Copyright
©The Author(s) 2025.
World J Gastrointest Surg. Jun 27, 2025; 17(6): 106155
Published online Jun 27, 2025. doi: 10.4240/wjgs.v17.i6.106155
Published online Jun 27, 2025. doi: 10.4240/wjgs.v17.i6.106155
Table 3 Predictive performance of radiomic signature in multiple models
Model | Set | AUC (95%CI) | ACC | SEN | SPE | PPV | NPV |
LR | Training | 0.828 (0.7523-0.902) | 0.832 | 0.610 | 0.908 | 0.694 | 0.872 |
Test | 0.791 (0.668-0.915) | 0.698 | 0.933 | 0.622 | 0.483 | 0.958 | |
SVM | Training | 0.919 (0.859-0.979) | 0.863 | 0.927 | 0.842 | 0.667 | 0.971 |
Test | 0.742 (0.599-0.885) | 0.717 | 0.800 | 0.703 | 0.500 | 0.897 | |
KNN | Training | 0.840 (0.780-0.901) | 0.783 | 0.756 | 0.792 | 0.554 | 0.905 |
Test | 0.613 (0.463-0.764) | 0.528 | 0.867 | 0.417 | 0.361 | 0.882 | |
RF | Training | 1.000 (0.999-1.000) | 0.988 | 1.000 | 0.983 | 0.953 | 1.000 |
Test | 0.603 (0.434-0.771) | 0.717 | 0.267 | 0.944 | 0.500 | 0.756 | |
ET | Training | 1.000 (1.000-1.000) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Test | 0.583 (0.418-0.748) | 0.604 | 0.600 | 0.622 | 0.375 | 0.793 | |
XGBoost | Training | 1.000 (1.000-1.000) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Test | 0.665 (0.517-0.813) | 0.623 | 0.867 | 0.526 | 0.419 | 0.909 | |
LightGBM | Training | 0.963 (0.936-0.989) | 0.907 | 0.927 | 0.900 | 0.760 | 0.973 |
Test | 0.627 (0.479-0.776) | 0.528 | 1.000 | 0.351 | 0.375 | 1.000 | |
MLP | Training | 0.829 (0.760-0.899) | 0.770 | 0.780 | 0.767 | 0.533 | 0.911 |
Test | 0.686 (0.536-0.836) | 0.604 | 0.867 | 0.514 | 0.406 | 0.905 |
- Citation: Li DL, Zhu L, Liu SL, Wang ZB, Liu JN, Zhou XM, Hu JL, Liu RQ. Machine learning-based radiomic nomogram from unenhanced computed tomography and clinical data predicts bowel resection in incarcerated inguinal hernia. World J Gastrointest Surg 2025; 17(6): 106155
- URL: https://www.wjgnet.com/1948-9366/full/v17/i6/106155.htm
- DOI: https://dx.doi.org/10.4240/wjgs.v17.i6.106155