminogen activation (plasminergic) systems that form and breakdown fibrin respectively directly contribute to pulmonary fibrosis. The coagulants, thrombin and factor Xa (FXa) evoke fibrogenic effects via cleavage of the N-terminus of protease-activated receptors (PARs). Whilst the formation and activity of plasmin, the principle plasminergic mediator is suppressed in the airspaces of patients with IPF, localized increases are likely to occur in the lung interstitium. Plasmin-evoked proteolytic activation of factor XII (FXII), matrix metalloproteases (MMPs) and latent, matrix-bound growth factors such as epidermal growth factor (EGF) indirectly implicate plasmin in pulmonary fibrosis. Another plasminergic protease, urokinase plasminogen activator (uPA) is associated with regions of fibrosis in the remodelled lung of IPF patients and elicits fibrogenic activity via binding its receptor (uPAR). Plasminogen activator inhibitor-1 (PAI-1) formed in the injured alveolar epithelium also contributes to pulmonary fibrosis in a manner that involves vitronectin binding. This review describes the mechanisms by which components of the two systems primarily involved in fibrin homeostasis contribute to interstitial fibrosis, with a particular focus on IPF. Selectively targeting the receptor-mediated mechanisms of coagulant and plasminergic proteases may limit pulmonary fibrosis, without the bleeding complications associated with conventional anti-coagulant and thrombolytic therapies.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
| |
Collapse
|
40
|
Groves AM, Johnston CJ, Williams JP, Finkelstein JN. Role of Infiltrating Monocytes in the Development of Radiation-Induced Pulmonary Fibrosis. Radiat Res 2018; 189:300-311. [PMID: 29332538 DOI: 10.1667/rr14874.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lung exposure to radiation induces an injury response that includes the release of cytokines and chemotactic mediators; these signals recruit immune cells to execute inflammatory and wound-healing processes. However, radiation alters the pulmonary microenvironment, dysregulating the immune responses and preventing a return to homeostasis. Importantly, dysregulation is observed as a chronic inflammation, which can progress into pneumonitis and promote pulmonary fibrosis; inflammatory monocytes, which are bone marrow derived and express CCR2, have been shown to migrate into the lung after radiation exposure. Although the extent to which recruited inflammatory monocytes contribute to radiation-induced pulmonary fibrosis has not been fully investigated, we hypothesize that its pathogenesis is reliant on this population. The CC chemokine ligand, CCL2, is a chemotactic mediator responsible for trafficking of CCR2+ inflammatory cells into the lung. Therefore, the contribution of this mediator to fibrosis development was analyzed. Interleukin (IL)-1β, a potent pro-inflammatory cytokine expressed during the radiation response, and its receptor, IL-1R1, were also evaluated. To this end, CCR2-/-, IL-1β-/- and IL-1R1-/- chimeric mice were generated and exposed to 12.5 Gy thoracic radiation, and their response was compared to wild-type (C57BL/6) syngeneic controls. Fibrotic foci were observed in the periphery of the lungs of C57 syngeneic mice and CCR2-/- recipient mice that received C57 bone marrow (C57 > CCR2-/-) by 16 and 12 weeks after irradiation, respectively. In contrast, in the mice that had received bone marrow lacking CCR2 (CCR2-/- > C57 and CCR2-/- syngeneic mice), no pulmonary fibrosis was observed at 22 weeks postirradiation. This observation correlated with decreased numbers of infiltrating and interstitial macrophages compared to controls, as well as reduced proportions of pro-inflammatory Ly6C+ macrophages observed at 12-18 weeks postirradiation, suggesting that CCR2+ macrophages contribute to radiation-induced pulmonary fibrosis. Interestingly, reduced proportions of CD206+ lung macrophages were also present at these time points in CCR2-/- chimeric mice, regardless of donor bone marrow type, suggesting that the phenotype of resident subsets may be influenced by CCR2. Furthermore, chimeras, in which either IL-1β was ablated from infiltrating cells or IL-1R1 from lung tissues, were also protected from fibrosis development, correlating with attenuated CCL2 production; these data suggest that IL-1β may influence chemotactic signaling after irradiation. Overall, our data suggest that CCR2+ infiltrating monocyte-derived macrophages may play a critical role in the development of radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Angela M Groves
