Copyright
©The Author(s) 2025.
World J Gastrointest Surg. Jun 27, 2025; 17(6): 106155
Published online Jun 27, 2025. doi: 10.4240/wjgs.v17.i6.106155
Published online Jun 27, 2025. doi: 10.4240/wjgs.v17.i6.106155
Table 4 Predictive performance of clinical model, radiomic signature and nomogram in the training and test sets
Group | Signature | AUC (95%CI) | ACC | SEN | SPE | PPV | NPV |
Training set | Clinic signature | 0.760 (0.679-0.840) | 0.714 | 0.707 | 0.723 | 0.460 | 0.878 |
Rad signature | 0.828 (0.753-0.902) | 0.832 | 0.610 | 0.908 | 0.694 | 0.872 | |
Nomogram | 0.864 (0.800-0.929) | 0.845 | 0.707 | 0.892 | 0.690 | 0.899 | |
Test set | Clinic signature | 0.747 (0.598-0.897) | 0.811 | 0.533 | 0.946 | 0.727 | 0.833 |
Rad signature | 0.791 (0.668-0.915) | 0.698 | 0.933 | 0.622 | 0.483 | 0.958 | |
Nomogram | 0.800 (0.669-0.931) | 0.830 | 0.667 | 0.895 | 0.714 | 0.872 |
- Citation: Li DL, Zhu L, Liu SL, Wang ZB, Liu JN, Zhou XM, Hu JL, Liu RQ. Machine learning-based radiomic nomogram from unenhanced computed tomography and clinical data predicts bowel resection in incarcerated inguinal hernia. World J Gastrointest Surg 2025; 17(6): 106155
- URL: https://www.wjgnet.com/1948-9366/full/v17/i6/106155.htm
- DOI: https://dx.doi.org/10.4240/wjgs.v17.i6.106155