Systematic Reviews
Copyright ©The Author(s) 2025.
World J Gastrointest Surg. Aug 27, 2025; 17(8): 109463
Published online Aug 27, 2025. doi: 10.4240/wjgs.v17.i8.109463
Table 3 Summary of studies related to artificial intelligence-based intraoperative guidance in gastrointestinal surgery
Ref.
Surgical context
AI method/model
Guidance function
Data type/source
Real time capability
Performance metrics
Sato et al[24], 2022Thoracoscopic esophagectomyDeepLabv3+ (CNN based semantic segmentation)Recurrent laryngeal nerve identification and navigation3000 annotated intraoperative images from 20 videos (train/val) + 40 test images from 8 other videosYesDice: AI 0.58, expert 0.62, general surgeons 0.47
Niikura et al[25], 2022Upper GI endoscopySingle shot multibox detector (CNN)Detection of gastric cancer in endoscopic images23892 white light images from 500 patients (1:1 matched to expert endoscopists)NoPer patient: 100%, per image: 99.87%, IOU: 0.842
Yang et al[26], 2022EUS for subepithelial lesionsResNet 50 (CNN based deep learning)Differentiation of gastrointestinal stromal tumors and leiomyomas using EUS10439 EUS images from 752 patients (multicenter); 132 prospective patients for clinical validationYesAUC: 0.986 (internal), 0.642 (external), accuracy: 96.2%
Schnelldorfer et al[27], 2024Staging laparoscopyYOLOv5 (detection), ensemble ResNet18 CNN (classification)Identification and classification of peritoneal surface metastases4287 lesions from 132 patients (365 biopsied lesions; 3650 image patches)NoAUC PR: 0.69, AUROC: 0.78, accuracy: 78%
Guo et al[28], 2021GI endoscopy (multi lesion)Deep CNN (ResNet 50 with TTA and transfer learning)Detecting four lesion categories to support endoscopic diagnosis327121 WLI images for training; 33959 images in validation from 1734 casesNo (0.05 seconds/image)Sensitivity: 88.3%, specificity: 90.3%, accuracy: 89.7%
Houwen et al[29], 2022ColonoscopyDefines competence standards (SODA) for AI or endoscopists in optical diagnosisSimulation studies + systematic literature review; ESGE Delphi consensus panelYesSensitivity ≥ 90%, specificity ≥ 80% (leave in situ); ≥ 80% both (resect and discard)
Tatar and Çubukçu[30], 2024ColonoscopyYOLOv8 based CNN (ColoNet)Identification of neoplastic/premalignant/malignant lesions; biopsy decision support1760 colonoscopy images (306 patients) for training/validation; 91 external images for real time testingYesmAP50: 0.832, accuracy: 82.4%, sensitivity: 70.7%, specificity: 92.0%