- Department of a Pediatrics M&D Neonatology, University of Rochester Medical Center, Rochester, New York
| | - Carl J Johnston
- Department of a Pediatrics M&D Neonatology, University of Rochester Medical Center, Rochester, New York.,b Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jacqueline P Williams
- b Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jacob N Finkelstein
- Department of a Pediatrics M&D Neonatology, University of Rochester Medical Center, Rochester, New York.,b Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
41
|
Didiasova M, Berscheid S, Piskulak K, Taborski B, Zakrzewicz D, Kwapiszewska G, Wygrecka M, Preissner K, Markart P. Protease-activated receptors (PAR)-1 and -3 drive epithelial-mesenchymal transition of alveolar epithelial cells – potential role in lung fibrosis. Thromb Haemost 2017; 110:295-307. [DOI: 10.1160/th12-11-0854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/09/2013] [Indexed: 02/07/2023]
Abstract
SummaryExtravascular activation of the coagulation cascade in the lung is commonly observed in pulmonary fibrosis. Coagulation proteases may exert profibrotic cellular effects via protease-activated receptors (PARs)-1 and -2. Here, we investigated the potential role of two other members of the PAR family, namely PAR-3 and PAR-4, in the pathobiology of lung fibrosis. Elevated expression of PAR-3, but not PAR-4, was detected in the lungs of idiopathic pulmonary fibrosis (IPF) patients and in bleomycin-induced lung fibrosis in mice. Increased PAR-3 expression in fibrotic lungs was mainly attributable to alveolar type II (ATII) cells. Stimulation of primary mouse ATII, MLE15 and A549 cells with thrombin (FIIa) – that may activate PAR-1, PAR-3 and PAR-4 – induced epithelial-mesenchymal transition (EMT), a process that has been suggested to be a possible mechanism underlying the expanded (myo)fibroblast pool in lung fibrosis. EMT was evidenced by morphological alterations, expression changes of epithelial and mesenchymal phenotype markers, and functional changes. Single knockdown of FIIa receptors, PAR-1, PAR-3, or PAR-4, had no major impact on FIIa-induced EMT. Simultaneous depletion of PAR-1 and PAR-3, however, almost completely inhibited this process, whereas only a partial effect on FIIa-mediated EMT was observed when PAR-1 and PAR-4, or PAR-3 and PAR-4 were knocked down. PAR-1 and PAR-3 co-localise within ATII cells with both being predominantely plasma membrane associated. In conclusion, our study indicates that PARs synergise to mediate FIIa-induced EMT and provides first evidence that PAR-3 via its ability to potentiate FIIa-triggered EMT could potentially contribute to the pathogenesis of pulmonary fibrosis.
Collapse
|
42
|
Joseph P. Transcriptomics in toxicology. Food Chem Toxicol 2017; 109:650-662. [PMID: 28720289 PMCID: PMC6419952 DOI: 10.1016/j.fct.2017.07.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
Xenobiotics, of which many are toxic, may enter the human body through multiple routes. Excessive human exposure to xenobiotics may exceed the body's capacity to defend against the xenobiotic-induced toxicity and result in potentially fatal adverse health effects. Prevention of the adverse health effects, potentially associated with human exposure to the xenobiotics, may be achieved by detecting the toxic effects at an early, reversible and, therefore, preventable stage. Additionally, an understanding of the molecular mechanisms underlying the toxicity may be helpful in preventing and/or managing the ensuing adverse health effects. Human exposures to a large number of xenobiotics are associated with hepatotoxicity or pulmonary toxicity. Global gene expression changes taking place in biological systems, in response to exposure to xenobiotics, may represent the early and mechanistically relevant cellular events contributing to the onset and progression of xenobiotic-induced adverse health outcomes. Hepatotoxicity and pulmonary toxicity resulting from exposure to xenobiotics are discussed as specific examples to demonstrate the potential application of transcriptomics or global gene expression analysis in the prevention of adverse health effects associated with exposure to xenobiotics.
Collapse
Affiliation(s)
- Pius Joseph
- Molecular Carcinogenesis Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA.
