Copyright
©The Author(s) 2025.
World J Gastrointest Surg. Jun 27, 2025; 17(6): 106155
Published online Jun 27, 2025. doi: 10.4240/wjgs.v17.i6.106155
Published online Jun 27, 2025. doi: 10.4240/wjgs.v17.i6.106155
Table 2 Multivariable logistic regression analysis of clinical features between patients with bowel resection and without bowel resection in the training set
Clinical features | P value | OR | 95%CI |
Incarcerated time, > 4 hours | 0.060 | 2.406 | 0.965-6.000 |
Bowel obstruction (%) | 0.012 | 3.153 | 1.291-7.700 |
Peritonitis (%) | 0.003 | 4.207 | 1.608-11.011 |
CRP (mg/L) | 0.019 | 1.013 | 1.002-1.024 |
D-D | 0.042 | 1.001 | 1.000-1.001 |
- Citation: Li DL, Zhu L, Liu SL, Wang ZB, Liu JN, Zhou XM, Hu JL, Liu RQ. Machine learning-based radiomic nomogram from unenhanced computed tomography and clinical data predicts bowel resection in incarcerated inguinal hernia. World J Gastrointest Surg 2025; 17(6): 106155
- URL: https://www.wjgnet.com/1948-9366/full/v17/i6/106155.htm
- DOI: https://dx.doi.org/10.4240/wjgs.v17.i6.106155