| |
Collapse
|
43
|
Deng X, Zhou X, Deng Y, Liu F, Feng X, Yin Q, Gu Y, Shi S, Xu M. Thrombin Induces CCL2 Expression in Human Lung Fibroblasts via p300 Mediated Histone Acetylation and NF-KappaB Activation. J Cell Biochem 2017; 118:4012-4019. [PMID: 28407300 DOI: 10.1002/jcb.26057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 02/05/2023]
Abstract
Thrombin has been shown to play a key role in lung diseases such as pulmonary fibrosis via the induction of fibrotic cytokine- chemokine (CC motif) ligand-2 (CCL2) expression. We previously reported that transcription factor nuclear factor-κB (NF-κB) is responsible for thrombin-induced CCL2 expression in human lung fibroblasts (HLFs). Here, we extended our study to investigate the epigenetic regulation mechanism for thrombin-induced CCL2 expression in HLFs. HLFs were cultured in F-12 medium. CCL2 protein and mRNA levels were detected by ELISA and quantitative real-time PCR, respectively. Histone, histone acetyltransferases, and NF-κB binding to CCL2 promoter were detected by ChIP assay. NF-κB activation was detected by Western blotting. We revealed that increased binding of histone acetyltransferase p300 and acetylated histone H3 and H4 to CCL2 promoter are responsible for thrombin induced CCL2 expression in HLF cells. In addition, p300 inhibition attenuates both thrombin induced-CCL2 expression and histone H3 and H4 acetylation in HLFs, suggesting that p300 is involved in thrombin-induced CCL2 expression via hyperacetylating histone H3 and H4. Our data further showed that p300 also regulates CCL2 expression via interaction with NF-κB p65, as depletion of p300 inhibits both NF-κB p65 activation and its binding to CCL2 promoter. The findings strongly suggest that epigenetic dysregulation and the interaction between histone acetyltransferase and transcription factor may be responsible for thrombin induced-CCL2 expression in HLFs. Increased understanding of the epigenetic mechanisms of CCL2 regulation may provide opportunities for identifying novel molecular targets for therapeutic purposes. J. Cell. Biochem. 118: 4012-4019, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoling Deng
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Xiaoqiong Zhou
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Yan Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Fan Liu
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Xiaofan Feng
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Qi Yin
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Yinzhen Gu
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Songlin Shi
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Mingyan Xu
- Department of Oral Biology and Biomaterial, Xiamen Stomatological Research Institute, Xiamen Medical College, Xiamen, 361000, Fujian Province, People's Republic of China
| |
Collapse
|
44
|
Guan Y, Nakano D, Zhang Y, Li L, Liu W, Nishida M, Kuwabara T, Morishita A, Hitomi H, Mori K, Mukoyama M, Masaki T, Hirano K, Nishiyama A. A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy. J Pharmacol Sci 2017; 135:S1347-8613(17)30128-7. [PMID: 29110957 DOI: 10.1016/j.jphs.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
The kidney expresses protease-activated receptor-1 (PAR-1). PAR-1 is known as a thrombin receptor, but its role in kidney injury is not well understood. In this study, we examined the contribution of PAR-1 to kidney glomerular injury and the effects of its inhibition on development of nephropathy. Mice were divided into 3 groups: control, doxorubicin + vehicle (15 mg/kg doxorubicin and saline) and doxorubicin + Q94 (doxorubicin at 15 mg/kg and the PAR-1 antagonist Q94 at 5 mg/kg/d) groups. Where indicated, doxorubicin was administered intravenously and PAR-1 antagonist or saline vehicle by subcutaneous osmotic mini-pump. PAR-1 expression was increased in glomeruli of mice treated with doxorubicin. Q94 treatment significantly suppressed the increased albuminuria in these nephropathic mice. Pathological analysis showed that Q94 treatment significantly attenuated periodic acid-Schiff and desmin staining, indicators of podocyte injury, and also decreased glomerular levels of podocin and nephrin. Furthermore, thrombin increased intracellular calcium levels in podocytes. This increase was suppressed by Q94 and Rox4560, a transient receptor potential cation channel (TRPC)3/6 antagonist. In addition, both Q94 and Rox4560 suppressed the doxorubicin-induced increase in activities of caspase-9 and caspase-3 in podocytes. These data suggested that PAR-1 contributes to development of podocyte and glomerular injury and that PAR-1 antagonists have therapeutic potential.
Collapse
Affiliation(s)
- Yu Guan
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University, Kagawa, Japan.
| | - Yifan Zhang
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Lei Li
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Wenhua Liu
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Asahiro Morishita
- Department of Gastroenterology & Neurology, Kagawa University, Kagawa, Japan
| | - Hirofumi Hitomi
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Kiyoshi Mori
- Department of Nephrology and Kidney Research, Shizuoka General Hospital, Shizuoka, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology & Neurology, Kagawa University, Kagawa, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| |
Collapse
|
45
|
Milger K, Yu Y, Brudy E, Irmler M, Skapenko A, Mayinger M, Lehmann M, Beckers J, Reichenberger F, Behr J, Eickelberg O, Königshoff M, Krauss-Etschmann S. Pulmonary CCR2 +CD4 + T cells are immune regulatory and attenuate lung fibrosis development. Thorax 2017; 72:1007-1020. [PMID: 28780502 DOI: 10.1136/thoraxjnl-2016-208423] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Animal models have suggested that CCR2-dependent signalling contributes to the pathogenesis of pulmonary fibrosis, but global blockade of CCL2 failed to improve the clinical course of patients with lung fibrosis. However, as levels of CCR2+CD4+ T cells in paediatric lung fibrosis had previously been found to be increased, correlating with clinical symptoms, we hypothesised that distinct CCR2+ cell populations might either increase or decrease disease pathogenesis depending on their subtype. OBJECTIVE To investigate the role of CCR2+CD4+ T cells in experimental lung fibrosis and in patients with idiopathic pulmonary fibrosis and other fibrosis. METHODS Pulmonary CCR2+CD4+ T cells were analysed using flow cytometry and mRNA profiling, followed by in silico pathway analysis, in vitro assays and adoptive transfer experiments. RESULTS Frequencies of CCR2+CD4+ T cells were increased in experimental fibrosis-specifically the CD62L-CD44+ effector memory T cell phenotype, displaying a distinct chemokine receptor profile. mRNA profiling of isolated CCR2+CD4+ T cells from fibrotic lungs suggested immune regulatory functions, a finding that was confirmed in vitro using suppressor assays. Importantly, adoptive transfer of CCR2+CD4+ T cells attenuated fibrosis development. The results were partly corroborated in patients with lung fibrosis, by showing higher percentages of Foxp3+ CD25+ cells within bronchoalveolar lavage fluid CCR2+CD4+ T cells as compared with CCR2-CD4+ T cells. CONCLUSION Pulmonary CCR2+CD4+ T cells are immunosuppressive, and could attenuate lung inflammation and fibrosis. Therapeutic strategies completely abrogating CCR2-dependent signalling will therefore also eliminate cell populations with protective roles in fibrotic lung disease. This emphasises the need for a detailed understanding of the functions of immune cell subsets in fibrotic lung disease.
Collapse
Affiliation(s)
- Katrin Milger
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Internal Medicine V, University of Munich, Munich, Germany
| | - Yingyan Yu
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dr von Hauner Children Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Eva Brudy
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology, Department of Internal Medicine IV, University of Munich, Germany, Munich, Germany
| | - Michael Mayinger
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany.,Chair of Experimental Genetics, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Jürgen Behr
- Department of Internal Medicine V, University of Munich, Munich, Germany.,Asklepios Clinic Gauting, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Susanne Krauss-Etschmann
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dr von Hauner Children Hospital, Ludwig Maximilians University of Munich, Munich, Germany.,Asklepios Clinic Gauting, Munich, Germany.,Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany., Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
46
|
Schuliga M, Jaffar J, Berhan A, Langenbach S, Harris T, Waters D, Lee PVS, Grainge C, Westall G, Knight D, Stewart AG. Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity. Am J Physiol Lung Cell Mol Physiol 2017; 312:L772-L782. [DOI: 10.1152/ajplung.00553.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
In lung injury and disease, including idiopathic pulmonary fibrosis (IPF), extravascular factor X is converted into factor Xa (FXa), a coagulant protease with fibrogenic actions. Extracellular annexin A2 binds to FXa, augmenting activation of the protease-activated receptor-1 (PAR-1). In this study, the contribution of annexin A2 in lung injury and fibrosis was investigated. Annexin A2 immunoreactivity was observed in regions of fibrosis, including those associated with fibroblasts in lung tissue of IPF patients. Furthermore, annexin A2 was detected in the conditioned media and an EGTA membrane wash of human lung fibroblast (LF) cultures. Incubation with human plasma (5% vol/vol) or purified FXa (15–50 nM) evoked fibrogenic responses in LF cultures, with FXa increasing interleukin-6 (IL-6) production and cell number by 270 and 46%, respectively ( P < 0.05, n = 5–8). The fibrogenic actions of plasma or FXa were attenuated by the selective FXa inhibitor apixaban (10 μM, or antibodies raised against annexin A2 or PAR-1 (2 μg/ml). FXa-stimulated LFs from IPF patients ( n = 6) produced twice as much IL-6 as controls ( n = 10) ( P < 0.05), corresponding with increased levels of extracellular annexin A2. Annexin A2 gene deletion in mice reduced bleomycin-induced increases in bronchoalveolar lavage fluid (BALF) IL-6 levels and cell number (* P < 0.05; n = 4–12). Lung fibrogenic gene expression and dry weight were reduced by annexin A2 gene deletion, but lung levels of collagen were not. Our data suggest that annexin A2 contributes to lung injury and fibrotic disease by mediating the fibrogenic actions of FXa. Extracellular annexin A2 is a potential target for the treatment of IPF.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jade Jaffar
- Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Asres Berhan
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Shenna Langenbach
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Trudi Harris
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - David Waters
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Peter V. S. Lee
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia; and
| | - Glen Westall
- Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alastair G. Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
47
|
Cinar R, Gochuico BR, Iyer MR, Jourdan T, Yokoyama T, Park JK, Coffey NJ, Pri-Chen H, Szanda G, Liu Z, Mackie K, Gahl WA, Kunos G. Cannabinoid CB1 receptor overactivity contributes to the pathogenesis of idiopathic pulmonary fibrosis. JCI Insight 2017; 2:92281. [PMID: 28422760 DOI: 10.1172/jci.insight.92281] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease without effective treatment, highlighting the need for identifying new targets and treatment modalities. The pathogenesis of IPF is complex, and engaging multiple targets simultaneously might improve therapeutic efficacy. To assess the role of the endocannabinoid/cannabinoid receptor 1 (endocannabinoid/CB1R) system in IPF and its interaction with inducible nitric oxide synthase (iNOS) as dual therapeutic targets, we analyzed lung fibrosis and the status of the endocannabinoid/CB1R system and iNOS in mice with bleomycin-induced pulmonary fibrosis (PF) and in lung tissue and bronchoalveolar lavage fluid (BALF) from patients with IPF, as well as controls. In addition, we investigated the antifibrotic efficacy in the mouse PF model of an orally bioavailable and peripherally restricted CB1R/iNOS hybrid inhibitor. We report that increased activity of the endocannabinoid/CB1R system parallels disease progression in the lungs of patients with idiopathic PF and in mice with bleomycin-induced PF and is associated with increased tissue levels of interferon regulatory factor-5. Furthermore, we demonstrate that simultaneous engagement of the secondary target iNOS by the hybrid CB1R/iNOS inhibitor has greater antifibrotic efficacy than inhibition of CB1R alone. This hybrid antagonist also arrests the progression of established fibrosis in mice, thus making it a viable candidate for future translational studies in IPF.
Collapse
Affiliation(s)
- Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Malliga R Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Tadafumi Yokoyama
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joshua K Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Hadass Pri-Chen
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Gergő Szanda
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Ziyi Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), and
| |
Collapse
|
48
|
Jablonski RP, Kim SJ, Cheresh P, Williams DB, Morales-Nebreda L, Cheng Y, Yeldandi A, Bhorade S, Pardo A, Selman M, Ridge K, Gius D, Budinger GRS, Kamp DW. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis. FASEB J 2017; 31:2520-2532. [PMID: 28258190 DOI: 10.1096/fj.201601077r] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/07/2017] [Indexed: 01/28/2023]
Abstract
Alveolar epithelial cell (AEC) mitochondrial dysfunction and apoptosis are important in idiopathic pulmonary fibrosis and asbestosis. Sirtuin 3 (SIRT3) detoxifies mitochondrial reactive oxygen species, in part, by deacetylating manganese superoxide dismutase (MnSOD) and mitochondrial 8-oxoguanine DNA glycosylase. We reasoned that SIRT3 deficiency occurs in fibrotic lungs and thereby augments AEC mtDNA damage and apoptosis. Human lungs were assessed by using immunohistochemistry for SIRT3 activity via acetylated MnSODK68 Murine AEC SIRT3 and cleaved caspase-9 (CC-9) expression were assayed by immunoblotting with or without SIRT3 enforced expression or silencing. mtDNA damage was measured by using quantitative PCR and apoptosis via ELISA. Pulmonary fibrosis after asbestos or bleomycin exposure was evaluated in 129SJ/wild-type and SIRT3-knockout mice (Sirt3-/- ) by using fibrosis scoring and lung collagen levels. Idiopathic pulmonary fibrosis lung alveolar type II cells have increased MnSODK68 acetylation compared with controls. Asbestos and H2O2 diminished AEC SIRT3 protein expression and increased mitochondrial protein acetylation, including MnSODK68 SIRT3 enforced expression reduced oxidant-induced AEC OGG1K338/341 acetylation, mtDNA damage, and apoptosis, whereas SIRT3 silencing promoted these effects. Asbestos- or bleomycin-induced lung fibrosis, AEC mtDNA damage, and apoptosis in wild-type mice were amplified in Sirt3-/- animals. These data suggest a novel role for SIRT3 deficiency in mediating AEC mtDNA damage, apoptosis, and lung fibrosis.-Jablonski, R. P., Kim, S.-J., Cheresh, P., Williams, D. B., Morales-Nebreda, L., Cheng, Y., Yeldandi, A., Bhorade, S., Pardo, A., Selman, M., Ridge, K., Gius, D., Budinger, G. R. S., Kamp, D. W. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis.
Collapse
Affiliation(s)
- Renea P Jablonski
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Seok-Jo Kim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Paul Cheresh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David B Williams
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luisa Morales-Nebreda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuan Cheng
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anjana Yeldandi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sangeeta Bhorade
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City, Mexico
| | - Karen Ridge
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David Gius
- Department of Radiation Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - G R Scott Budinger
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David W Kamp
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA; .,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
49
|
Sarode G, Sarode SC, Deshmukh R, Raktade P, Patil S. Myofibroblasts could be recruited in a chemokine (C-C motif) ligand 2-dependent manner in pathogenesis of oral submucous fibrosis. J Oral Pathol Med 2017; 46:443-447. [DOI: 10.1111/jop.12543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Gargi Sarode
- Department of Oral Pathology and Microbiology; Dr. D. Y. Patil Dental College and Hospital; Dr. D.Y. Patil Vidyapeeth; Pune Maharashtra India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology; Dr. D. Y. Patil Dental College and Hospital; Dr. D.Y. Patil Vidyapeeth; Pune Maharashtra India
| | - Revati Deshmukh
- Department of Oral Pathology and Microbiology; Dr. D. Y. Patil Dental College and Hospital; Dr. D.Y. Patil Vidyapeeth; Pune Maharashtra India
| | - Prashant Raktade
- Department of Oral and Maxillofacial Surgery; Pandit Deendayal Upadhay Dental College and Hospital; Solapur Maharashtra India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences; Division of Oral Pathology; College of Dentistry; Jazan University; Jazan Saudi Arabia
| |
Collapse
|
50
|
Young LR, Gulleman PM, Short CW, Tanjore H, Sherrill T, Qi A, McBride AP, Zaynagetdinov R, Benjamin JT, Lawson WE, Novitskiy SV, Blackwell TS. Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome. JCI Insight 2016; 1:e88947. [PMID: 27777976 DOI: 10.1172/jci.insight.88947] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alveolar epithelial cell (AEC) dysfunction underlies the pathogenesis of pulmonary fibrosis in Hermansky-Pudlak syndrome (HPS) and other genetic syndromes associated with interstitial lung disease; however, mechanisms linking AEC dysfunction and fibrotic remodeling are incompletely understood. Since increased macrophage recruitment precedes pulmonary fibrosis in HPS, we investigated whether crosstalk between AECs and macrophages determines fibrotic susceptibility. We found that AECs from HPS mice produce excessive MCP-1, which was associated with increased macrophages in the lungs of unchallenged HPS mice. Blocking MCP-1/CCR2 signaling in HPS mice with genetic deficiency of CCR2 or targeted deletion of MCP-1 in AECs normalized macrophage recruitment, decreased AEC apoptosis, and reduced lung fibrosis in these mice following treatment with low-dose bleomycin. We observed increased TGF-β production by HPS macrophages, which was eliminated by CCR2 deletion. Selective deletion of TGF-β in myeloid cells or of TGF-β signaling in AECs through deletion of TGFBR2 protected HPS mice from AEC apoptosis and bleomycin-induced fibrosis. Together, these data reveal a feedback loop in which increased MCP-1 production by dysfunctional AECs results in recruitment and activation of lung macrophages that produce TGF-β, thus amplifying the fibrotic cascade through AEC apoptosis and stimulation of fibrotic remodeling.
Collapse
Affiliation(s)
- Lisa R Young
- Department of Pediatrics, Division of Pulmonary Medicine, and.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Chelsi W Short
- Department of Pediatrics, Division of Pulmonary Medicine, and
| | - Harikrishna Tanjore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taylor Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aidong Qi
- Department of Pediatrics, Division of Pulmonary Medicine, and
| | | | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William E Lawson
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sergey V Novitskiy
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|